All Downloads are FREE. Search and download functionalities are using the official Maven repository.

Common.OpenCL.Matrix3f.clh Maven / Gradle / Ivy

There is a newer version: 3.7.0-stable
Show newest version

#ifndef MATRIX3_H
#define MATRIX3_H

//Simple matrix library.
//A 3x3 matrix is represented as a float16 in row major order

typedef float16 mat3;

//All matrix functions are prefixed with mat3 or mat4

//Returns the zero matrix
inline mat3 mat3Zero() {
	return (float16)(0);
}

//Returns the identity matrix
inline mat3 mat3Identity() {
	return (float16)
		(1, 0, 0, 0,
		 0, 1, 0, 0,
		 0, 0, 1, 0,
		 0, 0, 0, 1);
}

inline mat3 mat3FromRows(float3 row1, float3 row2, float3 row3) {
	return (float16) 
		(row1.x, row1.y, row1.z, 0,
		 row2.x, row2.y, row2.z, 0,
		 row3.x, row3.y, row3.z, 0,
		 0, 0, 0, 1);
}

inline mat3 mat3FromColumns(float3 col1, float3 col2, float3 col3) {
	return (float16)
		(col1.x, col2.x, col3.x, 0,
		 col1.y, col2.y, col3.y, 0,
		 col1.z, col2.z, col3.z, 0,
		 0, 0, 0, 1);
}

inline mat3 mat3FromDiagonal(float3 diag) {
	return (float16)
		(diag.x, 0, 0, 0,
		 0, diag.y, 0, 0,
		 0, 0, diag.z, 0,
		 0, 0, 0, 1);
}

//Returns the i-th row (0-based)
inline float3 mat3GetRow(mat3 mat, int i) {
	if (i==0) return mat.s012;
	else if (i==1) return mat.s456;
	else return mat.s89a;
}

//Sets the i-th row (0-based)
inline mat3 mat3SetRow(mat3 mat, int i, float3 row) {
	if (i==0) mat.s012 = row;
	else if (i==1) mat.s456 = row;
	else mat.s89a = row;
	return mat;
}

//Returns the i-th column (0-based)
inline float3 mat3GetColumn(mat3 mat, int i) {
	if (i==0) return mat.s048;
	else if (i==1) return mat.s159;
	else return mat.s26a;
}

//Sets the i-th column (0-based)
inline mat3 mat3SetColumn(mat3 mat, int i, float3 col) {
	if (i==0) mat.s048 = col;
	else if (i==1) mat.s159 = col;
	else mat.s26a = col;
	return mat;
}

//Returns the diagonal
inline float3 mat3GetDiagonal(mat3 mat) {
	return mat.s05a;
}

//Sets the diagonal
inline mat3 mat3SetDiagonal(mat3 mat, float3 diag) {
	mat.s05a = diag;
	return mat;
}

mat3 mat3FromAngleNormalAxis(float angle, float3 axis) {
	float fCos = cos(angle);
	float fSin = sin(angle);
	float fOneMinusCos = 1.0f - fCos;
	float fX2 = axis.x * axis.x;
	float fY2 = axis.y * axis.y;
	float fZ2 = axis.z * axis.z;
	float fXYM = axis.x * axis.y * fOneMinusCos;
	float fXZM = axis.x * axis.z * fOneMinusCos;
	float fYZM = axis.y * axis.z * fOneMinusCos;
	float fXSin = axis.x * fSin;
	float fYSin = axis.y * fSin;
	float fZSin = axis.z * fSin;

	return (float16) (
		fX2 * fOneMinusCos + fCos,
		fXYM - fZSin,
		fXZM + fYSin,
		0,
		fXYM + fZSin,
		fY2 * fOneMinusCos + fCos,
		fYZM - fXSin,
		0,
		fXZM - fYSin,
		fYZM + fXSin,
		fZ2 * fOneMinusCos + fCos,
		0,
		0, 0, 0, 1
	);
}

mat3 mat3FromAngleAxis(float angle, float3 axis) {
	return mat3FromAngleNormalAxis(angle, normalize(axis));
}

//Multiplies the two matrices A and B
inline mat3 mat3Mult(mat3 A, mat3 B) {
	return (float16) (
		dot(A.s012, B.s048),
		dot(A.s012, B.s159),
		dot(A.s012, B.s26a),
		0,
		dot(A.s456, B.s048),
		dot(A.s456, B.s159),
		dot(A.s456, B.s26a),
		0,
		dot(A.s89a, B.s048),
		dot(A.s89a, B.s159),
		dot(A.s89a, B.s26a),
		0,
		0, 0, 0, 1
	);
}

//Computes Av (right multiply of a vector to a matrix)
inline float3 mat3VMult(mat3 A, float3 v) {
	return (float3) (
		dot(A.s012, v),
		dot(A.s456, v),
		dot(A.s89a, v));
}

//Computes vA (left multiply of a vector to a matrix)
inline float3 mat3VMult2(float3 v, mat3 A) {
	return (float3) (
		dot(v, A.s048),
		dot(v, A.s159),
		dot(v, A.s26a));
}

//Scales this matrix by a constant
inline mat3 mat3Scale(mat3 mat, float s) {
	return s*mat;
}

//Transposes this matrix
inline mat3 mat3Transpose(mat3 mat) {
	return mat.s048c159d26ae37bf; //magic
}

//Computes the determinant
inline float mat3Determinant(mat3 mat) {
	float fCo00 = mat.s5 * mat.sa - mat.s6 * mat.s9;
	float fCo10 = mat.s6 * mat.s8 - mat.s4 * mat.sa;
	float fCo20 = mat.s4 * mat.s9 - mat.s5 * mat.s8;
	float fDet = mat.s0 * fCo00 + mat.s1 * fCo10 + mat.s2 * fCo20;
	return fDet;
}

//Creates the adjoint
inline mat3 mat3Adjoint(mat3 mat) {
	return (float16) (
		mat.s5 * mat.sa - mat.s6 * mat.s9,
		mat.s2 * mat.s9 - mat.s1 * mat.sa,
		mat.s1 * mat.s6 - mat.s2 * mat.s5,
		0,
		mat.s6 * mat.s8 - mat.s4 * mat.sa,
		mat.s0 * mat.sa - mat.s2 * mat.s8,
		mat.s2 * mat.s4 - mat.s0 * mat.s6,
		0,
		mat.s4 * mat.s9 - mat.s5 * mat.s8,
		mat.s1 * mat.s8 - mat.s0 * mat.s9,
		mat.s0 * mat.s5 - mat.s1 * mat.s4,
		0,
		0, 0, 0, 1
	);
}

//Inverts this matrix
inline mat3 mat3Invert(mat3 mat) {
	float det = mat3Determinant(mat);
	if (fabs(det) <= 1.1920928955078125E-7f) return mat3Zero();
	mat3 m = mat3Adjoint(mat);
	return m / det;
}

//Computes A+B
inline mat3 mat3Add(mat3 A, mat3 B) {
	return A + B;
}

inline bool mat3Equals(mat3 A, mat3 B, float epsilon) {
	return fabs(A.s0 - B.s0)




© 2015 - 2024 Weber Informatics LLC | Privacy Policy