com.jme3.shadow.DirectionalLightShadowRenderer Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of jme3-core Show documentation
Show all versions of jme3-core Show documentation
jMonkeyEngine is a 3-D game engine for adventurous Java developers
/*
* Copyright (c) 2009-2021 jMonkeyEngine
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* * Neither the name of 'jMonkeyEngine' nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package com.jme3.shadow;
import com.jme3.asset.AssetManager;
import com.jme3.export.InputCapsule;
import com.jme3.export.JmeExporter;
import com.jme3.export.JmeImporter;
import com.jme3.export.OutputCapsule;
import com.jme3.light.DirectionalLight;
import com.jme3.material.Material;
import com.jme3.math.ColorRGBA;
import com.jme3.math.Vector2f;
import com.jme3.math.Vector3f;
import com.jme3.renderer.Camera;
import com.jme3.renderer.queue.GeometryList;
import com.jme3.renderer.queue.RenderQueue;
import com.jme3.scene.Node;
import com.jme3.scene.Spatial;
import com.jme3.util.clone.Cloner;
import java.io.IOException;
/**
* DirectionalLightShadowRenderer renderer use Parallel Split Shadow Mapping
* technique (pssm)
It splits the view frustum in several parts and compute
* a shadow map for each one.
splits are distributed so that the closer they
* are from the camera, the smaller they are to maximize the resolution used of
* the shadow map.
This results in a better quality shadow than standard
* shadow mapping.
for more information on this read https://developer.nvidia.com/gpugems/GPUGems3/gpugems3_ch10.html
*
* @author Rémy Bouquet aka Nehon
*/
public class DirectionalLightShadowRenderer extends AbstractShadowRenderer {
protected float lambda = 0.65f;
protected Camera shadowCam;
protected ColorRGBA splits;
protected float[] splitsArray;
protected DirectionalLight light;
protected Vector3f[] points = new Vector3f[8];
//Holding the info for fading shadows in the far distance
private boolean stabilize = true;
/**
* Used for serialization use
* DirectionalLightShadowRenderer#DirectionalLightShadowRenderer(AssetManager
* assetManager, int shadowMapSize, int nbSplits)
*/
protected DirectionalLightShadowRenderer() {
super();
}
/**
* Creates a DirectionalLight shadow renderer. More info on the technique at https://developer.nvidia.com/gpugems/GPUGems3/gpugems3_ch10.html
*
* @param assetManager the application's asset manager
* @param shadowMapSize the size of the rendered shadowmaps (512, 1024, 2048,
* etcetera)
* @param nbSplits the number of shadow maps rendered (More shadow maps yield
* better quality, fewer fps.)
*/
public DirectionalLightShadowRenderer(AssetManager assetManager, int shadowMapSize, int nbSplits) {
super(assetManager, shadowMapSize, nbSplits);
init(nbSplits, shadowMapSize);
}
private void init(int nbSplits, int shadowMapSize) {
nbShadowMaps = Math.max(Math.min(nbSplits, 4), 1);
if (nbShadowMaps != nbSplits) {
throw new IllegalArgumentException("Number of splits must be between 1 and 4. Given value : " + nbSplits);
}
splits = new ColorRGBA();
splitsArray = new float[nbSplits + 1];
shadowCam = new Camera(shadowMapSize, shadowMapSize);
shadowCam.setParallelProjection(true);
for (int i = 0; i < points.length; i++) {
points[i] = new Vector3f();
}
}
@Override
protected void initFrustumCam() {
//nothing to do
}
/**
* return the light used to cast shadows
*
* @return the DirectionalLight
*/
public DirectionalLight getLight() {
return light;
}
/**
* Sets the light to use to cast shadows
*
* @param light a DirectionalLight
*/
public void setLight(DirectionalLight light) {
this.light = light;
}
@Override
protected void updateShadowCams(Camera viewCam) {
if (light == null) {
logger.warning("The light can't be null for a " + getClass().getName());
return;
}
float zFar = zFarOverride;
if (zFar == 0) {
zFar = viewCam.getFrustumFar();
}
//We prevent computing the frustum points and splits with zeroed or negative near clip value
float frustumNear = Math.max(viewCam.getFrustumNear(), 0.001f);
ShadowUtil.updateFrustumPoints(viewCam, frustumNear, zFar, 1.0f, points);
shadowCam.setFrustumFar(zFar);
shadowCam.getRotation().lookAt(light.getDirection(), shadowCam.getUp());
shadowCam.update();
shadowCam.updateViewProjection();
PssmShadowUtil.updateFrustumSplits(splitsArray, frustumNear, zFar, lambda);
// in parallel projection shadow position goe from 0 to 1
if(viewCam.isParallelProjection()){
for (int i = 0; i < nbShadowMaps; i++) {
splitsArray[i] = splitsArray[i]/(zFar- frustumNear);
}
}
switch (splitsArray.length) {
case 5:
splits.a = splitsArray[4];
case 4:
splits.b = splitsArray[3];
case 3:
splits.g = splitsArray[2];
case 2:
case 1:
splits.r = splitsArray[1];
break;
}
}
@Override
protected GeometryList getOccludersToRender(int shadowMapIndex, GeometryList shadowMapOccluders) {
// update frustum points based on current camera and split
ShadowUtil.updateFrustumPoints(viewPort.getCamera(), splitsArray[shadowMapIndex], splitsArray[shadowMapIndex + 1], 1.0f, points);
//Updating shadow cam with current split frusta
if (lightReceivers.size()==0) {
for (Spatial scene : viewPort.getScenes()) {
ShadowUtil.getGeometriesInCamFrustum(scene, viewPort.getCamera(), RenderQueue.ShadowMode.Receive, lightReceivers);
}
}
ShadowUtil.updateShadowCamera(viewPort, lightReceivers, shadowCam, points, shadowMapOccluders, stabilize?shadowMapSize:0);
return shadowMapOccluders;
}
@Override
protected void getReceivers(GeometryList lightReceivers) {
if (lightReceivers.size()==0) {
for (Spatial scene : viewPort.getScenes()) {
ShadowUtil.getGeometriesInCamFrustum(scene, viewPort.getCamera(), RenderQueue.ShadowMode.Receive, lightReceivers);
}
}
}
@Override
protected Camera getShadowCam(int shadowMapIndex) {
return shadowCam;
}
@Override
protected void doDisplayFrustumDebug(int shadowMapIndex) {
((Node) viewPort.getScenes().get(0)).attachChild(createFrustum(points, shadowMapIndex));
ShadowUtil.updateFrustumPoints2(shadowCam, points);
((Node) viewPort.getScenes().get(0)).attachChild(createFrustum(points, shadowMapIndex));
}
@Override
protected void setMaterialParameters(Material material) {
material.setColor("Splits", splits);
material.setVector3("LightDir", light == null ? new Vector3f() : light.getDirection());
if (fadeInfo != null) {
material.setVector2("FadeInfo", fadeInfo);
}
}
@Override
protected void clearMaterialParameters(Material material) {
material.clearParam("Splits");
material.clearParam("FadeInfo");
material.clearParam("LightDir");
}
/**
* returns the lambda parameter see #setLambda(float lambda)
*
* @return lambda
*/
public float getLambda() {
return lambda;
}
/**
* Adjusts the partition of the shadow extend into shadow maps.
* Lambda is usually between 0 and 1.
* A low value gives a more linear partition,
* resulting in consistent shadow quality over the extend,
* but near shadows could look very jagged.
* A high value gives a more logarithmic partition,
* resulting in high quality for near shadows,
* but quality decreases rapidly with distance.
* The default value is 0.65 (the theoretical optimum).
*
* @param lambda the lambda value.
*/
public void setLambda(float lambda) {
this.lambda = lambda;
}
/**
* @return true if stabilization is enabled
*/
public boolean isEnabledStabilization() {
return stabilize;
}
/**
* Enables the stabilization of the shadow's edges. (default is true)
* This prevents shadow edges from flickering when the camera moves.
* However, it can lead to some loss of shadow quality in particular scenes.
*
* @param stabilize true to stabilize, false to disable stabilization
*/
public void setEnabledStabilization(boolean stabilize) {
this.stabilize = stabilize;
}
@Override
public void cloneFields(final Cloner cloner, final Object original) {
light = cloner.clone(light);
init(nbShadowMaps, (int) shadowMapSize);
super.cloneFields(cloner, original);
}
@Override
public void read(JmeImporter im) throws IOException {
super.read(im);
InputCapsule ic = im.getCapsule(this);
lambda = ic.readFloat("lambda", 0.65f);
zFarOverride = ic.readFloat("zFarOverride", 0);
light = (DirectionalLight) ic.readSavable("light", null);
fadeInfo = (Vector2f) ic.readSavable("fadeInfo", null);
fadeLength = ic.readFloat("fadeLength", 0f);
init(nbShadowMaps, (int) shadowMapSize);
}
@Override
public void write(JmeExporter ex) throws IOException {
super.write(ex);
OutputCapsule oc = ex.getCapsule(this);
oc.write(lambda, "lambda", 0.65f);
oc.write(zFarOverride, "zFarOverride", 0);
oc.write(light, "light", null);
oc.write(fadeInfo, "fadeInfo", null);
oc.write(fadeLength, "fadeLength", 0f);
}
/**
* Directional light are always in the view frustum
*
* @param viewCam a Camera to define the view frustum
* @return true
*/
@Override
protected boolean checkCulling(Camera viewCam) {
return true;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy