jme3tools.optimize.GeometryBatchFactory Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of jme3-core Show documentation
Show all versions of jme3-core Show documentation
jMonkeyEngine is a 3-D game engine for adventurous Java developers
package jme3tools.optimize;
import com.jme3.material.Material;
import com.jme3.math.Matrix4f;
import com.jme3.math.Transform;
import com.jme3.math.Vector3f;
import com.jme3.scene.*;
import com.jme3.scene.Mesh.Mode;
import com.jme3.scene.VertexBuffer.Format;
import com.jme3.scene.VertexBuffer.Type;
import com.jme3.scene.VertexBuffer.Usage;
import com.jme3.scene.mesh.IndexBuffer;
import com.jme3.util.BufferUtils;
import java.nio.Buffer;
import java.nio.FloatBuffer;
import java.nio.IntBuffer;
import java.nio.ShortBuffer;
import java.util.*;
import java.util.logging.Level;
import java.util.logging.Logger;
public class GeometryBatchFactory {
private static final Logger logger = Logger.getLogger(GeometryBatchFactory.class.getName());
private static void doTransformVerts(FloatBuffer inBuf, int offset, FloatBuffer outBuf, Matrix4f transform) {
Vector3f pos = new Vector3f();
// offset is given in element units
// convert to be in component units
offset *= 3;
for (int i = 0; i < inBuf.limit() / 3; i++) {
pos.x = inBuf.get(i * 3 + 0);
pos.y = inBuf.get(i * 3 + 1);
pos.z = inBuf.get(i * 3 + 2);
transform.mult(pos, pos);
outBuf.put(offset + i * 3 + 0, pos.x);
outBuf.put(offset + i * 3 + 1, pos.y);
outBuf.put(offset + i * 3 + 2, pos.z);
}
}
private static void doTransformNorms(FloatBuffer inBuf, int offset, FloatBuffer outBuf, Matrix4f transform) {
Vector3f norm = new Vector3f();
// offset is given in element units
// convert to be in component units
offset *= 3;
for (int i = 0; i < inBuf.limit() / 3; i++) {
norm.x = inBuf.get(i * 3 + 0);
norm.y = inBuf.get(i * 3 + 1);
norm.z = inBuf.get(i * 3 + 2);
transform.multNormal(norm, norm);
outBuf.put(offset + i * 3 + 0, norm.x);
outBuf.put(offset + i * 3 + 1, norm.y);
outBuf.put(offset + i * 3 + 2, norm.z);
}
}
private static void doTransformTangents(FloatBuffer inBuf, int offset, int components, FloatBuffer outBuf, Matrix4f transform) {
Vector3f tan = new Vector3f();
// offset is given in element units
// convert to be in component units
offset *= components;
for (int i = 0; i < inBuf.limit() / components; i++) {
tan.x = inBuf.get(i * components + 0);
tan.y = inBuf.get(i * components + 1);
tan.z = inBuf.get(i * components + 2);
transform.multNormal(tan, tan);
outBuf.put(offset + i * components + 0, tan.x);
outBuf.put(offset + i * components + 1, tan.y);
outBuf.put(offset + i * components + 2, tan.z);
if (components == 4) {
outBuf.put(offset + i * components + 3, inBuf.get(i * components + 3));
}
}
}
/**
* Merges all geometries in the collection into
* the output mesh. Creates a new material using the TextureAtlas.
*
* @param geometries the geometries to merge
* @param outMesh a Mesh to receive the geometries
*/
public static void mergeGeometries(Collection geometries, Mesh outMesh) {
int[] compsForBuf = new int[VertexBuffer.Type.values().length];
Format[] formatForBuf = new Format[compsForBuf.length];
boolean[] normForBuf = new boolean[VertexBuffer.Type.values().length];
int totalVerts = 0;
int totalTris = 0;
int totalLodLevels = 0;
int maxWeights = -1;
Mode mode = null;
for (Geometry geom : geometries) {
totalVerts += geom.getVertexCount();
totalTris += geom.getTriangleCount();
totalLodLevels = Math.min(totalLodLevels, geom.getMesh().getNumLodLevels());
Mode listMode;
int components;
switch (geom.getMesh().getMode()) {
case Points:
listMode = Mode.Points;
components = 0;
break;
case LineLoop:
case LineStrip:
case Lines:
listMode = Mode.Lines;
components = 2;
break;
case TriangleFan:
case TriangleStrip:
case Triangles:
listMode = Mode.Triangles;
components = 3;
break;
default:
throw new UnsupportedOperationException();
}
for (VertexBuffer vb : geom.getMesh().getBufferList().getArray()) {
int currentCompsForBuf = compsForBuf[vb.getBufferType().ordinal()];
if (vb.getBufferType() != Type.Index && currentCompsForBuf != 0 && currentCompsForBuf != vb.getNumComponents()) {
throw new UnsupportedOperationException("The geometry " + geom + " buffer " + vb.getBufferType()
+ " has different number of components than the rest of the meshes "
+ "(this: " + vb.getNumComponents() + ", expected: " + currentCompsForBuf + ")");
}
compsForBuf[vb.getBufferType().ordinal()] = vb.getNumComponents();
formatForBuf[vb.getBufferType().ordinal()] = vb.getFormat();
normForBuf[vb.getBufferType().ordinal()] = vb.isNormalized();
}
maxWeights = Math.max(maxWeights, geom.getMesh().getMaxNumWeights());
if (mode != null && mode != listMode) {
throw new UnsupportedOperationException("Cannot combine different"
+ " primitive types: " + mode + " != " + listMode);
}
mode = listMode;
compsForBuf[Type.Index.ordinal()] = components;
}
outMesh.setMaxNumWeights(maxWeights);
outMesh.setMode(mode);
if (totalVerts >= 65536) {
// Create an UnsignedInt buffer so
// we can fit all of the meshes.
formatForBuf[Type.Index.ordinal()] = Format.UnsignedInt;
} else {
formatForBuf[Type.Index.ordinal()] = Format.UnsignedShort;
}
// generate output buffers based on retrieved info
for (int i = 0; i < compsForBuf.length; i++) {
if (compsForBuf[i] == 0) {
continue;
}
Buffer data;
if (i == Type.Index.ordinal()) {
data = VertexBuffer.createBuffer(formatForBuf[i], compsForBuf[i], totalTris);
} else {
data = VertexBuffer.createBuffer(formatForBuf[i], compsForBuf[i], totalVerts);
}
VertexBuffer vb = new VertexBuffer(Type.values()[i]);
vb.setupData(Usage.Static, compsForBuf[i], formatForBuf[i], data);
vb.setNormalized(normForBuf[i]);
outMesh.setBuffer(vb);
}
int globalVertIndex = 0;
int globalTriIndex = 0;
for (Geometry geom : geometries) {
Mesh inMesh = geom.getMesh();
geom.computeWorldMatrix();
Matrix4f worldMatrix = geom.getWorldMatrix();
int geomVertCount = inMesh.getVertexCount();
int geomTriCount = inMesh.getTriangleCount();
for (int bufType = 0; bufType < compsForBuf.length; bufType++) {
VertexBuffer inBuf = inMesh.getBuffer(Type.values()[bufType]);
VertexBuffer outBuf = outMesh.getBuffer(Type.values()[bufType]);
if (inBuf == null || outBuf == null) {
continue;
}
if (Type.Index.ordinal() == bufType) {
int components = compsForBuf[bufType];
IndexBuffer inIdx = inMesh.getIndicesAsList();
IndexBuffer outIdx = outMesh.getIndexBuffer();
for (int tri = 0; tri < geomTriCount; tri++) {
for (int comp = 0; comp < components; comp++) {
int idx = inIdx.get(tri * components + comp) + globalVertIndex;
outIdx.put((globalTriIndex + tri) * components + comp, idx);
}
}
} else if (Type.Position.ordinal() == bufType) {
FloatBuffer inPos = (FloatBuffer) inBuf.getDataReadOnly();
FloatBuffer outPos = (FloatBuffer) outBuf.getData();
doTransformVerts(inPos, globalVertIndex, outPos, worldMatrix);
} else if (Type.Normal.ordinal() == bufType) {
FloatBuffer inPos = (FloatBuffer) inBuf.getDataReadOnly();
FloatBuffer outPos = (FloatBuffer) outBuf.getData();
doTransformNorms(inPos, globalVertIndex, outPos, worldMatrix);
} else if (Type.Tangent.ordinal() == bufType) {
FloatBuffer inPos = (FloatBuffer) inBuf.getDataReadOnly();
FloatBuffer outPos = (FloatBuffer) outBuf.getData();
int components = inBuf.getNumComponents();
doTransformTangents(inPos, globalVertIndex, components, outPos, worldMatrix);
} else {
inBuf.copyElements(0, outBuf, globalVertIndex, geomVertCount);
}
}
globalVertIndex += geomVertCount;
globalTriIndex += geomTriCount;
}
}
public static void makeLods(Collection geometries, Mesh outMesh) {
// Determine number of LOD levels required.
int lodLevels = Integer.MAX_VALUE;
for (Geometry g : geometries) {
lodLevels = Math.min(lodLevels, g.getMesh().getNumLodLevels());
}
if (lodLevels == Integer.MAX_VALUE || lodLevels == 0) {
// No LOD on any of the meshes.
return;
}
// Sizes of the final LOD index buffers for each level.
int[] lodSize = null;
for (Geometry g : geometries) {
if (lodLevels == 0) {
lodLevels = g.getMesh().getNumLodLevels();
}
if (lodSize == null) {
lodSize = new int[lodLevels];
}
for (int i = 0; i < lodLevels; i++) {
lodSize[i] += g.getMesh().getLodLevel(i).getData().limit();
}
}
// final LOD buffers for each LOD level.
int[][] lodData = new int[lodLevels][];
for (int i = 0; i < lodLevels; i++) {
lodData[i] = new int[lodSize[i]];
}
VertexBuffer[] lods = new VertexBuffer[lodLevels];
int bufferPos[] = new int[lodLevels];
int numOfVertices = 0;
int[] indexPos = new int[lodLevels];
for (Geometry g : geometries) {
numOfVertices = g.getVertexCount();
for (int i = 0; i < lodLevels; i++) {
boolean isShortBuffer = g.getMesh().getLodLevel(i).getFormat() == VertexBuffer.Format.UnsignedShort;
if(isShortBuffer){
ShortBuffer buffer = (ShortBuffer) g.getMesh().getLodLevel(i).getDataReadOnly();
for (int j = 0; j < buffer.limit(); j++) {
lodData[i][bufferPos[i]] = (buffer.get()& 0xffff) + indexPos[i];
bufferPos[i]++;
}
}else{
IntBuffer buffer = (IntBuffer) g.getMesh().getLodLevel(i).getDataReadOnly();
for (int j = 0; j < buffer.limit(); j++) {
lodData[i][bufferPos[i]] = buffer.get() + indexPos[i];
bufferPos[i]++;
}
}
indexPos[i] += numOfVertices;
}
}
for (int i = 0; i < lodLevels; i++) {
lods[i] = new VertexBuffer(Type.Index);
lods[i].setupData(Usage.Dynamic, 1, Format.UnsignedInt, BufferUtils.createIntBuffer(lodData[i]));
}
outMesh.setLodLevels(lods);
}
public static List makeBatches(Collection geometries) {
return makeBatches(geometries, false);
}
/**
* Batches a collection of Geometries so that all with the same material get combined.
* @param geometries The Geometries to combine
* @param useLods true→generate levels of detail, false→don't
* generate them
* @return A List of newly created Geometries, each with a distinct material
*/
public static List makeBatches(Collection geometries, boolean useLods) {
ArrayList retVal = new ArrayList<>();
HashMap> matToGeom = new HashMap<>();
for (Geometry geom : geometries) {
List outList = matToGeom.get(geom.getMaterial());
if (outList == null) {
//trying to compare materials with the contentEquals method
for (Material mat : matToGeom.keySet()) {
if (geom.getMaterial().contentEquals(mat)){
outList = matToGeom.get(mat);
}
}
}
if (outList == null) {
outList = new ArrayList();
matToGeom.put(geom.getMaterial(), outList);
}
outList.add(geom);
}
int batchNum = 0;
for (Map.Entry> entry : matToGeom.entrySet()) {
Material mat = entry.getKey();
List geomsForMat = entry.getValue();
Mesh mesh = new Mesh();
mergeGeometries(geomsForMat, mesh);
// lods
if (useLods) {
makeLods(geomsForMat, mesh);
}
mesh.updateCounts();
Geometry out = new Geometry("batch[" + (batchNum++) + "]", mesh);
out.setMaterial(mat);
out.updateModelBound();
retVal.add(out);
}
return retVal;
}
public static void gatherGeoms(Spatial scene, List geoms) {
if (scene instanceof Node) {
Node node = (Node) scene;
for (Spatial child : node.getChildren()) {
gatherGeoms(child, geoms);
}
} else if (scene instanceof Geometry) {
geoms.add((Geometry) scene);
}
}
/**
* Optimizes a scene by combining Geometry with the same material.
* All Geometries found in the scene are detached from their parent and
* a new Node containing the optimized Geometries is attached.
* @param scene The scene to optimize
* @return The newly created optimized geometries attached to a node
*/
public static Spatial optimize(Node scene) {
return optimize(scene, false);
}
/**
* Optimizes a scene by combining Geometry with the same material.
* All Geometries found in the scene are detached from their parent and
* a new Node containing the optimized Geometries is attached.
* @param scene The scene to optimize
* @param useLods true if you want the resulting geometry to keep lod information
* @return The newly created optimized geometries attached to a node
*/
public static Node optimize(Node scene, boolean useLods) {
ArrayList geoms = new ArrayList<>();
gatherGeoms(scene, geoms);
List batchedGeoms = makeBatches(geoms, useLods);
for (Geometry geom : batchedGeoms) {
scene.attachChild(geom);
}
for (Iterator it = geoms.iterator(); it.hasNext();) {
Geometry geometry = it.next();
geometry.removeFromParent();
}
// Since the scene is returned unaltered the transform must be reset
scene.setLocalTransform(Transform.IDENTITY);
return scene;
}
public static void printMesh(Mesh mesh) {
for (int bufType = 0; bufType < Type.values().length; bufType++) {
VertexBuffer outBuf = mesh.getBuffer(Type.values()[bufType]);
if (outBuf == null) {
continue;
}
System.out.println(outBuf.getBufferType() + ": ");
for (int vert = 0; vert < outBuf.getNumElements(); vert++) {
String str = "[";
for (int comp = 0; comp < outBuf.getNumComponents(); comp++) {
Object val = outBuf.getElementComponent(vert, comp);
outBuf.setElementComponent(vert, comp, val);
val = outBuf.getElementComponent(vert, comp);
str += val;
if (comp != outBuf.getNumComponents() - 1) {
str += ", ";
}
}
str += "]";
System.out.println(str);
}
System.out.println("------");
}
}
public static void main(String[] args) {
Mesh mesh = new Mesh();
mesh.setBuffer(Type.Position, 3, new float[]{
0, 0, 0,
1, 0, 0,
1, 1, 0,
0, 1, 0
});
mesh.setBuffer(Type.Index, 2, new short[]{
0, 1,
1, 2,
2, 3,
3, 0
});
Geometry g1 = new Geometry("g1", mesh);
ArrayList geoms = new ArrayList<>();
geoms.add(g1);
Mesh outMesh = new Mesh();
mergeGeometries(geoms, outMesh);
printMesh(outMesh);
}
/**
* Options to align the buffers of geometries' meshes of a sub graph
*
*/
public static enum AlignOption {
/**
* Will remove the buffers of a type that is not on all the geometries
*/
RemoveUnalignedBuffers,
/**
* Will create missing buffers and pad with dummy data
*/
CreateMissingBuffers
}
/**
* Will ensure that all the geometries' meshes of the n sub graph have the
* same types of buffers
* @param n the node to gather geometries from
* @param option the align options
* @see AlignOption
*
* Very experimental for now.
*/
public static void alignBuffers(Node n, AlignOption option) {
List geoms = new ArrayList<>();
gatherGeoms(n, geoms);
//gather buffer types
Map types = new EnumMap<>(VertexBuffer.Type.class);
Map typesCount = new EnumMap<>(VertexBuffer.Type.class);
for (Geometry geom : geoms) {
for (VertexBuffer buffer : geom.getMesh().getBufferList()) {
if (types.get(buffer.getBufferType()) == null) {
types.put(buffer.getBufferType(), buffer);
if (logger.isLoggable(Level.FINE)) {
logger.log(Level.FINE, buffer.getBufferType().toString());
}
}
Integer count = typesCount.get(buffer.getBufferType());
if (count == null) {
count = 0;
}
count++;
typesCount.put(buffer.getBufferType(), count);
}
}
switch (option) {
case RemoveUnalignedBuffers:
for (Geometry geom : geoms) {
for (VertexBuffer buffer : geom.getMesh().getBufferList()) {
Integer count = typesCount.get(buffer.getBufferType());
if (count != null && count < geoms.size()) {
geom.getMesh().clearBuffer(buffer.getBufferType());
if (logger.isLoggable(Level.FINE)) {
logger.log(Level.FINE, "removing {0} from {1}", new Object[]{buffer.getBufferType(), geom.getName()});
}
}
}
}
break;
case CreateMissingBuffers:
for (Geometry geom : geoms) {
for (VertexBuffer.Type type : types.keySet()) {
if (geom.getMesh().getBuffer(type) == null) {
VertexBuffer vb = new VertexBuffer(type);
Buffer b;
switch (type) {
case Index:
case BoneIndex:
case HWBoneIndex:
b = BufferUtils.createIntBuffer(geom.getMesh().getVertexCount() * types.get(type).getNumComponents());
break;
case InterleavedData:
b = BufferUtils.createByteBuffer(geom.getMesh().getVertexCount() * types.get(type).getNumComponents());
break;
default:
b = BufferUtils.createFloatBuffer(geom.getMesh().getVertexCount() * types.get(type).getNumComponents());
}
vb.setupData(types.get(type).getUsage(), types.get(type).getNumComponents(), types.get(type).getFormat(), b);
geom.getMesh().setBuffer(vb);
if (logger.isLoggable(Level.FINE)) {
logger.log(Level.FINE, "geom {0} misses buffer {1}. Creating", new Object[]{geom.getName(), type});
}
}
}
}
break;
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy