com.jme3.math.Quaternion Maven / Gradle / Ivy
Show all versions of jme3-core Show documentation
/*
* Copyright (c) 2009-2023 jMonkeyEngine
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* * Neither the name of 'jMonkeyEngine' nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package com.jme3.math;
import com.jme3.export.*;
import com.jme3.util.TempVars;
import java.io.*;
import java.util.logging.Logger;
/**
* Used to efficiently represent rotations and orientations in 3-dimensional
* space, without risk of gimbal lock. Each instance has 4 single-precision
* components: 3 imaginary components (X, Y, and Z) and a real component (W).
*
* Mathematically, quaternions are an extension of complex numbers. In
* mathematics texts, W often appears first, but in JME it always comes last.
*
* @author Mark Powell
* @author Joshua Slack
*/
public final class Quaternion implements Savable, Cloneable, java.io.Serializable {
static final long serialVersionUID = 1;
private static final Logger logger = Logger.getLogger(Quaternion.class.getName());
/**
* Shared instance of the identity quaternion (0, 0, 0, 1). Do not modify!
*
*
This is the usual representation for a null rotation.
*/
public static final Quaternion IDENTITY = new Quaternion();
/**
* Another shared instance of the identity quaternion (0, 0, 0, 1). Do not
* modify!
*/
public static final Quaternion DIRECTION_Z = new Quaternion();
/**
* Shared instance of the zero quaternion (0, 0, 0, 0). Do not modify!
*
*
The zero quaternion doesn't represent any valid rotation.
*/
public static final Quaternion ZERO = new Quaternion(0, 0, 0, 0);
static {
DIRECTION_Z.fromAxes(Vector3f.UNIT_X, Vector3f.UNIT_Y, Vector3f.UNIT_Z);
}
/**
* The first imaginary (X) component. Not an angle!
*/
protected float x;
/**
* The 2nd imaginary (Y) component. Not an angle!
*/
protected float y;
/**
* The 3rd imaginary (Z) component. Not an angle!
*/
protected float z;
/**
* The real (W) component. Not an angle!
*/
protected float w;
/**
* Instantiates an identity quaternion: all components zeroed except
* {@code w}, which is set to 1.
*/
public Quaternion() {
x = 0;
y = 0;
z = 0;
w = 1;
}
/**
* Instantiates a quaternion with the specified components.
*
* @param x the desired X component
* @param y the desired Y component
* @param z the desired Z component
* @param w the desired W component
*/
public Quaternion(float x, float y, float z, float w) {
this.x = x;
this.y = y;
this.z = z;
this.w = w;
}
/**
* Returns the X component. The quaternion is unaffected.
*
* @return the value of the {@link #x} component
*/
public float getX() {
return x;
}
/**
* Returns the Y component. The quaternion is unaffected.
*
* @return the value of the {@link #y} component
*/
public float getY() {
return y;
}
/**
* Returns the Z component. The quaternion is unaffected.
*
* @return the value of the {@link #z} component
*/
public float getZ() {
return z;
}
/**
* Returns the W (real) component. The quaternion is unaffected.
*
* @return the value of the {@link #w} component
*/
public float getW() {
return w;
}
/**
* Sets all 4 components to specified values.
*
* @param x the desired X component
* @param y the desired Y component
* @param z the desired Z component
* @param w the desired W component
* @return the (modified) current instance (for chaining)
*/
public Quaternion set(float x, float y, float z, float w) {
this.x = x;
this.y = y;
this.z = z;
this.w = w;
return this;
}
/**
* Copies all 4 components from the argument.
*
* @param q the quaternion to copy (not null, unaffected)
* @return the (modified) current instance (for chaining)
*/
public Quaternion set(Quaternion q) {
this.x = q.x;
this.y = q.y;
this.z = q.z;
this.w = q.w;
return this;
}
/**
* Instantiates a quaternion from Tait-Bryan angles, applying the rotations
* in x-z-y extrinsic order or y-z'-x" intrinsic order.
*
* @param angles an array of Tait-Bryan angles (in radians, exactly 3
* elements, the X angle in {@code angles[0]}, the Y angle in {@code
* angles[1]}, and the Z angle in {@code angles[2]}, not null,
* unaffected)
*/
public Quaternion(float[] angles) {
fromAngles(angles);
}
/**
* Instantiates a quaternion by interpolating between the specified
* quaternions.
*
*
Uses
* {@link #slerp(com.jme3.math.Quaternion, com.jme3.math.Quaternion, float)},
* which is fast but inaccurate.
*
* @param q1 the desired value when interp=0 (not null, unaffected)
* @param q2 the desired value when interp=1 (not null, may be modified)
* @param interp the fractional change amount
*/
public Quaternion(Quaternion q1, Quaternion q2, float interp) {
slerp(q1, q2, interp);
}
/**
* Instantiates a copy of the argument.
*
* @param q the quaternion to copy (not null, unaffected)
*/
public Quaternion(Quaternion q) {
this.x = q.x;
this.y = q.y;
this.z = q.z;
this.w = q.w;
}
/**
* Sets all components to zero except {@code w}, which is set to 1.
*/
public void loadIdentity() {
x = y = z = 0;
w = 1;
}
/**
* Compares with the identity quaternion, without distinguishing -0 from 0.
* The current instance is unaffected.
*
* @return true if the current quaternion equals the identity, otherwise
* false
*/
public boolean isIdentity() {
if (x == 0 && y == 0 && z == 0 && w == 1) {
return true;
} else {
return false;
}
}
/**
* Sets the quaternion from the specified Tait-Bryan angles, applying the
* rotations in x-z-y extrinsic order or y-z'-x" intrinsic order.
*
* @param angles an array of Tait-Bryan angles (in radians, exactly 3
* elements, the X angle in {@code angles[0]}, the Y angle in {@code
* angles[1]}, and the Z angle in {@code angles[2]}, not null,
* unaffected)
* @return the (modified) current instance (for chaining)
* @throws IllegalArgumentException if {@code angles.length != 3}
*/
public Quaternion fromAngles(float[] angles) {
if (angles.length != 3) {
throw new IllegalArgumentException(
"Angles array must have three elements");
}
return fromAngles(angles[0], angles[1], angles[2]);
}
/**
* Sets the quaternion from the specified Tait-Bryan angles, applying the
* rotations in x-z-y extrinsic order or y-z'-x" intrinsic order.
*
* @see
* http://www.euclideanspace.com/maths/geometry/rotations/conversions/eulerToQuaternion/index.htm
*
* @param xAngle the X angle (in radians)
* @param yAngle the Y angle (in radians)
* @param zAngle the Z angle (in radians)
* @return the (modified) current instance (for chaining)
*/
public Quaternion fromAngles(float xAngle, float yAngle, float zAngle) {
float angle;
float sinY, sinZ, sinX, cosY, cosZ, cosX;
angle = zAngle * 0.5f;
sinZ = FastMath.sin(angle);
cosZ = FastMath.cos(angle);
angle = yAngle * 0.5f;
sinY = FastMath.sin(angle);
cosY = FastMath.cos(angle);
angle = xAngle * 0.5f;
sinX = FastMath.sin(angle);
cosX = FastMath.cos(angle);
// variables used to reduce multiplication calls.
float cosYXcosZ = cosY * cosZ;
float sinYXsinZ = sinY * sinZ;
float cosYXsinZ = cosY * sinZ;
float sinYXcosZ = sinY * cosZ;
w = (cosYXcosZ * cosX - sinYXsinZ * sinX);
x = (cosYXcosZ * sinX + sinYXsinZ * cosX);
y = (sinYXcosZ * cosX + cosYXsinZ * sinX);
z = (cosYXsinZ * cosX - sinYXcosZ * sinX);
normalizeLocal();
return this;
}
/**
* Converts to equivalent Tait-Bryan angles, to be applied in x-z-y
* intrinsic order or y-z'-x" extrinsic order, for instance by
* {@link #fromAngles(float[])}. The current instance is unaffected.
*
* @see
*
* http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToEuler/index.htm
*
*
* @param angles storage for the result, or null for a new float[3]
* @return an array of 3 angles (in radians, either angles
or a
* new float[3], the X angle in angles[0], the Y angle in angles[1], and
* the Z angle in angles[2])
* @throws IllegalArgumentException if {@code angles.length != 3}
*/
public float[] toAngles(float[] angles) {
if (angles == null) {
angles = new float[3];
} else if (angles.length != 3) {
throw new IllegalArgumentException("Angles array must have three elements");
}
float sqw = w * w;
float sqx = x * x;
float sqy = y * y;
float sqz = z * z;
float unit = sqx + sqy + sqz + sqw; // if normalized is one, otherwise
// is correction factor
float test = x * y + z * w;
if (test > 0.499 * unit) { // singularity at north pole
angles[1] = 2 * FastMath.atan2(x, w);
angles[2] = FastMath.HALF_PI;
angles[0] = 0;
} else if (test < -0.499 * unit) { // singularity at south pole
angles[1] = -2 * FastMath.atan2(x, w);
angles[2] = -FastMath.HALF_PI;
angles[0] = 0;
} else {
angles[1] = FastMath.atan2(2 * y * w - 2 * x * z, sqx - sqy - sqz + sqw); // yaw or heading
angles[2] = FastMath.asin(2 * test / unit); // roll or bank
angles[0] = FastMath.atan2(2 * x * w - 2 * y * z, -sqx + sqy - sqz + sqw); // pitch or attitude
}
return angles;
}
/**
* Sets the quaternion from the specified rotation matrix.
*
*
Does not verify that the argument is a valid rotation matrix.
* Positive scaling is compensated for, but not reflection or shear.
*
* @param matrix the input matrix (not null, unaffected)
* @return the (modified) current instance (for chaining)
*/
public Quaternion fromRotationMatrix(Matrix3f matrix) {
return fromRotationMatrix(matrix.m00, matrix.m01, matrix.m02, matrix.m10,
matrix.m11, matrix.m12, matrix.m20, matrix.m21, matrix.m22);
}
/**
* Sets the quaternion from a rotation matrix with the specified elements.
*
*
Does not verify that the arguments form a valid rotation matrix.
* Positive scaling is compensated for, but not reflection or shear.
*
* @param m00 the matrix element in row 0, column 0
* @param m01 the matrix element in row 0, column 1
* @param m02 the matrix element in row 0, column 2
* @param m10 the matrix element in row 1, column 0
* @param m11 the matrix element in row 1, column 1
* @param m12 the matrix element in row 1, column 2
* @param m20 the matrix element in row 2, column 0
* @param m21 the matrix element in row 2, column 1
* @param m22 the matrix element in row 2, column 2
* @return the (modified) current instance (for chaining)
*/
public Quaternion fromRotationMatrix(float m00, float m01, float m02,
float m10, float m11, float m12, float m20, float m21, float m22) {
// first normalize the forward (F), up (U) and side (S) vectors of the rotation matrix
// so that positive scaling does not affect the rotation
float lengthSquared = m00 * m00 + m10 * m10 + m20 * m20;
if (lengthSquared != 1f && lengthSquared != 0f) {
lengthSquared = 1.0f / FastMath.sqrt(lengthSquared);
m00 *= lengthSquared;
m10 *= lengthSquared;
m20 *= lengthSquared;
}
lengthSquared = m01 * m01 + m11 * m11 + m21 * m21;
if (lengthSquared != 1f && lengthSquared != 0f) {
lengthSquared = 1.0f / FastMath.sqrt(lengthSquared);
m01 *= lengthSquared;
m11 *= lengthSquared;
m21 *= lengthSquared;
}
lengthSquared = m02 * m02 + m12 * m12 + m22 * m22;
if (lengthSquared != 1f && lengthSquared != 0f) {
lengthSquared = 1.0f / FastMath.sqrt(lengthSquared);
m02 *= lengthSquared;
m12 *= lengthSquared;
m22 *= lengthSquared;
}
// Use the Graphics Gems code, from
// ftp://ftp.cis.upenn.edu/pub/graphics/shoemake/quatut.ps.Z
// *NOT* the "Matrix and Quaternions FAQ", which has errors!
// the trace is the sum of the diagonal elements; see
// http://mathworld.wolfram.com/MatrixTrace.html
float t = m00 + m11 + m22;
// we protect the division by s by ensuring that s>=1
if (t >= 0) { // |w| >= .5
float s = FastMath.sqrt(t + 1); // |s|>=1 ...
w = 0.5f * s;
s = 0.5f / s; // so this division isn't bad
x = (m21 - m12) * s;
y = (m02 - m20) * s;
z = (m10 - m01) * s;
} else if ((m00 > m11) && (m00 > m22)) {
float s = FastMath.sqrt(1.0f + m00 - m11 - m22); // |s|>=1
x = s * 0.5f; // |x| >= .5
s = 0.5f / s;
y = (m10 + m01) * s;
z = (m02 + m20) * s;
w = (m21 - m12) * s;
} else if (m11 > m22) {
float s = FastMath.sqrt(1.0f + m11 - m00 - m22); // |s|>=1
y = s * 0.5f; // |y| >= .5
s = 0.5f / s;
x = (m10 + m01) * s;
z = (m21 + m12) * s;
w = (m02 - m20) * s;
} else {
float s = FastMath.sqrt(1.0f + m22 - m00 - m11); // |s|>=1
z = s * 0.5f; // |z| >= .5
s = 0.5f / s;
x = (m02 + m20) * s;
y = (m21 + m12) * s;
w = (m10 - m01) * s;
}
return this;
}
/**
* Converts to an equivalent rotation matrix. The current instance is
* unaffected.
*
*
Note: the result is created from a normalized version of the current
* instance.
*
* @return a new 3x3 rotation matrix
*/
public Matrix3f toRotationMatrix() {
Matrix3f matrix = new Matrix3f();
return toRotationMatrix(matrix);
}
/**
* Converts to an equivalent rotation matrix. The current instance is
* unaffected.
*
*
Note: the result is created from a normalized version of the current
* instance.
*
* @param result storage for the result (not null)
* @return {@code result}, configured as a 3x3 rotation matrix
*/
public Matrix3f toRotationMatrix(Matrix3f result) {
float norm = norm();
// we explicitly test norm against one here, saving a division
// at the cost of a test and branch. Is it worth it?
float s = (norm == 1f) ? 2f : (norm > 0f) ? 2f / norm : 0;
// compute xs/ys/zs first to save 6 multiplications, since xs/ys/zs
// will be used 2-4 times each.
float xs = x * s;
float ys = y * s;
float zs = z * s;
float xx = x * xs;
float xy = x * ys;
float xz = x * zs;
float xw = w * xs;
float yy = y * ys;
float yz = y * zs;
float yw = w * ys;
float zz = z * zs;
float zw = w * zs;
// using s=2/norm (instead of 1/norm) saves 9 multiplications by 2 here
result.m00 = 1 - (yy + zz);
result.m01 = (xy - zw);
result.m02 = (xz + yw);
result.m10 = (xy + zw);
result.m11 = 1 - (xx + zz);
result.m12 = (yz - xw);
result.m20 = (xz - yw);
result.m21 = (yz + xw);
result.m22 = 1 - (xx + yy);
return result;
}
/**
* Sets the rotation component of the specified transform matrix. The
* current instance is unaffected.
*
*
Note: preserves the translation component of {@code store} but not
* its scaling component.
*
*
Note: the result is created from a normalized version of the current
* instance.
*
* @param store storage for the result (not null)
* @return {@code store}, with 9 of its 16 elements modified
*/
public Matrix4f toTransformMatrix(Matrix4f store) {
float norm = norm();
// we explicitly test norm against one here, saving a division
// at the cost of a test and branch. Is it worth it?
float s = (norm == 1f) ? 2f : (norm > 0f) ? 2f / norm : 0;
// compute xs/ys/zs first to save 6 multiplications, since xs/ys/zs
// will be used 2-4 times each.
float xs = x * s;
float ys = y * s;
float zs = z * s;
float xx = x * xs;
float xy = x * ys;
float xz = x * zs;
float xw = w * xs;
float yy = y * ys;
float yz = y * zs;
float yw = w * ys;
float zz = z * zs;
float zw = w * zs;
// using s=2/norm (instead of 1/norm) saves 9 multiplications by 2 here
store.m00 = 1 - (yy + zz);
store.m01 = (xy - zw);
store.m02 = (xz + yw);
store.m10 = (xy + zw);
store.m11 = 1 - (xx + zz);
store.m12 = (yz - xw);
store.m20 = (xz - yw);
store.m21 = (yz + xw);
store.m22 = 1 - (xx + yy);
return store;
}
/**
* Sets the rotation component of the specified transform matrix. The
* current instance is unaffected.
*
*
Note: preserves the translation and scaling components of
* {@code result} unless {@code result} includes reflection.
*
*
Note: the result is created from a normalized version of the current
* instance.
*
* @param result storage for the result (not null)
* @return {@code result}, with 9 of its 16 elements modified
*/
public Matrix4f toRotationMatrix(Matrix4f result) {
TempVars tempv = TempVars.get();
Vector3f originalScale = tempv.vect1;
result.toScaleVector(originalScale);
result.setScale(1, 1, 1);
float norm = norm();
// we explicitly test norm against one here, saving a division
// at the cost of a test and branch. Is it worth it?
float s = (norm == 1f) ? 2f : (norm > 0f) ? 2f / norm : 0;
// compute xs/ys/zs first to save 6 multiplications, since xs/ys/zs
// will be used 2-4 times each.
float xs = x * s;
float ys = y * s;
float zs = z * s;
float xx = x * xs;
float xy = x * ys;
float xz = x * zs;
float xw = w * xs;
float yy = y * ys;
float yz = y * zs;
float yw = w * ys;
float zz = z * zs;
float zw = w * zs;
// using s=2/norm (instead of 1/norm) saves 9 multiplications by 2 here
result.m00 = 1 - (yy + zz);
result.m01 = (xy - zw);
result.m02 = (xz + yw);
result.m10 = (xy + zw);
result.m11 = 1 - (xx + zz);
result.m12 = (yz - xw);
result.m20 = (xz - yw);
result.m21 = (yz + xw);
result.m22 = 1 - (xx + yy);
result.setScale(originalScale);
tempv.release();
return result;
}
/**
* Calculates one of the basis vectors of the rotation. The current instance
* is unaffected.
*
*
Note: the result is created from a normalized version of the current
* instance.
*
* @param i which basis vector to retrieve (≥0, <3, 0→X-axis,
* 1→Y-axis, 2→Z-axis)
* @return the basis vector (a new Vector3f)
*/
public Vector3f getRotationColumn(int i) {
return getRotationColumn(i, null);
}
/**
* Calculates one of the basis vectors of the rotation. The current instance
* is unaffected.
*
*
Note: the result is created from a normalized version of the current
* instance.
*
* @param i which basis vector to retrieve (≥0, <3, 0→X-axis,
* 1→Y-axis, 2→Z-axis)
* @param store storage for the result, or null for a new Vector3f
* @return the basis vector (either store
or a new Vector3f)
* @throws IllegalArgumentException if index is not 0, 1, or 2
*/
public Vector3f getRotationColumn(int i, Vector3f store) {
if (store == null) {
store = new Vector3f();
}
float norm = norm();
if (norm != 1.0f) {
norm = 1.0f / norm;
}
float xx = x * x * norm;
float xy = x * y * norm;
float xz = x * z * norm;
float xw = x * w * norm;
float yy = y * y * norm;
float yz = y * z * norm;
float yw = y * w * norm;
float zz = z * z * norm;
float zw = z * w * norm;
switch (i) {
case 0:
store.x = 1 - 2 * (yy + zz);
store.y = 2 * (xy + zw);
store.z = 2 * (xz - yw);
break;
case 1:
store.x = 2 * (xy - zw);
store.y = 1 - 2 * (xx + zz);
store.z = 2 * (yz + xw);
break;
case 2:
store.x = 2 * (xz + yw);
store.y = 2 * (yz - xw);
store.z = 1 - 2 * (xx + yy);
break;
default:
logger.warning("Invalid column index.");
throw new IllegalArgumentException("Invalid column index. " + i);
}
return store;
}
/**
* Sets the quaternion from the specified rotation angle and axis of
* rotation. This method creates garbage, so use
* {@link #fromAngleNormalAxis(float, com.jme3.math.Vector3f)} if the axis
* is known to be normalized.
*
* @param angle the desired rotation angle (in radians)
* @param axis the desired axis of rotation (not null, unaffected)
* @return the (modified) current instance (for chaining)
*/
public Quaternion fromAngleAxis(float angle, Vector3f axis) {
Vector3f normAxis = axis.normalize();
fromAngleNormalAxis(angle, normAxis);
return this;
}
/**
* Sets the quaternion from the specified rotation angle and normalized axis
* of rotation. If the axis might not be normalized, use
* {@link #fromAngleAxis(float, com.jme3.math.Vector3f)} instead.
*
* @param angle the desired rotation angle (in radians)
* @param axis the desired axis of rotation (not null, length=1, unaffected)
* @return the (modified) current instance (for chaining)
*/
public Quaternion fromAngleNormalAxis(float angle, Vector3f axis) {
if (axis.x == 0 && axis.y == 0 && axis.z == 0) {
loadIdentity();
} else {
float halfAngle = 0.5f * angle;
float sin = FastMath.sin(halfAngle);
w = FastMath.cos(halfAngle);
x = sin * axis.x;
y = sin * axis.y;
z = sin * axis.z;
}
return this;
}
/**
* Converts the quaternion to a rotation angle and axis of rotation, storing
* the axis in the argument (if it's non-null) and returning the angle.
*
*
If the quaternion has {@code x*x + y*y + z*z == 0}, then (1,0,0) is
* stored and 0 is returned. (This might happen if the rotation angle is
* very close to 0.)
*
*
Otherwise, the quaternion is assumed to be normalized (norm=1). No
* error checking is performed; the caller must ensure that the quaternion
* is normalized.
*
*
In all cases, the current instance is unaffected.
*
* @param axisStore storage for the axis (modified if not null)
* @return the rotation angle (in radians)
*/
public float toAngleAxis(Vector3f axisStore) {
float sqrLength = x * x + y * y + z * z;
float angle;
if (sqrLength == 0.0f) {
angle = 0.0f;
if (axisStore != null) {
axisStore.x = 1.0f;
axisStore.y = 0.0f;
axisStore.z = 0.0f;
}
} else {
angle = (2.0f * FastMath.acos(w));
if (axisStore != null) {
float invLength = (1.0f / FastMath.sqrt(sqrLength));
axisStore.x = x * invLength;
axisStore.y = y * invLength;
axisStore.z = z * invLength;
}
}
return angle;
}
/**
* Interpolates between the specified quaternions and stores the result in
* the current instance.
*
* @param q1 the desired value when interp=0 (not null, unaffected)
* @param q2 the desired value when interp=1 (not null, may be modified)
* @param t the fractional change amount
* @return the (modified) current instance (for chaining)
*/
public Quaternion slerp(Quaternion q1, Quaternion q2, float t) {
// Create a local quaternion to store the interpolated quaternion
if (q1.x == q2.x && q1.y == q2.y && q1.z == q2.z && q1.w == q2.w) {
this.set(q1);
return this;
}
float result = (q1.x * q2.x) + (q1.y * q2.y) + (q1.z * q2.z)
+ (q1.w * q2.w);
if (result < 0.0f) {
// Negate the second quaternion and the result of the dot product
q2.x = -q2.x;
q2.y = -q2.y;
q2.z = -q2.z;
q2.w = -q2.w;
result = -result;
}
// Set the first and second scale for the interpolation
float scale0 = 1 - t;
float scale1 = t;
// Check if the angle between the 2 quaternions was big enough to
// warrant such calculations
if ((1 - result) > 0.1f) {// Get the angle between the 2 quaternions,
// and then store the sin() of that angle
float theta = FastMath.acos(result);
float invSinTheta = 1f / FastMath.sin(theta);
// Calculate the scale for q1 and q2, according to the angle and
// its sine
scale0 = FastMath.sin((1 - t) * theta) * invSinTheta;
scale1 = FastMath.sin((t * theta)) * invSinTheta;
}
// Calculate the x, y, z and w values for the quaternion by using a
// special
// form of linear interpolation for quaternions.
this.x = (scale0 * q1.x) + (scale1 * q2.x);
this.y = (scale0 * q1.y) + (scale1 * q2.y);
this.z = (scale0 * q1.z) + (scale1 * q2.z);
this.w = (scale0 * q1.w) + (scale1 * q2.w);
// Return the interpolated quaternion
return this;
}
/**
* Interpolates between the current instance and {@code q2} and stores the
* result in the current instance.
*
*
This method is often more accurate than
* {@link #nlerp(com.jme3.math.Quaternion, float)}, but slower.
* @param q2 the desired value when changeAmnt=1 (not null, may be modified)
* @param changeAmount the fractional change amount
*/
public void slerp(Quaternion q2, float changeAmount) {
if (this.x == q2.x && this.y == q2.y && this.z == q2.z
&& this.w == q2.w) {
return;
}
float result = (this.x * q2.x) + (this.y * q2.y) + (this.z * q2.z)
+ (this.w * q2.w);
if (result < 0.0f) {
// Negate the second quaternion and the result of the dot product
q2.x = -q2.x;
q2.y = -q2.y;
q2.z = -q2.z;
q2.w = -q2.w;
result = -result;
}
// Set the first and second scale for the interpolation
float scale0 = 1 - changeAmount;
float scale1 = changeAmount;
// Check if the angle between the 2 quaternions was big enough to
// warrant such calculations
if ((1 - result) > 0.1f) {
// Get the angle between the 2 quaternions, and then store the sin()
// of that angle
float theta = FastMath.acos(result);
float invSinTheta = 1f / FastMath.sin(theta);
// Calculate the scale for q1 and q2, according to the angle and
// its sine
scale0 = FastMath.sin((1 - changeAmount) * theta) * invSinTheta;
scale1 = FastMath.sin((changeAmount * theta)) * invSinTheta;
}
// Calculate the x, y, z and w values for the quaternion by using a
// special
// form of linear interpolation for quaternions.
this.x = (scale0 * this.x) + (scale1 * q2.x);
this.y = (scale0 * this.y) + (scale1 * q2.y);
this.z = (scale0 * this.z) + (scale1 * q2.z);
this.w = (scale0 * this.w) + (scale1 * q2.w);
}
/**
* Interpolates quickly between the current instance and {@code q2} using
* nlerp, and stores the result in the current instance.
*
*
This method is often faster than
* {@link #slerp(com.jme3.math.Quaternion, float)}, but less accurate.
*
* @param q2 the desired value when blend=1 (not null, unaffected)
* @param blend the fractional change amount
*/
public void nlerp(Quaternion q2, float blend) {
float dot = dot(q2);
float blendI = 1.0f - blend;
if (dot < 0.0f) {
x = blendI * x - blend * q2.x;
y = blendI * y - blend * q2.y;
z = blendI * z - blend * q2.z;
w = blendI * w - blend * q2.w;
} else {
x = blendI * x + blend * q2.x;
y = blendI * y + blend * q2.y;
z = blendI * z + blend * q2.z;
w = blendI * w + blend * q2.w;
}
normalizeLocal();
}
/**
* Adds the argument and returns the sum as a new instance. The current
* instance is unaffected.
*
*
Seldom used. To combine rotations, use
* {@link #mult(com.jme3.math.Quaternion)} instead of this method.
*
* @param q the quaternion to add (not null, unaffected)
* @return a new Quaternion
*/
public Quaternion add(Quaternion q) {
return new Quaternion(x + q.x, y + q.y, z + q.z, w + q.w);
}
/**
* Adds the argument and returns the (modified) current instance.
*
*
Seldom used. To combine rotations, use
* {@link #multLocal(com.jme3.math.Quaternion)} or
* {@link #mult(com.jme3.math.Quaternion, com.jme3.math.Quaternion)}
* instead of this method.
*
* @param q the quaternion to add (not null, unaffected unless it's
* {@code this})
* @return the (modified) current instance (for chaining)
*/
public Quaternion addLocal(Quaternion q) {
this.x += q.x;
this.y += q.y;
this.z += q.z;
this.w += q.w;
return this;
}
/**
* Subtracts the argument and returns difference as a new instance. The
* current instance is unaffected.
*
* @param q the quaternion to subtract (not null, unaffected)
* @return a new Quaternion
*/
public Quaternion subtract(Quaternion q) {
return new Quaternion(x - q.x, y - q.y, z - q.z, w - q.w);
}
/**
* Subtracts the argument and returns the (modified) current instance.
*
*
To quantify the similarity of 2 normalized quaternions, use
* {@link #dot(com.jme3.math.Quaternion)}.
*
* @param q the quaternion to subtract (not null, unaffected unless it's
* {@code this})
* @return the (modified) current instance
*/
public Quaternion subtractLocal(Quaternion q) {
this.x -= q.x;
this.y -= q.y;
this.z -= q.z;
this.w -= q.w;
return this;
}
/**
* Multiplies by the argument and returns the product as a new instance.
* The current instance is unaffected.
*
*
This method is used to combine rotations. Note that quaternion
* multiplication is noncommutative, so generally q * p != p * q.
*
* @param q the right factor (not null, unaffected)
* @return {@code this * q} (a new Quaternion)
*/
public Quaternion mult(Quaternion q) {
return mult(q, null);
}
/**
* Multiplies by the specified quaternion and returns the product in a 3rd
* quaternion. The current instance is unaffected, unless it's {@code storeResult}.
*
*
This method is used to combine rotations. Note that quaternion
* multiplication is noncommutative, so generally q * p != p * q.
*
*
It is safe for {@code q} and {@code storeResult} to be the same object.
* However, if {@code this} and {@code storeResult} are the same object, the result
* is undefined.
*
* @param q the right factor (not null, unaffected unless it's {@code storeResult})
* @param storeResult storage for the product, or null for a new Quaternion
* @return {@code this * q} (either {@code storeResult} or a new Quaternion)
*/
public Quaternion mult(Quaternion q, Quaternion storeResult) {
if (storeResult == null) {
storeResult = new Quaternion();
}
float qw = q.w, qx = q.x, qy = q.y, qz = q.z;
storeResult.x = x * qw + y * qz - z * qy + w * qx;
storeResult.y = -x * qz + y * qw + z * qx + w * qy;
storeResult.z = x * qy - y * qx + z * qw + w * qz;
storeResult.w = -x * qx - y * qy - z * qz + w * qw;
return storeResult;
}
/**
* Applies the rotation represented by the argument to the current instance.
*
*
Does not verify that {@code matrix} is a valid rotation matrix.
* Positive scaling is compensated for, but not reflection or shear.
*
* @param matrix the rotation matrix to apply (not null, unaffected)
*/
public void apply(Matrix3f matrix) {
float oldX = x, oldY = y, oldZ = z, oldW = w;
fromRotationMatrix(matrix);
float tempX = x, tempY = y, tempZ = z, tempW = w;
x = oldX * tempW + oldY * tempZ - oldZ * tempY + oldW * tempX;
y = -oldX * tempZ + oldY * tempW + oldZ * tempX + oldW * tempY;
z = oldX * tempY - oldY * tempX + oldZ * tempW + oldW * tempZ;
w = -oldX * tempX - oldY * tempY - oldZ * tempZ + oldW * tempW;
}
/**
* Sets the quaternion from the specified orthonormal basis.
*
*
The 3 basis vectors describe the axes of a rotated coordinate system.
* They are assumed to be normalized, mutually orthogonal, and in right-hand
* order. No error checking is performed; the caller must ensure that the
* specified vectors represent a right-handed coordinate system.
*
* @param axis the array of desired basis vectors (not null, array length=3,
* each vector having length=1, unaffected)
* @return the (modified) current instance (for chaining)
* @throws IllegalArgumentException if {@code axis.length != 3}
*/
public Quaternion fromAxes(Vector3f[] axis) {
if (axis.length != 3) {
throw new IllegalArgumentException(
"Axis array must have three elements");
}
return fromAxes(axis[0], axis[1], axis[2]);
}
/**
* Sets the quaternion from the specified orthonormal basis.
*
*
The 3 basis vectors describe the axes of a rotated coordinate system.
* They are assumed to be normalized, mutually orthogonal, and in right-hand
* order. No error checking is performed; the caller must ensure that the
* specified vectors represent a right-handed coordinate system.
*
* @param xAxis the X axis of the desired coordinate system (not null,
* length=1, unaffected)
* @param yAxis the Y axis of the desired coordinate system (not null,
* length=1, unaffected)
* @param zAxis the Z axis of the desired coordinate system (not null,
* length=1, unaffected)
* @return the (modified) current instance (for chaining)
*/
public Quaternion fromAxes(Vector3f xAxis, Vector3f yAxis, Vector3f zAxis) {
return fromRotationMatrix(xAxis.x, yAxis.x, zAxis.x, xAxis.y, yAxis.y,
zAxis.y, xAxis.z, yAxis.z, zAxis.z);
}
/**
* Converts the quaternion to a rotated coordinate system and stores the
* resulting axes in the argument. The current instance is unaffected.
*
*
The resulting vectors form the basis of a rotated coordinate system.
* They will be normalized, mutually orthogonal, and in right-hand order.
*
* @param axes storage for the results (not null, length=3, each element
* non-null, elements modified)
* @throws IllegalArgumentException if {@code axes.length != 3}
*/
public void toAxes(Vector3f axes[]) {
if (axes.length != 3) {
throw new IllegalArgumentException(
"Axes array must have three elements");
}
Matrix3f tempMat = toRotationMatrix();
axes[0] = tempMat.getColumn(0, axes[0]);
axes[1] = tempMat.getColumn(1, axes[1]);
axes[2] = tempMat.getColumn(2, axes[2]);
}
/**
* Rotates the argument vector and returns the result as a new vector. The
* current instance is unaffected.
*
*
The quaternion is assumed to be normalized (norm=1). No error checking
* is performed; the caller must ensure that the norm is approximately equal
* to 1.
*
*
Despite the name, the result differs from the mathematical definition
* of vector-quaternion multiplication.
*
* @param v the vector to rotate (not null, unaffected)
* @return a new Vector3f
*/
public Vector3f mult(Vector3f v) {
return mult(v, null);
}
/**
* Rotates the argument vector. Despite the name, the current instance is
* unaffected.
*
*
The quaternion is assumed to be normalized (norm=1). No error checking
* is performed; the caller must ensure that the norm is approximately equal
* to 1.
*
*
Despite the name, the result differs from the mathematical definition
* of vector-quaternion multiplication.
*
* @param v the vector to rotate (not null)
* @return the (modified) vector {@code v}
*/
public Vector3f multLocal(Vector3f v) {
float tempX, tempY;
tempX = w * w * v.x + 2 * y * w * v.z - 2 * z * w * v.y + x * x * v.x
+ 2 * y * x * v.y + 2 * z * x * v.z - z * z * v.x - y * y * v.x;
tempY = 2 * x * y * v.x + y * y * v.y + 2 * z * y * v.z + 2 * w * z
* v.x - z * z * v.y + w * w * v.y - 2 * x * w * v.z - x * x
* v.y;
v.z = 2 * x * z * v.x + 2 * y * z * v.y + z * z * v.z - 2 * w * y * v.x
- y * y * v.z + 2 * w * x * v.y - x * x * v.z + w * w * v.z;
v.x = tempX;
v.y = tempY;
return v;
}
/**
* Multiplies by the argument and returns the (modified) current instance.
*
*
This method is used to combine rotations. Note that quaternion
* multiplication is noncommutative, so generally q * p != p * q.
*
* @param q the right factor (not null, unaffected unless it's {@code this})
* @return the (modified) current instance (for chaining)
*/
public Quaternion multLocal(Quaternion q) {
float x1 = x * q.w + y * q.z - z * q.y + w * q.x;
float y1 = -x * q.z + y * q.w + z * q.x + w * q.y;
float z1 = x * q.y - y * q.x + z * q.w + w * q.z;
w = -x * q.x - y * q.y - z * q.z + w * q.w;
x = x1;
y = y1;
z = z1;
return this;
}
/**
* Multiplies by a quaternion with the specified components and returns the
* (modified) current instance.
*
*
This method is used to combine rotations. Note that quaternion
* multiplication is noncommutative, so generally q * p != p * q.
*
* @param qx the X component of the right factor
* @param qy the Y component of the right factor
* @param qz the Z component of the right factor
* @param qw the W component of the right factor
* @return the (modified) current instance (for chaining)
*/
public Quaternion multLocal(float qx, float qy, float qz, float qw) {
float x1 = x * qw + y * qz - z * qy + w * qx;
float y1 = -x * qz + y * qw + z * qx + w * qy;
float z1 = x * qy - y * qx + z * qw + w * qz;
w = -x * qx - y * qy - z * qz + w * qw;
x = x1;
y = y1;
z = z1;
return this;
}
/**
* Rotates a specified vector and returns the result in another vector. The
* current instance is unaffected.
*
*
The quaternion is assumed to be normalized (norm=1). No error checking
* is performed; the caller must ensure that the norm is approximately equal
* to 1.
*
*
It is safe for {@code v} and {@code store} to be the same object.
*
*
Despite the name, the result differs from the mathematical definition
* of vector-quaternion multiplication.
*
* @param v the vector to rotate (not null, unaffected unless it's
* {@code store})
* @param store storage for the result, or null for a new Vector3f
* @return the rotated vector (either {@code store} or a new Vector3f)
*/
public Vector3f mult(Vector3f v, Vector3f store) {
if (store == null) {
store = new Vector3f();
}
if (v.x == 0 && v.y == 0 && v.z == 0) {
store.set(0, 0, 0);
} else {
float vx = v.x, vy = v.y, vz = v.z;
store.x = w * w * vx + 2 * y * w * vz - 2 * z * w * vy + x * x
* vx + 2 * y * x * vy + 2 * z * x * vz - z * z * vx - y
* y * vx;
store.y = 2 * x * y * vx + y * y * vy + 2 * z * y * vz + 2 * w
* z * vx - z * z * vy + w * w * vy - 2 * x * w * vz - x
* x * vy;
store.z = 2 * x * z * vx + 2 * y * z * vy + z * z * vz - 2 * w
* y * vx - y * y * vz + 2 * w * x * vy - x * x * vz + w
* w * vz;
}
return store;
}
/**
* Multiplies with the scalar argument and returns the product as a new
* instance. The current instance is unaffected.
*
* @param scalar the scaling factor
* @return a new Quaternion
*/
public Quaternion mult(float scalar) {
return new Quaternion(scalar * x, scalar * y, scalar * z, scalar * w);
}
/**
* Multiplies by the scalar argument and returns the (modified) current
* instance.
*
* @param scalar the scaling factor
* @return the (modified) current instance (for chaining)
*/
public Quaternion multLocal(float scalar) {
w *= scalar;
x *= scalar;
y *= scalar;
z *= scalar;
return this;
}
/**
* Returns the dot product with the argument. The current instance is
* unaffected.
*
*
This method can be used to quantify the similarity of 2 normalized
* quaternions.
*
* @param q the quaternion to multiply (not null, unaffected)
* @return the dot product
*/
public float dot(Quaternion q) {
return w * q.w + x * q.x + y * q.y + z * q.z;
}
/**
* Returns the norm, defined as the dot product of the quaternion with
* itself. The current instance is unaffected.
*
* @return the sum of the squared components (not negative)
*/
public float norm() {
return w * w + x * x + y * y + z * z;
}
// /**
// * normalize
normalizes the current Quaternion
// * @deprecated The naming of this method doesn't follow convention.
// * Please use {@link Quaternion#normalizeLocal() } instead.
// */
// @Deprecated
// public void normalize() {
// float n = FastMath.invSqrt(norm());
// x *= n;
// y *= n;
// z *= n;
// w *= n;
// }
/**
* Scales the quaternion to have norm=1 and returns the (modified) current
* instance. For a quaternion with norm=0, the result is undefined.
*
* @return the (modified) current instance (for chaining)
*/
public Quaternion normalizeLocal() {
float n = FastMath.invSqrt(norm());
x *= n;
y *= n;
z *= n;
w *= n;
return this;
}
/**
* Returns the multiplicative inverse. For a quaternion with norm=0, null is
* returned. Either way, the current instance is unaffected.
*
* @return a new Quaternion or null
*/
public Quaternion inverse() {
float norm = norm();
if (norm > 0.0) {
float invNorm = 1.0f / norm;
return new Quaternion(-x * invNorm, -y * invNorm, -z * invNorm, w
* invNorm);
}
// return an invalid result to flag the error
return null;
}
/**
* Inverts the quaternion and returns the (modified) current instance. For
* a quaternion with norm=0, the current instance is unchanged.
*
* @return the current instance (for chaining)
*/
public Quaternion inverseLocal() {
float norm = norm();
if (norm > 0.0) {
float invNorm = 1.0f / norm;
x *= -invNorm;
y *= -invNorm;
z *= -invNorm;
w *= invNorm;
}
return this;
}
/**
* Negates all 4 components.
*
* @deprecated The naming of this method doesn't follow convention. Please
* use {@link #negateLocal()} instead.
*/
@Deprecated
public void negate() {
negateLocal();
}
/**
* Negates all 4 components and returns the (modified) current instance.
*
* @return the (modified) current instance (for chaining)
*/
public Quaternion negateLocal() {
x = -x;
y = -y;
z = -z;
w = -w;
return this;
}
/**
* Returns a string representation of the quaternion, which is unaffected.
* For example, the identity quaternion is represented by:
*
* (0.0, 0.0, 0.0, 1.0)
*
*
* @return the string representation (not null, not empty)
*/
@Override
public String toString() {
return "(" + x + ", " + y + ", " + z + ", " + w + ")";
}
/**
* Tests for exact equality with the argument, distinguishing -0 from 0. If
* {@code o} is null, false is returned. Either way, the current instance is
* unaffected.
*
* @param o the object to compare (may be null, unaffected)
* @return true if {@code this} and {@code o} have identical values,
* otherwise false
*/
@Override
public boolean equals(Object o) {
if (!(o instanceof Quaternion)) {
return false;
}
if (this == o) {
return true;
}
Quaternion comp = (Quaternion) o;
if (Float.compare(x, comp.x) != 0) {
return false;
}
if (Float.compare(y, comp.y) != 0) {
return false;
}
if (Float.compare(z, comp.z) != 0) {
return false;
}
if (Float.compare(w, comp.w) != 0) {
return false;
}
return true;
}
/**
* Tests for approximate equality with the specified quaternion, using the
* specified tolerance. The current instance is unaffected.
*
* To quantify the similarity of 2 normalized quaternions, use
* {@link #dot(com.jme3.math.Quaternion)}.
*
* @param other the quaternion to compare (not null, unaffected)
* @param epsilon the tolerance for each component
* @return true if all 4 components are within tolerance, otherwise false
*/
public boolean isSimilar(Quaternion other, float epsilon) {
if (other == null) {
return false;
}
if (Float.compare(Math.abs(other.x - x), epsilon) > 0) {
return false;
}
if (Float.compare(Math.abs(other.y - y), epsilon) > 0) {
return false;
}
if (Float.compare(Math.abs(other.z - z), epsilon) > 0) {
return false;
}
if (Float.compare(Math.abs(other.w - w), epsilon) > 0) {
return false;
}
return true;
}
/**
* Returns a hash code. If two quaternions have identical values, they
* will have the same hash code. The current instance is unaffected.
*
* @return a 32-bit value for use in hashing
* @see java.lang.Object#hashCode()
*/
@Override
public int hashCode() {
int hash = 37;
hash = 37 * hash + Float.floatToIntBits(x);
hash = 37 * hash + Float.floatToIntBits(y);
hash = 37 * hash + Float.floatToIntBits(z);
hash = 37 * hash + Float.floatToIntBits(w);
return hash;
}
/**
* Sets the quaternion from an {@code ObjectInput} object.
*
*
Used with serialization. Should not be invoked directly by application
* code.
*
* @param in the object to read from (not null)
* @throws IOException if the ObjectInput cannot read a float
* @see java.io.Externalizable
*/
public void readExternal(ObjectInput in) throws IOException {
x = in.readFloat();
y = in.readFloat();
z = in.readFloat();
w = in.readFloat();
}
/**
* Writes the quaternion to an {@code ObjectOutput} object.
*
*
Used with serialization. Should not be invoked directly by application
* code.
*
* @param out the object to write to (not null)
* @throws IOException if the ObjectOutput cannot write a float
* @see java.io.Externalizable
*/
public void writeExternal(ObjectOutput out) throws IOException {
out.writeFloat(x);
out.writeFloat(y);
out.writeFloat(z);
out.writeFloat(w);
}
/**
* Convenience method to set the quaternion based on a "look" (Z-axis)
* direction and an "up" (Y-axis) direction.
*
*
If either vector has length=0, the result is undefined.
*
*
If the vectors are parallel, the result is undefined.
*
* @param direction the desired Z-axis direction (in local coordinates, not
* null, length>0, unaffected)
* @param up the desired Y-axis direction (in local coordinates, not null,
* length>0, unaffected, typically (0,1,0) )
* @return the (modified) current instance (for chaining)
*/
public Quaternion lookAt(Vector3f direction, Vector3f up) {
TempVars vars = TempVars.get();
vars.vect3.set(direction).normalizeLocal();
vars.vect1.set(up).crossLocal(direction).normalizeLocal();
vars.vect2.set(direction).crossLocal(vars.vect1).normalizeLocal();
fromAxes(vars.vect1, vars.vect2, vars.vect3);
vars.release();
return this;
}
/**
* Serializes to the specified exporter, for example when saving to a J3O
* file. The current instance is unaffected.
*
* @param e the exporter to use (not null)
* @throws IOException from the exporter
*/
@Override
public void write(JmeExporter e) throws IOException {
OutputCapsule cap = e.getCapsule(this);
cap.write(x, "x", 0);
cap.write(y, "y", 0);
cap.write(z, "z", 0);
cap.write(w, "w", 1);
}
/**
* De-serializes from the specified importer, for example when loading from
* a J3O file.
*
* @param importer the importer to use (not null)
* @throws IOException from the importer
*/
@Override
public void read(JmeImporter importer) throws IOException {
InputCapsule cap = importer.getCapsule(this);
x = cap.readFloat("x", 0);
y = cap.readFloat("y", 0);
z = cap.readFloat("z", 0);
w = cap.readFloat("w", 1);
}
/**
* @return A new quaternion that describes a rotation that would point you
* in the exact opposite direction of this Quaternion.
*/
public Quaternion opposite() {
return opposite(null);
}
/**
* Returns a rotation with the same axis and the angle increased by 180
* degrees. If the quaternion isn't normalized, or if the rotation angle is
* very small, the result is undefined.
*
*
The current instance is unaffected, unless {@code store} is
* {@code this}.
*
* @param store storage for the result, or null for a new Quaternion
* @return either {@code store} or a new Quaternion
*/
public Quaternion opposite(Quaternion store) {
if (store == null) {
store = new Quaternion();
}
Vector3f axis = new Vector3f();
float angle = toAngleAxis(axis);
store.fromAngleAxis(FastMath.PI + angle, axis);
return store;
}
/**
* Changes the quaternion to a rotation with the same axis and the angle
* increased by 180 degrees. If the quaternion isn't normalized, or if the
* rotation angle is very small, the result is undefined.
*
* @return the (modified) current instance
*/
public Quaternion oppositeLocal() {
return opposite(this);
}
/**
* Creates a copy. The current instance is unaffected.
*
* @return a new instance, equivalent to the current one
*/
@Override
public Quaternion clone() {
try {
return (Quaternion) super.clone();
} catch (CloneNotSupportedException e) {
throw new AssertionError(); // can not happen
}
}
/**
* Tests whether the argument is a valid quaternion, returning false if it's
* null or if any component is NaN or infinite.
*
* @param quaternion the quaternion to test (unaffected)
* @return true if non-null and finite, otherwise false
*/
public static boolean isValidQuaternion(Quaternion quaternion) {
if (quaternion == null) {
return false;
}
if (Float.isNaN(quaternion.x)
|| Float.isNaN(quaternion.y)
|| Float.isNaN(quaternion.z)
|| Float.isNaN(quaternion.w)) {
return false;
}
return !Float.isInfinite(quaternion.x)
&& !Float.isInfinite(quaternion.y)
&& !Float.isInfinite(quaternion.z)
&& !Float.isInfinite(quaternion.w);
}
}