com.jme3.scene.shape.Surface Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of jme3-core Show documentation
Show all versions of jme3-core Show documentation
jMonkeyEngine is a 3-D game engine for adventurous Java developers
/*
* Copyright (c) 2009-2021 jMonkeyEngine
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* * Neither the name of 'jMonkeyEngine' nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package com.jme3.scene.shape;
import com.jme3.export.InputCapsule;
import com.jme3.export.JmeExporter;
import com.jme3.export.JmeImporter;
import com.jme3.export.OutputCapsule;
import com.jme3.math.CurveAndSurfaceMath;
import com.jme3.math.FastMath;
import com.jme3.math.Spline.SplineType;
import com.jme3.math.Vector3f;
import com.jme3.math.Vector4f;
import com.jme3.scene.Mesh;
import com.jme3.scene.VertexBuffer;
import com.jme3.util.BufferUtils;
import java.io.IOException;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
/**
* This class represents a surface described by knots, weights and control points.
* Currently the following types are supported:
* a) NURBS
* @author Marcin Roguski (Kealthas)
*/
public class Surface extends Mesh {
private SplineType type; // the type of the surface
private List> controlPoints; // space control points and their weights
private List[] knots; // knots of the surface
private int basisUFunctionDegree; // the degree of basis U function
private int basisVFunctionDegree; // the degree of basis V function
private int uSegments; // the amount of U segments
private int vSegments; // the amount of V segments
/**
* Constructor. Constructs required surface.
* @param controlPoints space control points
* @param nurbKnots knots of the surface
* @param uSegments the amount of U segments
* @param vSegments the amount of V segments
* @param basisUFunctionDegree the degree of basis U function
* @param basisVFunctionDegree the degree of basis V function
* @param smooth defines if the mesh should be smooth (true) or flat (false)
*/
private Surface(List> controlPoints, List[] nurbKnots, int uSegments, int vSegments, int basisUFunctionDegree, int basisVFunctionDegree, boolean smooth) {
this.validateInputData(controlPoints, nurbKnots, uSegments, vSegments);
type = SplineType.Nurb;
this.uSegments = uSegments;
this.vSegments = vSegments;
this.controlPoints = controlPoints;
knots = nurbKnots;
this.basisUFunctionDegree = basisUFunctionDegree;
CurveAndSurfaceMath.prepareNurbsKnots(nurbKnots[0], basisUFunctionDegree);
if (nurbKnots[1] != null) {
this.basisVFunctionDegree = basisVFunctionDegree;
CurveAndSurfaceMath.prepareNurbsKnots(nurbKnots[1], basisVFunctionDegree);
}
this.buildSurface(smooth);
}
/**
* For serialization only. Do not use.
*/
protected Surface() {
}
/**
* This method creates a NURBS surface. The created mesh is smooth by default.
* @param controlPoints
* space control points
* @param nurbKnots
* knots of the surface
* @param uSegments
* the amount of U segments
* @param vSegments
* the amount of V segments
* @param basisUFunctionDegree
* the degree of basis U function
* @param basisVFunctionDegree
* the degree of basis V function
* @return an instance of NURBS surface
*/
public static final Surface createNurbsSurface(List> controlPoints, List[] nurbKnots, int uSegments, int vSegments, int basisUFunctionDegree, int basisVFunctionDegree) {
return Surface.createNurbsSurface(controlPoints, nurbKnots, uSegments, vSegments, basisUFunctionDegree, basisVFunctionDegree, true);
}
/**
* This method creates a NURBS surface.
* @param controlPoints space control points
* @param nurbKnots knots of the surface
* @param uSegments the amount of U segments
* @param vSegments the amount of V segments
* @param basisUFunctionDegree the degree of basis U function
* @param basisVFunctionDegree the degree of basis V function
* @param smooth true for a smooth mesh
* @return an instance of NURBS surface
*/
public static final Surface createNurbsSurface(List> controlPoints, List[] nurbKnots, int uSegments, int vSegments, int basisUFunctionDegree, int basisVFunctionDegree, boolean smooth) {
Surface result = new Surface(controlPoints, nurbKnots, uSegments, vSegments, basisUFunctionDegree, basisVFunctionDegree, smooth);
result.type = SplineType.Nurb;
return result;
}
/**
* This method creates the surface.
* @param smooth
* defines if the mesh should be smooth (true) or flat (false)
*/
private void buildSurface(boolean smooth) {
float minUKnot = this.getMinUNurbKnot();
float maxUKnot = this.getMaxUNurbKnot();
float deltaU = (maxUKnot - minUKnot) / uSegments;
float minVKnot = this.getMinVNurbKnot();
float maxVKnot = this.getMaxVNurbKnot();
float deltaV = (maxVKnot - minVKnot) / vSegments;
List vertices = new ArrayList<>((uSegments + 1) * (vSegments + 1));// new Vector3f[(uSegments + 1) * (vSegments + 1)];
float u = minUKnot, v = minVKnot;
for (int i = 0; i <= vSegments; ++i) {
for (int j = 0; j <= uSegments; ++j) {
Vector3f interpolationResult = new Vector3f();
CurveAndSurfaceMath.interpolate(u, v, controlPoints, knots, basisUFunctionDegree, basisVFunctionDegree, interpolationResult);
vertices.add(interpolationResult);
u += deltaU;
}
u = minUKnot;
v += deltaV;
}
if(!smooth) {
// separate the vertices that will share faces (they will need separate normals anyway)
// what happens with the mesh is represented here (be careful with code formatting here !!!)
// * -- * -- * * -- * * -- *
// | | | | | | |
// * -- * -- * * -- * * -- *
// | | | ==> * -- * * -- *
// * -- * -- * | | | |
// | | | * -- * * -- *
// * -- * -- * .............
// first duplicate all verts that are not on the border along the U axis
int uVerticesAmount = uSegments + 1;
int vVerticesAmount = vSegments + 1;
int newUVerticesAmount = 2 + (uVerticesAmount - 2) * 2;
List verticesWithUDuplicates = new ArrayList<>(vVerticesAmount * newUVerticesAmount);
for (int i=0; i verticesWithVDuplicates
= new ArrayList<>(verticesWithUDuplicates.size() * vVerticesAmount);
verticesWithVDuplicates.addAll(verticesWithUDuplicates.subList(0, newUVerticesAmount));
for (int i = 1; i < vSegments; ++i) {
verticesWithVDuplicates.addAll(
verticesWithUDuplicates.subList(i * newUVerticesAmount,
i * newUVerticesAmount + newUVerticesAmount));
verticesWithVDuplicates.addAll(
verticesWithUDuplicates.subList(i * newUVerticesAmount,
i * newUVerticesAmount + newUVerticesAmount));
}
verticesWithVDuplicates.addAll(
verticesWithUDuplicates.subList(vSegments * newUVerticesAmount,
vSegments * newUVerticesAmount + newUVerticesAmount));
vertices = verticesWithVDuplicates;
}
// adding indexes
int[] indices = new int[uSegments * vSegments * 6];
int arrayIndex = 0;
int uVerticesAmount = smooth ? uSegments + 1 : uSegments * 2;
if(smooth) {
for (int i = 0; i < vSegments; ++i) {
for (int j = 0; j < uSegments; ++j) {
indices[arrayIndex++] = j + i * uVerticesAmount + uVerticesAmount;
indices[arrayIndex++] = j + i * uVerticesAmount + 1;
indices[arrayIndex++] = j + i * uVerticesAmount;
indices[arrayIndex++] = j + i * uVerticesAmount + uVerticesAmount;
indices[arrayIndex++] = j + i * uVerticesAmount + uVerticesAmount + 1;
indices[arrayIndex++] = j + i * uVerticesAmount + 1;
}
}
} else {
for (int i = 0; i < vSegments; ++i) {
for (int j = 0; j < uSegments; ++j) {
indices[arrayIndex++] = i * 2 * uVerticesAmount + uVerticesAmount + j * 2;
indices[arrayIndex++] = i * 2 * uVerticesAmount + j * 2 + 1;
indices[arrayIndex++] = i * 2 * uVerticesAmount + j * 2;
indices[arrayIndex++] = i * 2 * uVerticesAmount + uVerticesAmount + j * 2;
indices[arrayIndex++] = i * 2 * uVerticesAmount + uVerticesAmount + j * 2 + 1;
indices[arrayIndex++] = i * 2 * uVerticesAmount + j * 2 + 1;
}
}
}
Vector3f[] verticesArray = vertices.toArray(new Vector3f[vertices.size()]);
// normalMap merges normals of faces that will be rendered smooth
Map normalMap = new HashMap<>(verticesArray.length);
for (int i = 0; i < indices.length; i += 3) {
Vector3f n = FastMath.computeNormal(verticesArray[indices[i]],
verticesArray[indices[i + 1]], verticesArray[indices[i + 2]]);
this.addNormal(n, normalMap, smooth, verticesArray[indices[i]],
verticesArray[indices[i + 1]], verticesArray[indices[i + 2]]);
}
// preparing normal list (the order of normals must match the order of vertices)
float[] normals = new float[verticesArray.length * 3];
arrayIndex = 0;
for (int i = 0; i < verticesArray.length; ++i) {
Vector3f n = normalMap.get(verticesArray[i]);
normals[arrayIndex++] = n.x;
normals[arrayIndex++] = n.y;
normals[arrayIndex++] = n.z;
}
this.setBuffer(VertexBuffer.Type.Position, 3, BufferUtils.createFloatBuffer(verticesArray));
this.setBuffer(VertexBuffer.Type.Index, 3, indices);
this.setBuffer(VertexBuffer.Type.Normal, 3, normals);
this.updateBound();
this.updateCounts();
}
public List> getControlPoints() {
return controlPoints;
}
/**
* This method returns the amount of U control points.
* @return the amount of U control points
*/
public int getUControlPointsAmount() {
return controlPoints.size();
}
/**
* This method returns the amount of V control points.
* @return the amount of V control points
*/
public int getVControlPointsAmount() {
return controlPoints.get(0) == null ? 0 : controlPoints.get(0).size();
}
/**
* This method returns the degree of basis U function.
* @return the degree of basis U function
*/
public int getBasisUFunctionDegree() {
return basisUFunctionDegree;
}
/**
* This method returns the degree of basis V function.
* @return the degree of basis V function
*/
public int getBasisVFunctionDegree() {
return basisVFunctionDegree;
}
/**
* This method returns the knots for specified dimension (U knots - value: '0',
* V knots - value: '1').
* @param dim an integer specifying if the U or V knots are required
* @return an array of knots
*/
public List getKnots(int dim) {
return knots[dim];
}
/**
* This method returns the type of the surface.
* @return the type of the surface
*/
public SplineType getType() {
return type;
}
/**
* De-serializes from the specified importer, for example when loading from
* a J3O file.
*
* @param importer the importer to use (not null)
* @throws IOException from the importer
*/
@Override
@SuppressWarnings("unchecked")
public void read(JmeImporter importer) throws IOException {
super.read(importer);
InputCapsule capsule = importer.getCapsule(this);
type = capsule.readEnum("type", SplineType.class, null);
basisUFunctionDegree = capsule.readInt("basisUFunctionDegree", 0);
basisVFunctionDegree = capsule.readInt("basisVFunctionDegree", 0);
uSegments = capsule.readInt("uSegments", 0);
vSegments = capsule.readInt("vSegments", 0);
float[][] knotArray2D = capsule.readFloatArray2D("knotArray2D", null);
int numKnotArrayLists = knotArray2D.length;
knots = new ArrayList[numKnotArrayLists];
for (int i = 0; i < numKnotArrayLists; ++i) {
float[] knotArray = knotArray2D[i];
knots[i] = new ArrayList<>(knotArray.length);
for (float knot : knotArray) {
knots[i].add(knot);
}
}
List[] listArray = capsule.readSavableArrayListArray("listArray", null);
int numControlPointLists = listArray.length;
controlPoints = new ArrayList<>(numControlPointLists);
for (int i = 0; i < numControlPointLists; ++i) {
List list = listArray[i];
controlPoints.add(list);
}
}
/**
* Serializes to the specified exporter, for example when saving to a J3O
* file. The current instance is unaffected.
*
* @param exporter the exporter to use (not null)
* @throws IOException from the exporter
*/
@Override
@SuppressWarnings("unchecked")
public void write(JmeExporter exporter) throws IOException {
super.write(exporter);
OutputCapsule capsule = exporter.getCapsule(this);
capsule.write(type, "type", null);
capsule.write(basisUFunctionDegree, "basisUFunctionDegree", 0);
capsule.write(basisVFunctionDegree, "basisVFunctionDegree", 0);
capsule.write(uSegments, "uSegments", 0);
capsule.write(vSegments, "vSegments", 0);
int numKnotArrayLists = knots.length;
float[][] knotArray2D = new float[numKnotArrayLists][];
for (int i = 0; i < numKnotArrayLists; ++i) {
List list = knots[i];
int numKnots = list.size();
float[] array = new float[numKnots];
for (int j = 0; j < numKnots; ++j) {
array[j] = list.get(j);
}
knotArray2D[i] = array;
}
capsule.write(knotArray2D, "knotArray2D", null);
int numControlPointLists = controlPoints.size();
ArrayList[] listArray = new ArrayList[numControlPointLists];
for (int i = 0; i < numControlPointLists; ++i) {
List list = controlPoints.get(i);
int numVectors = list.size();
listArray[i] = new ArrayList<>(numVectors);
listArray[i].addAll(list);
}
capsule.writeSavableArrayListArray(listArray, "listArray", null);
}
/**
* This method returns the minimum nurb curve U knot value.
* @return the minimum nurb curve knot value
*/
private float getMinUNurbKnot() {
return knots[0].get(basisUFunctionDegree - 1);
}
/**
* This method returns the maximum nurb curve U knot value.
* @return the maximum nurb curve knot value
*/
private float getMaxUNurbKnot() {
return knots[0].get(knots[0].size() - basisUFunctionDegree);
}
/**
* This method returns the minimum nurb curve U knot value.
* @return the minimum nurb curve knot value
*/
private float getMinVNurbKnot() {
return knots[1].get(basisVFunctionDegree - 1);
}
/**
* This method returns the maximum nurb curve U knot value.
* @return the maximum nurb curve knot value
*/
private float getMaxVNurbKnot() {
return knots[1].get(knots[1].size() - basisVFunctionDegree);
}
/**
* This method adds a normal to a normal's map. This map is used to merge
* normals of a vector that should be rendered smooth.
*
* @param normalToAdd
* a normal to be added
* @param normalMap
* merges normals of faces that will be rendered smooth; the key is the vertex and the value - its normal vector
* @param smooth the variable that indicates whether to merge normals
* (creating the smooth mesh) or not
* @param vertices
* a list of vertices read from the blender file
*/
private void addNormal(Vector3f normalToAdd, Map normalMap, boolean smooth, Vector3f... vertices) {
for (Vector3f v : vertices) {
Vector3f n = normalMap.get(v);
if (!smooth || n == null) {
normalMap.put(v, normalToAdd.clone());
} else {
n.addLocal(normalToAdd).normalizeLocal();
}
}
}
/**
* This method validates the input data. It throws {@link IllegalArgumentException} if
* the data is invalid.
* @param controlPoints space control points
* @param nurbKnots knots of the surface
* @param uSegments the amount of U segments
* @param vSegments the amount of V segments
*/
private void validateInputData(List> controlPoints, List[] nurbKnots,
int uSegments, int vSegments) {
int uPointsAmount = controlPoints.get(0).size();
for (int i = 1; i < controlPoints.size(); ++i) {
if (controlPoints.get(i).size() != uPointsAmount) {
throw new IllegalArgumentException("The amount of 'U' control points is invalid!");
}
}
if (uSegments <= 0) {
throw new IllegalArgumentException("U segments amount should be positive!");
}
if (vSegments < 0) {
throw new IllegalArgumentException("V segments amount cannot be negative!");
}
if (nurbKnots.length != 2) {
throw new IllegalArgumentException("Nurb surface should have two rows of knots!");
}
for (int i = 0; i < nurbKnots.length; ++i) {
for (int j = 0; j < nurbKnots[i].size() - 1; ++j) {
if (nurbKnots[i].get(j) > nurbKnots[i].get(j + 1)) {
throw new IllegalArgumentException("The knots' values cannot decrease!");
}
}
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy