com.jme3.terrain.noise.ShaderUtils Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of jme3-terrain Show documentation
Show all versions of jme3-terrain Show documentation
jMonkeyEngine is a 3-D game engine for adventurous Java developers
The newest version!
/*
* Copyright (c) 2011, Novyon Events
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* @author Anthyon
*/
package com.jme3.terrain.noise;
import java.awt.Color;
import java.awt.Graphics2D;
import java.awt.image.BufferedImage;
import java.awt.image.DataBuffer;
import java.awt.image.DataBufferInt;
import java.awt.image.WritableRaster;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
/**
* Helper class containing useful functions explained in the book:
* Texturing & Modeling - A Procedural Approach
*
* @author Anthyon
*
*/
public class ShaderUtils {
/**
* A private constructor to inhibit instantiation of this class.
*/
private ShaderUtils() {
}
public static final float[] i2c(final int color) {
return new float[] { (color & 0x00ff0000) / 256f, (color & 0x0000ff00) / 256f, (color & 0x000000ff) / 256f,
(color & 0xff000000) / 256f };
}
public static final int c2i(final float[] color) {
return (color.length == 4 ? (int) (color[3] * 256) : 0xff000000) | ((int) (color[0] * 256) << 16) | ((int) (color[1] * 256) << 8)
| (int) (color[2] * 256);
}
public static final float mix(final float a, final float b, final float f) {
return (1 - f) * a + f * b;
}
public static final Color mix(final Color a, final Color b, final float f) {
return new Color((int) ShaderUtils.clamp(ShaderUtils.mix(a.getRed(), b.getRed(), f), 0, 255), (int) ShaderUtils.clamp(
ShaderUtils.mix(a.getGreen(), b.getGreen(), f), 0, 255), (int) ShaderUtils.clamp(
ShaderUtils.mix(a.getBlue(), b.getBlue(), f), 0, 255));
}
public static final int mix(final int a, final int b, final float f) {
return (int) ((1 - f) * a + f * b);
}
public static final float[] mix(final float[] c1, final float[] c2, final float f) {
return new float[] { ShaderUtils.mix(c1[0], c2[0], f), ShaderUtils.mix(c1[1], c2[1], f), ShaderUtils.mix(c1[2], c2[2], f) };
}
public static final float step(final float a, final float x) {
return x < a ? 0 : 1;
}
public static final float boxstep(final float a, final float b, final float x) {
return ShaderUtils.clamp((x - a) / (b - a), 0, 1);
}
public static final float pulse(final float a, final float b, final float x) {
return ShaderUtils.step(a, x) - ShaderUtils.step(b, x);
}
public static final float clamp(final float x, final float a, final float b) {
return x < a ? a : x > b ? b : x;
}
public static final float min(final float a, final float b) {
return a < b ? a : b;
}
public static final float max(final float a, final float b) {
return a > b ? a : b;
}
public static final float abs(final float x) {
return x < 0 ? -x : x;
}
public static final float smoothstep(final float a, final float b, final float x) {
if (x < a) {
return 0;
} else if (x > b) {
return 1;
}
float xx = (x - a) / (b - a);
return xx * xx * (3 - 2 * xx);
}
public static final float mod(final float a, final float b) {
int n = (int) (a / b);
float aa = a - n * b;
if (aa < 0) {
aa += b;
}
return aa;
}
public static final int floor(final float x) {
return x > 0 ? (int) x : (int) x - 1;
}
public static final float ceil(final float x) {
return (int) x + (x > 0 && x != (int) x ? 1 : 0);
}
public static final float spline(float x, final float[] knot) {
float CR00 = -0.5f;
float CR01 = 1.5f;
float CR02 = -1.5f;
float CR03 = 0.5f;
float CR10 = 1.0f;
float CR11 = -2.5f;
float CR12 = 2.0f;
float CR13 = -0.5f;
float CR20 = -0.5f;
float CR21 = 0.0f;
float CR22 = 0.5f;
float CR23 = 0.0f;
float CR30 = 0.0f;
float CR31 = 1.0f;
float CR32 = 0.0f;
float CR33 = 0.0f;
int span;
int nspans = knot.length - 3;
float c0, c1, c2, c3; /* coefficients of the cubic. */
if (nspans < 1) {/* illegal */
throw new RuntimeException("Spline has too few knots.");
}
/* Find the appropriate 4-point span of the spline. */
x = ShaderUtils.clamp(x, 0, 1) * nspans;
span = (int) x;
if (span >= knot.length - 3) {
span = knot.length - 3;
}
x -= span;
/* Evaluate the span cubic at x using Horner’s rule. */
c3 = CR00 * knot[span + 0] + CR01 * knot[span + 1] + CR02 * knot[span + 2] + CR03 * knot[span + 3];
c2 = CR10 * knot[span + 0] + CR11 * knot[span + 1] + CR12 * knot[span + 2] + CR13 * knot[span + 3];
c1 = CR20 * knot[span + 0] + CR21 * knot[span + 1] + CR22 * knot[span + 2] + CR23 * knot[span + 3];
c0 = CR30 * knot[span + 0] + CR31 * knot[span + 1] + CR32 * knot[span + 2] + CR33 * knot[span + 3];
return ((c3 * x + c2) * x + c1) * x + c0;
}
public static final float[] spline(final float x, final float[][] knots) {
float[] retval = new float[knots.length];
for (int i = 0; i < knots.length; i++) {
retval[i] = ShaderUtils.spline(x, knots[i]);
}
return retval;
}
public static final float gammaCorrection(final float gamma, final float x) {
return (float) Math.pow(x, 1 / gamma);
}
public static final float bias(final float b, final float x) {
return (float) Math.pow(x, Math.log(b) / Math.log(0.5));
}
public static final float gain(final float g, final float x) {
return x < 0.5 ? ShaderUtils.bias(1 - g, 2 * x) / 2 : 1 - ShaderUtils.bias(1 - g, 2 - 2 * x) / 2;
}
public static final float sinValue(final float s, final float minFreq, final float maxFreq, final float sWidth) {
float value = 0;
float cutoff = ShaderUtils.clamp(0.5f / sWidth, 0, maxFreq);
float f;
for (f = minFreq; f < 0.5 * cutoff; f *= 2) {
value += Math.sin(2 * Math.PI * f * s) / f;
}
float fade = ShaderUtils.clamp(2 * (cutoff - f) / cutoff, 0, 1);
value += fade * Math.sin(2 * Math.PI * f * s) / f;
return value;
}
public static final float length(final float x, final float y, final float z) {
return (float) Math.sqrt(x * x + y * y + z * z);
}
public static final float[] rotate(final float[] v, final float[][] m) {
float x = v[0] * m[0][0] + v[1] * m[0][1] + v[2] * m[0][2];
float y = v[0] * m[1][0] + v[1] * m[1][1] + v[2] * m[1][2];
float z = v[0] * m[2][0] + v[1] * m[2][1] + v[2] * m[2][2];
return new float[] { x, y, z };
}
public static final float[][] calcRotationMatrix(final float ax, final float ay, final float az) {
float[][] retval = new float[3][3];
float cax = (float) Math.cos(ax);
float sax = (float) Math.sin(ax);
float cay = (float) Math.cos(ay);
float say = (float) Math.sin(ay);
float caz = (float) Math.cos(az);
float saz = (float) Math.sin(az);
retval[0][0] = cay * caz;
retval[0][1] = -cay * saz;
retval[0][2] = say;
retval[1][0] = sax * say * caz + cax * saz;
retval[1][1] = -sax * say * saz + cax * caz;
retval[1][2] = -sax * cay;
retval[2][0] = -cax * say * caz + sax * saz;
retval[2][1] = cax * say * saz + sax * caz;
retval[2][2] = cax * cay;
return retval;
}
public static final float[] normalize(final float[] v) {
float l = ShaderUtils.length(v);
float[] r = new float[v.length];
int i = 0;
for (float vv : v) {
r[i++] = vv / l;
}
return r;
}
public static final float length(final float[] v) {
float s = 0;
for (float vv : v) {
s += vv * vv;
}
return (float) Math.sqrt(s);
}
public static final ByteBuffer getImageDataFromImage(BufferedImage bufferedImage) {
WritableRaster wr;
DataBuffer db;
BufferedImage bi = new BufferedImage(128, 64, BufferedImage.TYPE_INT_ARGB);
Graphics2D g = bi.createGraphics();
g.drawImage(bufferedImage, null, null);
bufferedImage = bi;
wr = bi.getRaster();
db = wr.getDataBuffer();
DataBufferInt dbi = (DataBufferInt) db;
int[] data = dbi.getData();
ByteBuffer byteBuffer = ByteBuffer.allocateDirect(data.length * 4);
byteBuffer.order(ByteOrder.LITTLE_ENDIAN);
byteBuffer.asIntBuffer().put(data);
byteBuffer.flip();
return byteBuffer;
}
public static float frac(float f) {
return f - ShaderUtils.floor(f);
}
public static float[] floor(float[] fs) {
float[] retval = new float[fs.length];
for (int i = 0; i < fs.length; i++) {
retval[i] = ShaderUtils.floor(fs[i]);
}
return retval;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy