com.jme3.math.Vector3f Maven / Gradle / Ivy
Show all versions of jme3-core Show documentation
/*
* Copyright (c) 2009-2021 jMonkeyEngine
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* * Neither the name of 'jMonkeyEngine' nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package com.jme3.math;
import com.jme3.export.*;
import java.io.IOException;
import java.util.logging.Logger;
/**
* A vector composed of 3 single-precision components, used to represent
* locations, offsets, and directions in 3-dimensional space.
*
* Methods with names ending in "Local" modify the current instance. They are
* used to cut down on the creation of new instances.
*
* @author Mark Powell
* @author Joshua Slack
*/
public final class Vector3f implements Savable, Cloneable, java.io.Serializable {
static final long serialVersionUID = 1;
private static final Logger logger = Logger.getLogger(Vector3f.class.getName());
/**
* Shared instance of the all-zero vector (0,0,0). Do not modify!
*/
public final static Vector3f ZERO = new Vector3f(0, 0, 0);
/**
* Shared instance of the all-NaN vector (NaN,NaN,NaN). Do not modify!
*/
public final static Vector3f NAN = new Vector3f(Float.NaN, Float.NaN, Float.NaN);
/**
* Shared instance of the +X direction (1,0,0). Do not modify!
*/
public final static Vector3f UNIT_X = new Vector3f(1, 0, 0);
/**
* Shared instance of the +Y direction (0,1,0). Do not modify!
*/
public final static Vector3f UNIT_Y = new Vector3f(0, 1, 0);
/**
* Shared instance of the +Z direction (0,0,1). Do not modify!
*/
public final static Vector3f UNIT_Z = new Vector3f(0, 0, 1);
/**
* Shared instance of the all-ones vector (1,1,1). Do not modify!
*/
public final static Vector3f UNIT_XYZ = new Vector3f(1, 1, 1);
/**
* Shared instance of the all-plus-infinity vector (+Inf,+Inf,+Inf). Do not
* modify!
*/
public final static Vector3f POSITIVE_INFINITY = new Vector3f(
Float.POSITIVE_INFINITY,
Float.POSITIVE_INFINITY,
Float.POSITIVE_INFINITY);
/**
* Shared instance of the all-negative-infinity vector (-Inf,-Inf,-Inf). Do
* not modify!
*/
public final static Vector3f NEGATIVE_INFINITY = new Vector3f(
Float.NEGATIVE_INFINITY,
Float.NEGATIVE_INFINITY,
Float.NEGATIVE_INFINITY);
/**
* The first (X) component.
*/
public float x;
/**
* The 2nd (Y) component.
*/
public float y;
/**
* The 3rd (Z) component.
*/
public float z;
/**
* Instantiates an all-zero vector (0,0,0).
*/
public Vector3f() {
x = y = z = 0;
}
/**
* Instantiates a vector with specified components.
*
* @param x the desired X component
* @param y the desired Y component
* @param z the desired Z component
*/
public Vector3f(float x, float y, float z) {
this.x = x;
this.y = y;
this.z = z;
}
/**
* Instantiates a copy of the argument.
*
* @param copy the vector to copy (not null, unaffected)
*/
public Vector3f(Vector3f copy) {
this.set(copy);
}
/**
* Sets all 3 components to specified values.
*
* @param x the desired X component
* @param y the desired Y component
* @param z the desired Z component
* @return the (modified) current instance (for chaining)
*/
public Vector3f set(float x, float y, float z) {
this.x = x;
this.y = y;
this.z = z;
return this;
}
/**
* Copies all 3 components from the argument.
*
* @param vect the Vector3f to copy (not null, unaffected)
* @return the (modified) current instance (for chaining)
*/
public Vector3f set(Vector3f vect) {
this.x = vect.x;
this.y = vect.y;
this.z = vect.z;
return this;
}
/**
* Adds the argument and returns the sum as a new instance. If the argument
* is null, null is returned. Either way, the current instance is
* unaffected.
*
* @param vec the vector to add (unaffected) or null for none
* @return a new Vector3f or null
*/
public Vector3f add(Vector3f vec) {
if (null == vec) {
logger.warning("Provided vector is null, null returned.");
return null;
}
return new Vector3f(x + vec.x, y + vec.y, z + vec.z);
}
/**
* Adds a specified vector and returns the sum in a 3rd vector. The current
* instance is unaffected unless it's result
.
*
* @param vec the vector to add (not null, unaffected unless it's
* result
)
* @param result storage for the sum (not null)
* @return result
(for chaining)
*/
public Vector3f add(Vector3f vec, Vector3f result) {
result.x = x + vec.x;
result.y = y + vec.y;
result.z = z + vec.z;
return result;
}
/**
* Adds the argument and returns the (modified) current instance. If the
* argument is null, null is returned.
*
* @param vec the vector to add (unaffected unless it's this
)
* or null for none
* @return the (modified) current instance or null
*/
public Vector3f addLocal(Vector3f vec) {
if (null == vec) {
logger.warning("Provided vector is null, null returned.");
return null;
}
x += vec.x;
y += vec.y;
z += vec.z;
return this;
}
/**
* Adds specified amounts to the vector's components and returns the sum as
* a new instance. The current instance is unaffected.
*
* @param addX the amount to add to the X component
* @param addY the amount to add to the Y component
* @param addZ the amount to add to the Z component
* @return a new Vector3f
*/
public Vector3f add(float addX, float addY, float addZ) {
return new Vector3f(x + addX, y + addY, z + addZ);
}
/**
* Adds specified amounts to the vector's components and returns the
* (modified) current instance.
*
* @param addX the amount to add to the X component
* @param addY the amount to add to the Y component
* @param addZ the amount to add to the Z component
* @return the (modified) current instance (for chaining)
*/
public Vector3f addLocal(float addX, float addY, float addZ) {
x += addX;
y += addY;
z += addZ;
return this;
}
/**
* Multiplies by the specified scalar, adds the specified vector, and
* returns the (modified) current instance.
*
*
this = scalar * this + add
*
* @param scalar the scaling factor
* @param add the vector to add (not null, unaffected unless it's
* this
)
* @return the (modified) current instance (for chaining)
*/
public Vector3f scaleAdd(float scalar, Vector3f add) {
x = x * scalar + add.x;
y = y * scalar + add.y;
z = z * scalar + add.z;
return this;
}
/**
* Multiplies a specified vector by a specified scalar, then adds another
* specified vector to it, before storing the result in the current
* instance.
*
*
this = scalar * mult + add
*
* @param scalar the scaling factor
* @param mult the vector to scale (not null, unaffected unless it's
* this
)
* @param add the vector to add (not null, unaffected unless it's
* this
)
* @return the (modified) current instance (for chaining)
*/
public Vector3f scaleAdd(float scalar, Vector3f mult, Vector3f add) {
this.x = mult.x * scalar + add.x;
this.y = mult.y * scalar + add.y;
this.z = mult.z * scalar + add.z;
return this;
}
/**
* Returns the dot (or inner) product with the argument. If the argument is
* null, 0 is returned. Either way, the current instance is unaffected.
*
* @param vec the vector to multiply (unaffected) or null for none
* @return the product or 0
*/
public float dot(Vector3f vec) {
if (null == vec) {
logger.warning("Provided vector is null, 0 returned.");
return 0;
}
return x * vec.x + y * vec.y + z * vec.z;
}
/**
* Calculates a cross product with the argument and returns the product as a
* new instance. The current instance is unaffected.
*
* @param v the right factor (not null, unaffected)
* @return this
cross v
(a new Vector3f)
*/
public Vector3f cross(Vector3f v) {
return cross(v, null);
}
/**
* Calculates a cross product with a specified vector and returns the
* product in a 3rd vector. The current instance is unaffected unless it's
* result
.
*
* @param v the right factor (not null, unaffected unless it's
* result
)
* @param result storage for the product, or null for a new Vector3f
* @return this
cross v
(either
* result
or a new Vector3f)
*/
public Vector3f cross(Vector3f v, Vector3f result) {
return cross(v.x, v.y, v.z, result);
}
/**
* Calculates a cross product with specified components and returns the
* product in the specified vector. The current instance is unaffected
* unless it's result
.
*
* @param otherX the X component of the right factor
* @param otherY the Y component of the right factor
* @param otherZ the Z component of the right factor
* @param result storage for the product, or null for a new Vector3f
* @return this
cross v
(either
* result
or a new Vector3f)
*/
public Vector3f cross(float otherX, float otherY, float otherZ, Vector3f result) {
if (result == null) {
result = new Vector3f();
}
float resX = ((y * otherZ) - (z * otherY));
float resY = ((z * otherX) - (x * otherZ));
float resZ = ((x * otherY) - (y * otherX));
result.set(resX, resY, resZ);
return result;
}
/**
* Right multiplies by the argument (cross product) and returns the
* (modified) current instance.
*
* @param v the right factor (not null, unaffected unless it's
* this
)
* @return the (modified) current instance (for chaining)
*/
public Vector3f crossLocal(Vector3f v) {
return crossLocal(v.x, v.y, v.z);
}
/**
* Right multiplies by the specified components (cross product) and returns
* the (modified) current instance.
*
* @param otherX the X component of the right factor
* @param otherY the Y component of the right factor
* @param otherZ the Z component of the right factor
* @return the (modified) current instance (for chaining)
*/
public Vector3f crossLocal(float otherX, float otherY, float otherZ) {
float tempx = (y * otherZ) - (z * otherY);
float tempy = (z * otherX) - (x * otherZ);
z = (x * otherY) - (y * otherX);
x = tempx;
y = tempy;
return this;
}
/**
* Projects onto the argument and returns the result as a new vector. The
* current instance is unaffected.
*
* @param other the vector to project onto (not null, unaffected)
* @return a new Vector3f
*/
public Vector3f project(Vector3f other) {
float n = this.dot(other); // A . B
float d = other.lengthSquared(); // |B|^2
return new Vector3f(other).multLocal(n / d);
}
/**
* Projects onto the argument and returns the (modified) current instance.
*
* @param other the vector to project onto (not null, unaffected unless it's
* this
)
* @return the (modified) current instance (for chaining)
*/
public Vector3f projectLocal(Vector3f other) {
float n = this.dot(other); // A . B
float d = other.lengthSquared(); // |B|^2
return set(other).multLocal(n / d);
}
/**
* Tests for a unit vector, with 1% tolerance. The current instance is
* unaffected.
*
* @return true if the current vector's length is between 0.99 and 1.01
* inclusive, otherwise false
*/
public boolean isUnitVector() {
float len = length();
return 0.99f < len && len < 1.01f;
}
/**
* Returns the length (or magnitude). The current instance is unaffected.
*
* @return the root-sum of the squared components (not negative)
*/
public float length() {
/*
* Use double-precision arithmetic to reduce the chance of overflow
* (when lengthSquared > Float.MAX_VALUE) or underflow (when
* lengthSquared is < Float.MIN_VALUE).
*/
double xx = x;
double yy = y;
double zz = z;
double lengthSquared = xx * xx + yy * yy + zz * zz;
float result = (float) Math.sqrt(lengthSquared);
return result;
}
/**
* Returns the square of the length. The current instance is unaffected.
*
* @return the sum of the squared components (not negative)
*/
public float lengthSquared() {
return x * x + y * y + z * z;
}
/**
* Returns the square of the distance between this vector and the argument.
* The current instance is unaffected.
*
* @param v the vector to compare (not null, unaffected)
* @return the square of the Euclidean distance (not negative)
*/
public float distanceSquared(Vector3f v) {
double dx = x - v.x;
double dy = y - v.y;
double dz = z - v.z;
return (float) (dx * dx + dy * dy + dz * dz);
}
/**
* Returns the distance between this vector and the argument. The current
* instance is unaffected.
*
* @param v the vector to compare (not null, unaffected)
* @return the Euclidean distance (not negative)
*/
public float distance(Vector3f v) {
/*
* Use double-precision arithmetic to reduce the chance of overflow
* (when distanceSquared > Float.MAX_VALUE) or underflow (when
* distanceSquared is < Float.MIN_VALUE).
*/
double dx = x - v.x;
double dy = y - v.y;
double dz = z - v.z;
double distanceSquared = dx * dx + dy * dy + dz * dz;
float result = (float) Math.sqrt(distanceSquared);
return result;
}
/**
* Multiplies with the argument and returns the product as a new instance.
* The current instance is unaffected.
*
* @param scalar the scaling factor
* @return a new Vector3f
*/
public Vector3f mult(float scalar) {
return new Vector3f(x * scalar, y * scalar, z * scalar);
}
/**
* Multiplies with the specified scalar and returns the product in the
* specified vector. The current instance is unaffected, unless it's
* product
.
*
* @param scalar the scaling factor
* @param product storage for the product, or null for a new Vector3f
* @return either product
or a new Vector3f
*/
public Vector3f mult(float scalar, Vector3f product) {
if (null == product) {
product = new Vector3f();
}
product.x = x * scalar;
product.y = y * scalar;
product.z = z * scalar;
return product;
}
/**
* Multiplies by the argument and returns the (modified) current instance.
*
* @param scalar the scaling factor
* @return the (modified) current instance (for chaining)
*/
public Vector3f multLocal(float scalar) {
x *= scalar;
y *= scalar;
z *= scalar;
return this;
}
/**
* Multiplies component-wise by the argument and returns the (modified)
* current instance. If the argument is null, null is returned.
*
* @param vec the scale vector (unaffected unless it's this
) or
* null for none
* @return the (modified) current instance (for chaining) or null
*/
public Vector3f multLocal(Vector3f vec) {
if (null == vec) {
logger.warning("Provided vector is null, null returned.");
return null;
}
x *= vec.x;
y *= vec.y;
z *= vec.z;
return this;
}
/**
* Multiplies component-wise by the specified components and returns the
* (modified) current instance.
*
* @param x the scale factor for the X component
* @param y the scale factor for the Y component
* @param z the scale factor for the Z component
* @return the (modified) current instance (for chaining)
*/
public Vector3f multLocal(float x, float y, float z) {
this.x *= x;
this.y *= y;
this.z *= z;
return this;
}
/**
* Multiplies component-wise with the argument and returns the product as a
* new instance. If the argument is null, null is returned. Either way, the
* current instance is unaffected.
*
* @param vec the scale vector (unaffected) or null for none
* @return a new Vector3f or null
*/
public Vector3f mult(Vector3f vec) {
if (null == vec) {
logger.warning("Provided vector is null, null returned.");
return null;
}
return mult(vec, null);
}
/**
* Multiplies component-wise with the specified vector and returns the
* product in a 3rd vector. If the argument is null, null is returned.
* Either way, the current instance is unaffected, unless it's
* store
.
*
* @param vec the scale vector (unaffected unless it's store
)
* or null for none
* @param store storage for the product, or null for a new Vector3f
* @return either store
or a new Vector3f or null
*/
public Vector3f mult(Vector3f vec, Vector3f store) {
if (null == vec) {
logger.warning("Provided vector is null, null returned.");
return null;
}
if (store == null) {
store = new Vector3f();
}
return store.set(x * vec.x, y * vec.y, z * vec.z);
}
/**
* Divides by the argument and returns the quotient as a new instance. The
* current instance is unaffected.
*
* @param scalar the divisor
* @return a new Vector3f
*/
public Vector3f divide(float scalar) {
scalar = 1f / scalar;
return new Vector3f(x * scalar, y * scalar, z * scalar);
}
/**
* Divides by the argument and returns the (modified) current instance.
*
* @param scalar the divisor
* @return the (modified) current instance (for chaining)
*/
public Vector3f divideLocal(float scalar) {
scalar = 1f / scalar;
x *= scalar;
y *= scalar;
z *= scalar;
return this;
}
/**
* Divides component-wise by the argument and returns the quotient as a new
* instance. The current instance is unaffected.
*
* @param divisor the divisor (not null, unaffected)
* @return a new Vector3f
*/
public Vector3f divide(Vector3f divisor) {
return new Vector3f(x / divisor.x, y / divisor.y, z / divisor.z);
}
/**
* Divides component-wise by the argument and returns the (modified) current
* instance.
*
* @param divisor the divisor (not null, unaffected)
* @return the (modified) current instance (for chaining)
*/
public Vector3f divideLocal(Vector3f divisor) {
x /= divisor.x;
y /= divisor.y;
z /= divisor.z;
return this;
}
/**
* Returns the negative. The current instance is unaffected.
*
* @return a new Vector3f
*/
public Vector3f negate() {
return new Vector3f(-x, -y, -z);
}
/**
* Negates all 3 components and returns the (modified) current instance.
*
* @return the (modified) current instance (for chaining)
*/
public Vector3f negateLocal() {
x = -x;
y = -y;
z = -z;
return this;
}
/**
* Subtracts the argument and returns the difference as a new instance. The
* current instance is unaffected.
*
* @param vec the vector to subtract (not null, unaffected)
* @return a new Vector3f
*/
public Vector3f subtract(Vector3f vec) {
return new Vector3f(x - vec.x, y - vec.y, z - vec.z);
}
/**
* Subtracts the argument and returns the (modified) current instance. If
* the argument is null, null is returned.
*
* @param vec the vector to subtract (unaffected unless it's
* this
) or null for none
* @return the (modified) current instance or null
*/
public Vector3f subtractLocal(Vector3f vec) {
if (null == vec) {
logger.warning("Provided vector is null, null returned.");
return null;
}
x -= vec.x;
y -= vec.y;
z -= vec.z;
return this;
}
/**
* Subtracts the specified vector and returns the difference in a 3rd
* vector. The current instance is unaffected unless it's
* result
.
*
* @param vec the vector to subtract (not null, unaffected unless it's
* result
)
* @param result storage for the difference, or null for a new Vector3f
* @return either result
or a new Vector3f
*/
public Vector3f subtract(Vector3f vec, Vector3f result) {
if (result == null) {
result = new Vector3f();
}
result.x = x - vec.x;
result.y = y - vec.y;
result.z = z - vec.z;
return result;
}
/**
* Subtracts the specified amounts from the vector's components and returns
* the difference as a new instance. The current instance is unaffected.
*
* @param subtractX the amount to subtract from the X component
* @param subtractY the amount to subtract from the Y component
* @param subtractZ the amount to subtract from the Z component
* @return a new Vector3f
*/
public Vector3f subtract(float subtractX, float subtractY, float subtractZ) {
return new Vector3f(x - subtractX, y - subtractY, z - subtractZ);
}
/**
* Subtracts the specified amounts from the vector's components and returns
* the (modified) current instance.
*
* @param subtractX the amount to subtract from the X component
* @param subtractY the amount to subtract from the Y component
* @param subtractZ the amount to subtract from the Z component
* @return the (modified) current instance (for chaining)
*/
public Vector3f subtractLocal(float subtractX, float subtractY, float subtractZ) {
x -= subtractX;
y -= subtractY;
z -= subtractZ;
return this;
}
/**
* Normalizes the vector to length=1 and returns the result as a new
* instance. If the vector has length=0, a clone is returned. Either way,
* the current instance is unaffected.
*
* @return a new Vector3f
*/
public Vector3f normalize() {
// float length = length();
// if (length != 0) {
// return divide(length);
// }
//
// return divide(1);
float length = x * x + y * y + z * z;
if (length != 1f && length != 0f) {
length = 1.0f / FastMath.sqrt(length);
return new Vector3f(x * length, y * length, z * length);
}
return clone();
}
/**
* Normalizes the vector to length=1 and returns the (modified) current
* instance. If the vector has length=0, it's unchanged.
*
* @return the (modified) current instance (for chaining)
*/
public Vector3f normalizeLocal() {
// NOTE: this implementation is more optimized
// than the old jme normalize as this method
// is commonly used.
float length = x * x + y * y + z * z;
if (length != 1f && length != 0f) {
length = 1.0f / FastMath.sqrt(length);
x *= length;
y *= length;
z *= length;
}
return this;
}
/**
* Compares this vector component-wise with the argument (keeping the most
* positive value for each component) and returns the (modified) current
* instance.
*
* @param other the vector to compare (not null, unaffected)
* @return the (modified) current instance (for chaining)
*/
public Vector3f maxLocal(Vector3f other) {
x = other.x > x ? other.x : x;
y = other.y > y ? other.y : y;
z = other.z > z ? other.z : z;
return this;
}
/**
* Compares this vector component-wise with the argument (keeping the most
* negative value for each component) and returns the (modified) current
* instance.
*
* @param other the vector to compare (not null, unaffected)
* @return the (modified) current instance (for chaining)
*/
public Vector3f minLocal(Vector3f other) {
x = other.x < x ? other.x : x;
y = other.y < y ? other.y : y;
z = other.z < z ? other.z : z;
return this;
}
/**
* Sets all 3 components to zero.
*
* @return the (modified) current instance (for chaining)
*/
public Vector3f zero() {
x = y = z = 0;
return this;
}
/**
* Returns the angle (in radians) between this vector and the argument,
* provided both vectors have length=1. The current instance is unaffected.
*
* @param otherVector a unit vector to compare (not null, unaffected)
* @return the angle (in radians, not negative)
*/
public float angleBetween(Vector3f otherVector) {
float dotProduct = dot(otherVector);
float angle = FastMath.acos(dotProduct);
return angle;
}
/**
* Interpolates linearly between this vector and the specified vector,
* returning the (modified) current instance.
*
*
this = (1 - changeAmount) * this + changeAmount * finalVec
*
* @param finalVec the desired value when changeAmount=1 (not null, unaffected
* unless it's this
)
* @param changeAmount the fractional change amount
* @return the (modified) current instance (for chaining)
*/
public Vector3f interpolateLocal(Vector3f finalVec, float changeAmount) {
this.x = (1 - changeAmount) * this.x + changeAmount * finalVec.x;
this.y = (1 - changeAmount) * this.y + changeAmount * finalVec.y;
this.z = (1 - changeAmount) * this.z + changeAmount * finalVec.z;
return this;
}
/**
* Interpolates linearly between the specified beginning and final vectors,
* returning the (modified) current instance.
*
*
this = (1 - changeAmount) * beginVec + changeAmount * finalVec
*
* @param beginVec the desired value when changeAmount=0 (not null, unaffected
* unless it's this
)
* @param finalVec the desired value when changeAmount=1 (not null, unaffected
* unless it's this
)
* @param changeAmount the fractional change amount
* @return the (modified) current instance (for chaining)
*/
public Vector3f interpolateLocal(Vector3f beginVec, Vector3f finalVec, float changeAmount) {
this.x = (1 - changeAmount) * beginVec.x + changeAmount * finalVec.x;
this.y = (1 - changeAmount) * beginVec.y + changeAmount * finalVec.y;
this.z = (1 - changeAmount) * beginVec.z + changeAmount * finalVec.z;
return this;
}
/**
* Tests whether the argument is a valid vector, returning false if it's
* null or if any component is NaN or infinite.
*
* @param vector the vector to test (unaffected)
* @return true if non-null and finite, otherwise false
*/
public static boolean isValidVector(Vector3f vector) {
if (vector == null) {
return false;
}
if (Float.isNaN(vector.x)
|| Float.isNaN(vector.y)
|| Float.isNaN(vector.z)) {
return false;
}
if (Float.isInfinite(vector.x)
|| Float.isInfinite(vector.y)
|| Float.isInfinite(vector.z)) {
return false;
}
return true;
}
public static void generateOrthonormalBasis(Vector3f u, Vector3f v, Vector3f w) {
w.normalizeLocal();
generateComplementBasis(u, v, w);
}
public static void generateComplementBasis(Vector3f u, Vector3f v,
Vector3f w) {
float fInvLength;
if (FastMath.abs(w.x) >= FastMath.abs(w.y)) {
// w.x or w.z is the largest magnitude component, swap them
fInvLength = FastMath.invSqrt(w.x * w.x + w.z * w.z);
u.x = -w.z * fInvLength;
u.y = 0.0f;
u.z = +w.x * fInvLength;
v.x = w.y * u.z;
v.y = w.z * u.x - w.x * u.z;
v.z = -w.y * u.x;
} else {
// w.y or w.z is the largest magnitude component, swap them
fInvLength = FastMath.invSqrt(w.y * w.y + w.z * w.z);
u.x = 0.0f;
u.y = +w.z * fInvLength;
u.z = -w.y * fInvLength;
v.x = w.y * u.z - w.z * u.y;
v.y = -w.x * u.z;
v.z = w.x * u.y;
}
}
/**
* Creates a copy. The current instance is unaffected.
*
* @return a new instance, equivalent to the current one
*/
@Override
public Vector3f clone() {
try {
return (Vector3f) super.clone();
} catch (CloneNotSupportedException e) {
throw new AssertionError(); // can not happen
}
}
/**
* Copies the vector into the argument. The current instance is unaffected.
*
* @param floats storage for the components (must have length≥3) or null
* for a new float[3]
* @return an array containing the X, Y, and Z components in that order
* (either floats
or a new float[3])
*/
public float[] toArray(float[] floats) {
if (floats == null) {
floats = new float[3];
}
floats[0] = x;
floats[1] = y;
floats[2] = z;
return floats;
}
/**
* Tests for exact equality with the argument, distinguishing -0 from 0. If
* {@code o} is null, false is returned. Either way, the current instance is
* unaffected.
*
* @param o the object to compare (may be null, unaffected)
* @return true if equal, otherwise false
*/
@Override
public boolean equals(Object o) {
if (!(o instanceof Vector3f)) {
return false;
}
if (this == o) {
return true;
}
Vector3f comp = (Vector3f) o;
if (Float.compare(x, comp.x) != 0) {
return false;
}
if (Float.compare(y, comp.y) != 0) {
return false;
}
if (Float.compare(z, comp.z) != 0) {
return false;
}
return true;
}
/**
* Tests for approximate equality with the specified vector, using the
* specified tolerance. If {@code other} is null, false is returned. Either
* way, the current instance is unaffected.
*
* @param other the vector to compare (unaffected) or null for none
* @param epsilon the tolerance for each component
* @return true if all 3 components are within tolerance, otherwise false
*/
public boolean isSimilar(Vector3f other, float epsilon) {
if (other == null) {
return false;
}
if (Float.compare(Math.abs(other.x - x), epsilon) > 0) {
return false;
}
if (Float.compare(Math.abs(other.y - y), epsilon) > 0) {
return false;
}
if (Float.compare(Math.abs(other.z - z), epsilon) > 0) {
return false;
}
return true;
}
/**
* Returns a hash code. If two vectors are logically equivalent, they will
* return the same hash code. The current instance is unaffected.
*
* @return the hash code value
*/
@Override
public int hashCode() {
int hash = 37;
hash += 37 * hash + Float.floatToIntBits(x);
hash += 37 * hash + Float.floatToIntBits(y);
hash += 37 * hash + Float.floatToIntBits(z);
return hash;
}
/**
* Returns a string representation. The current instance is unaffected. The
* format is:
*
*
(XX.XXXX, YY.YYYY, ZZ.ZZZZ)
*
* @return the string representation
*/
@Override
public String toString() {
return "(" + x + ", " + y + ", " + z + ")";
}
/**
* Serializes to the argument, for example when saving to a J3O file. The
* current instance is unaffected.
*
* @param e the exporter to use (not null)
* @throws IOException from the exporter
*/
@Override
public void write(JmeExporter e) throws IOException {
OutputCapsule capsule = e.getCapsule(this);
capsule.write(x, "x", 0);
capsule.write(y, "y", 0);
capsule.write(z, "z", 0);
}
/**
* De-serializes from the argument, for example when loading from a J3O
* file.
*
* @param importer the importer to use (not null)
* @throws IOException from the importer
*/
@Override
public void read(JmeImporter importer) throws IOException {
InputCapsule capsule = importer.getCapsule(this);
x = capsule.readFloat("x", 0);
y = capsule.readFloat("y", 0);
z = capsule.readFloat("z", 0);
}
/**
* Returns the X component. The vector is unaffected.
*
* @return the value of the {@link #x} component
*/
public float getX() {
return x;
}
/**
* Sets the X component.
*
* @param x the desired value
* @return the (modified) current instance (for chaining)
*/
public Vector3f setX(float x) {
this.x = x;
return this;
}
/**
* Returns the Y component. The vector is unaffected.
*
* @return the value of the {@link #y} component
*/
public float getY() {
return y;
}
/**
* Sets the Y component.
*
* @param y the desired value
* @return the (modified) current instance (for chaining)
*/
public Vector3f setY(float y) {
this.y = y;
return this;
}
/**
* Returns the Z component. The vector is unaffected.
*
* @return z the value of the {@link #z} component
*/
public float getZ() {
return z;
}
/**
* Sets the Z component.
*
* @param z the desired value
* @return the (modified) current instance (for chaining)
*/
public Vector3f setZ(float z) {
this.z = z;
return this;
}
/**
* Returns the indexed component. The vector is unaffected.
*
* @param index 0, 1, or 2
* @return the X component if index=0, the Y component if index=1, or the Z
* component if index=2
* @throws IllegalArgumentException if index is not 0, 1, or 2
*/
public float get(int index) {
switch (index) {
case 0:
return x;
case 1:
return y;
case 2:
return z;
}
throw new IllegalArgumentException("index must be either 0, 1 or 2");
}
/**
* Sets the indexed component.
*
* @param index which component to set: 0 → the X component, 1 →
* the Y component, 2 → the Z component
* @param value the desired component value
* @throws IllegalArgumentException if index is not 0, 1, or 2
*/
public void set(int index, float value) {
switch (index) {
case 0:
x = value;
return;
case 1:
y = value;
return;
case 2:
z = value;
return;
}
throw new IllegalArgumentException("index must be either 0, 1 or 2");
}
}