Common.OpenCL.Matrix3f.clh Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of jme3-core Show documentation
Show all versions of jme3-core Show documentation
jMonkeyEngine is a 3-D game engine for adventurous Java developers
The newest version!
#ifndef MATRIX3_H
#define MATRIX3_H
//Simple matrix library.
//A 3x3 matrix is represented as a float16 in row major order
typedef float16 mat3;
//All matrix functions are prefixed with mat3 or mat4
//Returns the zero matrix
inline mat3 mat3Zero() {
return (float16)(0);
}
//Returns the identity matrix
inline mat3 mat3Identity() {
return (float16)
(1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1);
}
inline mat3 mat3FromRows(float3 row1, float3 row2, float3 row3) {
return (float16)
(row1.x, row1.y, row1.z, 0,
row2.x, row2.y, row2.z, 0,
row3.x, row3.y, row3.z, 0,
0, 0, 0, 1);
}
inline mat3 mat3FromColumns(float3 col1, float3 col2, float3 col3) {
return (float16)
(col1.x, col2.x, col3.x, 0,
col1.y, col2.y, col3.y, 0,
col1.z, col2.z, col3.z, 0,
0, 0, 0, 1);
}
inline mat3 mat3FromDiagonal(float3 diag) {
return (float16)
(diag.x, 0, 0, 0,
0, diag.y, 0, 0,
0, 0, diag.z, 0,
0, 0, 0, 1);
}
//Returns the i-th row (0-based)
inline float3 mat3GetRow(mat3 mat, int i) {
if (i==0) return mat.s012;
else if (i==1) return mat.s456;
else return mat.s89a;
}
//Sets the i-th row (0-based)
inline mat3 mat3SetRow(mat3 mat, int i, float3 row) {
if (i==0) mat.s012 = row;
else if (i==1) mat.s456 = row;
else mat.s89a = row;
return mat;
}
//Returns the i-th column (0-based)
inline float3 mat3GetColumn(mat3 mat, int i) {
if (i==0) return mat.s048;
else if (i==1) return mat.s159;
else return mat.s26a;
}
//Sets the i-th column (0-based)
inline mat3 mat3SetColumn(mat3 mat, int i, float3 col) {
if (i==0) mat.s048 = col;
else if (i==1) mat.s159 = col;
else mat.s26a = col;
return mat;
}
//Returns the diagonal
inline float3 mat3GetDiagonal(mat3 mat) {
return mat.s05a;
}
//Sets the diagonal
inline mat3 mat3SetDiagonal(mat3 mat, float3 diag) {
mat.s05a = diag;
return mat;
}
mat3 mat3FromAngleNormalAxis(float angle, float3 axis) {
float fCos = cos(angle);
float fSin = sin(angle);
float fOneMinusCos = 1.0f - fCos;
float fX2 = axis.x * axis.x;
float fY2 = axis.y * axis.y;
float fZ2 = axis.z * axis.z;
float fXYM = axis.x * axis.y * fOneMinusCos;
float fXZM = axis.x * axis.z * fOneMinusCos;
float fYZM = axis.y * axis.z * fOneMinusCos;
float fXSin = axis.x * fSin;
float fYSin = axis.y * fSin;
float fZSin = axis.z * fSin;
return (float16) (
fX2 * fOneMinusCos + fCos,
fXYM - fZSin,
fXZM + fYSin,
0,
fXYM + fZSin,
fY2 * fOneMinusCos + fCos,
fYZM - fXSin,
0,
fXZM - fYSin,
fYZM + fXSin,
fZ2 * fOneMinusCos + fCos,
0,
0, 0, 0, 1
);
}
mat3 mat3FromAngleAxis(float angle, float3 axis) {
return mat3FromAngleNormalAxis(angle, normalize(axis));
}
//Multiplies the two matrices A and B
inline mat3 mat3Mult(mat3 A, mat3 B) {
return (float16) (
dot(A.s012, B.s048),
dot(A.s012, B.s159),
dot(A.s012, B.s26a),
0,
dot(A.s456, B.s048),
dot(A.s456, B.s159),
dot(A.s456, B.s26a),
0,
dot(A.s89a, B.s048),
dot(A.s89a, B.s159),
dot(A.s89a, B.s26a),
0,
0, 0, 0, 1
);
}
//Computes Av (right multiply of a vector to a matrix)
inline float3 mat3VMult(mat3 A, float3 v) {
return (float3) (
dot(A.s012, v),
dot(A.s456, v),
dot(A.s89a, v));
}
//Computes vA (left multiply of a vector to a matrix)
inline float3 mat3VMult2(float3 v, mat3 A) {
return (float3) (
dot(v, A.s048),
dot(v, A.s159),
dot(v, A.s26a));
}
//Scales this matrix by a constant
inline mat3 mat3Scale(mat3 mat, float s) {
return s*mat;
}
//Transposes this matrix
inline mat3 mat3Transpose(mat3 mat) {
return mat.s048c159d26ae37bf; //magic
}
//Computes the determinant
inline float mat3Determinant(mat3 mat) {
float fCo00 = mat.s5 * mat.sa - mat.s6 * mat.s9;
float fCo10 = mat.s6 * mat.s8 - mat.s4 * mat.sa;
float fCo20 = mat.s4 * mat.s9 - mat.s5 * mat.s8;
float fDet = mat.s0 * fCo00 + mat.s1 * fCo10 + mat.s2 * fCo20;
return fDet;
}
//Creates the adjoint
inline mat3 mat3Adjoint(mat3 mat) {
return (float16) (
mat.s5 * mat.sa - mat.s6 * mat.s9,
mat.s2 * mat.s9 - mat.s1 * mat.sa,
mat.s1 * mat.s6 - mat.s2 * mat.s5,
0,
mat.s6 * mat.s8 - mat.s4 * mat.sa,
mat.s0 * mat.sa - mat.s2 * mat.s8,
mat.s2 * mat.s4 - mat.s0 * mat.s6,
0,
mat.s4 * mat.s9 - mat.s5 * mat.s8,
mat.s1 * mat.s8 - mat.s0 * mat.s9,
mat.s0 * mat.s5 - mat.s1 * mat.s4,
0,
0, 0, 0, 1
);
}
//Inverts this matrix
inline mat3 mat3Invert(mat3 mat) {
float det = mat3Determinant(mat);
if (fabs(det) <= 1.1920928955078125E-7f) return mat3Zero();
mat3 m = mat3Adjoint(mat);
return m / det;
}
//Computes A+B
inline mat3 mat3Add(mat3 A, mat3 B) {
return A + B;
}
inline bool mat3Equals(mat3 A, mat3 B, float epsilon) {
return fabs(A.s0 - B.s0)
© 2015 - 2024 Weber Informatics LLC | Privacy Policy