org.joml.Matrix4x3f Maven / Gradle / Ivy
/*
* The MIT License
*
* Copyright (c) 2015-2019 Richard Greenlees
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
package org.joml;
import java.io.Externalizable;
import java.io.IOException;
import java.io.ObjectInput;
import java.io.ObjectOutput;
import java.nio.ByteBuffer;
import java.nio.FloatBuffer;
import java.text.DecimalFormat;
import java.text.NumberFormat;
import org.joml.Math;
import org.joml.internal.*;
import org.joml.internal.Runtime;
/**
* Contains the definition of an affine 4x3 matrix (4 columns, 3 rows) of floats, and associated functions to transform
* it. The matrix is column-major to match OpenGL's interpretation, and it looks like this:
*
* m00 m10 m20 m30
* m01 m11 m21 m31
* m02 m12 m22 m32
*
* @author Richard Greenlees
* @author Kai Burjack
*/
public class Matrix4x3f implements Externalizable, Matrix4x3fc {
private static final long serialVersionUID = 1L;
float m00, m01, m02;
float m10, m11, m12;
float m20, m21, m22;
float m30, m31, m32;
int properties;
/**
* Create a new {@link Matrix4x3f} and set it to {@link #identity() identity}.
*/
public Matrix4x3f() {
m00 = 1.0f;
m11 = 1.0f;
m22 = 1.0f;
properties = PROPERTY_IDENTITY | PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL;
}
/**
* Create a new {@link Matrix4x3f} by setting its left 3x3 submatrix to the values of the given {@link Matrix3fc}
* and the rest to identity.
*
* @param mat
* the {@link Matrix3fc}
*/
public Matrix4x3f(Matrix3fc mat) {
if (mat instanceof Matrix3f) {
MemUtil.INSTANCE.copy((Matrix3f) mat, this);
} else {
set3x3Matrix3fc(mat);
}
determineProperties();
}
/**
* Create a new {@link Matrix4x3f} and make it a copy of the given matrix.
*
* @param mat
* the {@link Matrix4x3fc} to copy the values from
*/
public Matrix4x3f(Matrix4x3fc mat) {
if (mat instanceof Matrix4x3f) {
MemUtil.INSTANCE.copy((Matrix4x3f) mat, this);
} else {
setMatrix4x3fc(mat);
}
properties = mat.properties();
}
/**
* Create a new 4x4 matrix using the supplied float values.
*
* @param m00
* the value of m00
* @param m01
* the value of m01
* @param m02
* the value of m02
* @param m10
* the value of m10
* @param m11
* the value of m11
* @param m12
* the value of m12
* @param m20
* the value of m20
* @param m21
* the value of m21
* @param m22
* the value of m22
* @param m30
* the value of m30
* @param m31
* the value of m31
* @param m32
* the value of m32
*/
public Matrix4x3f(float m00, float m01, float m02,
float m10, float m11, float m12,
float m20, float m21, float m22,
float m30, float m31, float m32) {
this.m00 = m00;
this.m01 = m01;
this.m02 = m02;
this.m10 = m10;
this.m11 = m11;
this.m12 = m12;
this.m20 = m20;
this.m21 = m21;
this.m22 = m22;
this.m30 = m30;
this.m31 = m31;
this.m32 = m32;
determineProperties();
}
/**
* Create a new {@link Matrix4x3f} by reading its 12 float components from the given {@link FloatBuffer}
* at the buffer's current position.
*
* That FloatBuffer is expected to hold the values in column-major order.
*
* The buffer's position will not be changed by this method.
*
* @param buffer
* the {@link FloatBuffer} to read the matrix values from
*/
public Matrix4x3f(FloatBuffer buffer) {
MemUtil.INSTANCE.get(this, buffer.position(), buffer);
determineProperties();
}
/**
* Create a new {@link Matrix4x3f} and initialize its four columns using the supplied vectors.
*
* @param col0
* the first column
* @param col1
* the second column
* @param col2
* the third column
* @param col3
* the fourth column
*/
public Matrix4x3f(Vector3fc col0, Vector3fc col1, Vector3fc col2, Vector3fc col3) {
if (col0 instanceof Vector3f &&
col1 instanceof Vector3f &&
col2 instanceof Vector3f &&
col3 instanceof Vector3f) {
MemUtil.INSTANCE.set(this, (Vector3f) col0, (Vector3f) col1, (Vector3f) col2, (Vector3f) col3);
} else {
setVector3fc(col0, col1, col2, col3);
}
determineProperties();
}
/**
* Assume the given properties about this matrix.
*
* Use one or multiple of 0, {@link Matrix4x3fc#PROPERTY_IDENTITY},
* {@link Matrix4x3fc#PROPERTY_TRANSLATION}, {@link Matrix4x3fc#PROPERTY_ORTHONORMAL}.
*
* @param properties
* bitset of the properties to assume about this matrix
* @return this
*/
public Matrix4x3f assume(int properties) {
this.properties = properties;
return this;
}
/**
* Compute and set the matrix properties returned by {@link #properties()} based
* on the current matrix element values.
*
* @return this
*/
public Matrix4x3f determineProperties() {
int properties = 0;
if (m00 == 1.0f && m01 == 0.0f && m02 == 0.0f && m10 == 0.0f && m11 == 1.0f && m12 == 0.0f
&& m20 == 0.0f && m21 == 0.0f && m22 == 1.0f) {
properties |= PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL;
if (m30 == 0.0f && m31 == 0.0f && m32 == 0.0f)
properties |= PROPERTY_IDENTITY;
}
/*
* We do not determine orthogonality, since it would require arbitrary epsilons
* and is rather expensive (6 dot products) in the worst case.
*/
this.properties = properties;
return this;
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#properties()
*/
public int properties() {
return properties;
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#m00()
*/
public float m00() {
return m00;
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#m01()
*/
public float m01() {
return m01;
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#m02()
*/
public float m02() {
return m02;
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#m10()
*/
public float m10() {
return m10;
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#m11()
*/
public float m11() {
return m11;
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#m12()
*/
public float m12() {
return m12;
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#m20()
*/
public float m20() {
return m20;
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#m21()
*/
public float m21() {
return m21;
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#m22()
*/
public float m22() {
return m22;
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#m30()
*/
public float m30() {
return m30;
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#m31()
*/
public float m31() {
return m31;
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#m32()
*/
public float m32() {
return m32;
}
/**
* Set the value of the matrix element at column 0 and row 0.
*
* @param m00
* the new value
* @return this
*/
public Matrix4x3f m00(float m00) {
this.m00 = m00;
properties &= ~PROPERTY_ORTHONORMAL;
if (m00 != 1.0f)
properties &= ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
return this;
}
/**
* Set the value of the matrix element at column 0 and row 1.
*
* @param m01
* the new value
* @return this
*/
public Matrix4x3f m01(float m01) {
this.m01 = m01;
properties &= ~PROPERTY_ORTHONORMAL;
if (m01 != 0.0f)
properties &= ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
return this;
}
/**
* Set the value of the matrix element at column 0 and row 2.
*
* @param m02
* the new value
* @return this
*/
public Matrix4x3f m02(float m02) {
this.m02 = m02;
properties &= ~PROPERTY_ORTHONORMAL;
if (m02 != 0.0f)
properties &= ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
return this;
}
/**
* Set the value of the matrix element at column 1 and row 0.
*
* @param m10
* the new value
* @return this
*/
public Matrix4x3f m10(float m10) {
this.m10 = m10;
properties &= ~PROPERTY_ORTHONORMAL;
if (m10 != 0.0f)
properties &= ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
return this;
}
/**
* Set the value of the matrix element at column 1 and row 1.
*
* @param m11
* the new value
* @return this
*/
public Matrix4x3f m11(float m11) {
this.m11 = m11;
properties &= ~PROPERTY_ORTHONORMAL;
if (m11 != 1.0f)
properties &= ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
return this;
}
/**
* Set the value of the matrix element at column 1 and row 2.
*
* @param m12
* the new value
* @return this
*/
public Matrix4x3f m12(float m12) {
this.m12 = m12;
properties &= ~PROPERTY_ORTHONORMAL;
if (m12 != 0.0f)
properties &= ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
return this;
}
/**
* Set the value of the matrix element at column 2 and row 0.
*
* @param m20
* the new value
* @return this
*/
public Matrix4x3f m20(float m20) {
this.m20 = m20;
properties &= ~PROPERTY_ORTHONORMAL;
if (m20 != 0.0f)
properties &= ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
return this;
}
/**
* Set the value of the matrix element at column 2 and row 1.
*
* @param m21
* the new value
* @return this
*/
public Matrix4x3f m21(float m21) {
this.m21 = m21;
properties &= ~PROPERTY_ORTHONORMAL;
if (m21 != 0.0f)
properties &= ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
return this;
}
/**
* Set the value of the matrix element at column 2 and row 2.
*
* @param m22
* the new value
* @return this
*/
public Matrix4x3f m22(float m22) {
this.m22 = m22;
properties &= ~PROPERTY_ORTHONORMAL;
if (m22 != 1.0f)
properties &= ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
return this;
}
/**
* Set the value of the matrix element at column 3 and row 0.
*
* @param m30
* the new value
* @return this
*/
public Matrix4x3f m30(float m30) {
this.m30 = m30;
if (m30 != 0.0f)
properties &= ~PROPERTY_IDENTITY;
return this;
}
/**
* Set the value of the matrix element at column 3 and row 1.
*
* @param m31
* the new value
* @return this
*/
public Matrix4x3f m31(float m31) {
this.m31 = m31;
if (m31 != 0.0f)
properties &= ~PROPERTY_IDENTITY;
return this;
}
/**
* Set the value of the matrix element at column 3 and row 2.
*
* @param m32
* the new value
* @return this
*/
public Matrix4x3f m32(float m32) {
this.m32 = m32;
if (m32 != 0.0f)
properties &= ~PROPERTY_IDENTITY;
return this;
}
/**
* Set the value of the matrix element at column 0 and row 0 without updating the properties of the matrix.
*
* @param m00
* the new value
* @return this
*/
public Matrix4x3f _m00(float m00) {
this.m00 = m00;
return this;
}
/**
* Set the value of the matrix element at column 0 and row 1 without updating the properties of the matrix.
*
* @param m01
* the new value
* @return this
*/
public Matrix4x3f _m01(float m01) {
this.m01 = m01;
return this;
}
/**
* Set the value of the matrix element at column 0 and row 2 without updating the properties of the matrix.
*
* @param m02
* the new value
* @return this
*/
public Matrix4x3f _m02(float m02) {
this.m02 = m02;
return this;
}
/**
* Set the value of the matrix element at column 1 and row 0 without updating the properties of the matrix.
*
* @param m10
* the new value
* @return this
*/
public Matrix4x3f _m10(float m10) {
this.m10 = m10;
return this;
}
/**
* Set the value of the matrix element at column 1 and row 1 without updating the properties of the matrix.
*
* @param m11
* the new value
* @return this
*/
public Matrix4x3f _m11(float m11) {
this.m11 = m11;
return this;
}
/**
* Set the value of the matrix element at column 1 and row 2 without updating the properties of the matrix.
*
* @param m12
* the new value
* @return this
*/
public Matrix4x3f _m12(float m12) {
this.m12 = m12;
return this;
}
/**
* Set the value of the matrix element at column 2 and row 0 without updating the properties of the matrix.
*
* @param m20
* the new value
* @return this
*/
public Matrix4x3f _m20(float m20) {
this.m20 = m20;
return this;
}
/**
* Set the value of the matrix element at column 2 and row 1 without updating the properties of the matrix.
*
* @param m21
* the new value
* @return this
*/
public Matrix4x3f _m21(float m21) {
this.m21 = m21;
return this;
}
/**
* Set the value of the matrix element at column 2 and row 2 without updating the properties of the matrix.
*
* @param m22
* the new value
* @return this
*/
public Matrix4x3f _m22(float m22) {
this.m22 = m22;
return this;
}
/**
* Set the value of the matrix element at column 3 and row 0 without updating the properties of the matrix.
*
* @param m30
* the new value
* @return this
*/
public Matrix4x3f _m30(float m30) {
this.m30 = m30;
return this;
}
/**
* Set the value of the matrix element at column 3 and row 1 without updating the properties of the matrix.
*
* @param m31
* the new value
* @return this
*/
public Matrix4x3f _m31(float m31) {
this.m31 = m31;
return this;
}
/**
* Set the value of the matrix element at column 3 and row 2 without updating the properties of the matrix.
*
* @param m32
* the new value
* @return this
*/
public Matrix4x3f _m32(float m32) {
this.m32 = m32;
return this;
}
/**
* Reset this matrix to the identity.
*
* Please note that if a call to {@link #identity()} is immediately followed by a call to:
* {@link #translate(float, float, float) translate},
* {@link #rotate(float, float, float, float) rotate},
* {@link #scale(float, float, float) scale},
* {@link #ortho(float, float, float, float, float, float) ortho},
* {@link #ortho2D(float, float, float, float) ortho2D},
* {@link #lookAt(float, float, float, float, float, float, float, float, float) lookAt},
* {@link #lookAlong(float, float, float, float, float, float) lookAlong},
* or any of their overloads, then the call to {@link #identity()} can be omitted and the subsequent call replaced with:
* {@link #translation(float, float, float) translation},
* {@link #rotation(float, float, float, float) rotation},
* {@link #scaling(float, float, float) scaling},
* {@link #setOrtho(float, float, float, float, float, float) setOrtho},
* {@link #setOrtho2D(float, float, float, float) setOrtho2D},
* {@link #setLookAt(float, float, float, float, float, float, float, float, float) setLookAt},
* {@link #setLookAlong(float, float, float, float, float, float) setLookAlong},
* or any of their overloads.
*
* @return this
*/
public Matrix4x3f identity() {
if ((properties & PROPERTY_IDENTITY) != 0)
return this;
MemUtil.INSTANCE.identity(this);
properties = PROPERTY_IDENTITY | PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL;
return this;
}
/**
* Store the values of the given matrix m
into this
matrix.
*
* @see #Matrix4x3f(Matrix4x3fc)
* @see #get(Matrix4x3f)
*
* @param m
* the matrix to copy the values from
* @return this
*/
public Matrix4x3f set(Matrix4x3fc m) {
if (m instanceof Matrix4x3f) {
MemUtil.INSTANCE.copy((Matrix4x3f) m, this);
} else {
setMatrix4x3fc(m);
}
properties = m.properties();
return this;
}
private void setMatrix4x3fc(Matrix4x3fc mat) {
m00 = mat.m00();
m01 = mat.m01();
m02 = mat.m02();
m10 = mat.m10();
m11 = mat.m11();
m12 = mat.m12();
m20 = mat.m20();
m21 = mat.m21();
m22 = mat.m22();
m30 = mat.m30();
m31 = mat.m31();
m32 = mat.m32();
}
/**
* Store the values of the upper 4x3 submatrix of m
into this
matrix.
*
* @see Matrix4fc#get4x3(Matrix4x3f)
*
* @param m
* the matrix to copy the values from
* @return this
*/
public Matrix4x3f set(Matrix4fc m) {
if (m instanceof Matrix4f) {
MemUtil.INSTANCE.copy((Matrix4f) m, this);
} else {
setMatrix4fc(m);
}
properties = m.properties() & (PROPERTY_IDENTITY | PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL);
return this;
}
private void setMatrix4fc(Matrix4fc mat) {
m00 = mat.m00();
m01 = mat.m01();
m02 = mat.m02();
m10 = mat.m10();
m11 = mat.m11();
m12 = mat.m12();
m20 = mat.m20();
m21 = mat.m21();
m22 = mat.m22();
m30 = mat.m30();
m31 = mat.m31();
m32 = mat.m32();
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#get(org.joml.Matrix4f)
*/
public Matrix4f get(Matrix4f dest) {
return dest.set4x3(this);
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#get(org.joml.Matrix4d)
*/
public Matrix4d get(Matrix4d dest) {
return dest.set4x3(this);
}
/**
* Set the left 3x3 submatrix of this {@link Matrix4x3f} to the given {@link Matrix3fc}
* and the rest to identity.
*
* @see #Matrix4x3f(Matrix3fc)
*
* @param mat
* the {@link Matrix3fc}
* @return this
*/
public Matrix4x3f set(Matrix3fc mat) {
if (mat instanceof Matrix3f) {
MemUtil.INSTANCE.copy((Matrix3f) mat, this);
} else {
setMatrix3fc(mat);
}
properties = 0;
return this;
}
private void setMatrix3fc(Matrix3fc mat) {
m00 = mat.m00();
m01 = mat.m01();
m02 = mat.m02();
m10 = mat.m10();
m11 = mat.m11();
m12 = mat.m12();
m20 = mat.m20();
m21 = mat.m21();
m22 = mat.m22();
m30 = 0.0f;
m31 = 0.0f;
m32 = 0.0f;
}
/**
* Set this matrix to be equivalent to the rotation specified by the given {@link AxisAngle4f}.
*
* @param axisAngle
* the {@link AxisAngle4f}
* @return this
*/
public Matrix4x3f set(AxisAngle4f axisAngle) {
float x = axisAngle.x;
float y = axisAngle.y;
float z = axisAngle.z;
double angle = axisAngle.angle;
double n = Math.sqrt(x*x + y*y + z*z);
n = 1/n;
x *= n;
y *= n;
z *= n;
double s = Math.sin(angle);
double c = Math.cosFromSin(s, angle);
double omc = 1.0 - c;
m00 = (float)(c + x*x*omc);
m11 = (float)(c + y*y*omc);
m22 = (float)(c + z*z*omc);
double tmp1 = x*y*omc;
double tmp2 = z*s;
m10 = (float)(tmp1 - tmp2);
m01 = (float)(tmp1 + tmp2);
tmp1 = x*z*omc;
tmp2 = y*s;
m20 = (float)(tmp1 + tmp2);
m02 = (float)(tmp1 - tmp2);
tmp1 = y*z*omc;
tmp2 = x*s;
m21 = (float)(tmp1 - tmp2);
m12 = (float)(tmp1 + tmp2);
m30 = 0.0f;
m31 = 0.0f;
m32 = 0.0f;
properties = PROPERTY_ORTHONORMAL;
return this;
}
/**
* Set this matrix to be equivalent to the rotation specified by the given {@link AxisAngle4d}.
*
* @param axisAngle
* the {@link AxisAngle4d}
* @return this
*/
public Matrix4x3f set(AxisAngle4d axisAngle) {
double x = axisAngle.x;
double y = axisAngle.y;
double z = axisAngle.z;
double angle = axisAngle.angle;
double n = Math.sqrt(x*x + y*y + z*z);
n = 1/n;
x *= n;
y *= n;
z *= n;
double s = Math.sin(angle);
double c = Math.cosFromSin(s, angle);
double omc = 1.0 - c;
m00 = (float)(c + x*x*omc);
m11 = (float)(c + y*y*omc);
m22 = (float)(c + z*z*omc);
double tmp1 = x*y*omc;
double tmp2 = z*s;
m10 = (float)(tmp1 - tmp2);
m01 = (float)(tmp1 + tmp2);
tmp1 = x*z*omc;
tmp2 = y*s;
m20 = (float)(tmp1 + tmp2);
m02 = (float)(tmp1 - tmp2);
tmp1 = y*z*omc;
tmp2 = x*s;
m21 = (float)(tmp1 - tmp2);
m12 = (float)(tmp1 + tmp2);
m30 = 0.0f;
m31 = 0.0f;
m32 = 0.0f;
properties = PROPERTY_ORTHONORMAL;
return this;
}
/**
* Set this matrix to be equivalent to the rotation - and possibly scaling - specified by the given {@link Quaternionfc}.
*
* This method is equivalent to calling: rotation(q)
*
* @see #rotation(Quaternionfc)
*
* @param q
* the {@link Quaternionfc}
* @return this
*/
public Matrix4x3f set(Quaternionfc q) {
return rotation(q);
}
/**
* Set this matrix to be equivalent to the rotation - and possibly scaling - specified by the given {@link Quaterniondc}.
*
* This method is equivalent to calling: rotation(q)
*
* @param q
* the {@link Quaterniondc}
* @return this
*/
public Matrix4x3f set(Quaterniondc q) {
double w2 = q.w() * q.w();
double x2 = q.x() * q.x();
double y2 = q.y() * q.y();
double z2 = q.z() * q.z();
double zw = q.z() * q.w();
double xy = q.x() * q.y();
double xz = q.x() * q.z();
double yw = q.y() * q.w();
double yz = q.y() * q.z();
double xw = q.x() * q.w();
m00 = (float) (w2 + x2 - z2 - y2);
m01 = (float) (xy + zw + zw + xy);
m02 = (float) (xz - yw + xz - yw);
m10 = (float) (-zw + xy - zw + xy);
m11 = (float) (y2 - z2 + w2 - x2);
m12 = (float) (yz + yz + xw + xw);
m20 = (float) (yw + xz + xz + yw);
m21 = (float) (yz + yz - xw - xw);
m22 = (float) (z2 - y2 - x2 + w2);
properties = PROPERTY_ORTHONORMAL;
return this;
}
/**
* Set the four columns of this matrix to the supplied vectors, respectively.
*
* @param col0
* the first column
* @param col1
* the second column
* @param col2
* the third column
* @param col3
* the fourth column
* @return this
*/
public Matrix4x3f set(Vector3fc col0, Vector3fc col1, Vector3fc col2, Vector3fc col3) {
if (col0 instanceof Vector3f &&
col1 instanceof Vector3f &&
col2 instanceof Vector3f &&
col3 instanceof Vector3f) {
MemUtil.INSTANCE.set(this, (Vector3f) col0, (Vector3f) col1, (Vector3f) col2, (Vector3f) col3);
} else {
setVector3fc(col0, col1, col2, col3);
}
this.properties = 0;
return this;
}
private void setVector3fc(Vector3fc col0, Vector3fc col1, Vector3fc col2, Vector3fc col3) {
this.m00 = col0.x();
this.m01 = col0.y();
this.m02 = col0.z();
this.m10 = col1.x();
this.m11 = col1.y();
this.m12 = col1.z();
this.m20 = col2.x();
this.m21 = col2.y();
this.m22 = col2.z();
this.m30 = col3.x();
this.m31 = col3.y();
this.m32 = col3.z();
}
/**
* Set the left 3x3 submatrix of this {@link Matrix4x3f} to that of the given {@link Matrix4x3fc}
* and don't change the other elements.
*
* @param mat
* the {@link Matrix4x3fc}
* @return this
*/
public Matrix4x3f set3x3(Matrix4x3fc mat) {
if (mat instanceof Matrix4x3f) {
MemUtil.INSTANCE.copy3x3((Matrix4x3f) mat, this);
} else {
set3x3Matrix4x3fc(mat);
}
properties &= mat.properties();
return this;
}
private void set3x3Matrix4x3fc(Matrix4x3fc mat) {
m00 = mat.m00();
m01 = mat.m01();
m02 = mat.m02();
m10 = mat.m10();
m11 = mat.m11();
m12 = mat.m12();
m20 = mat.m20();
m21 = mat.m21();
m22 = mat.m22();
}
/**
* Multiply this matrix by the supplied right
matrix and store the result in this
.
*
* If M
is this
matrix and R
the right
matrix,
* then the new matrix will be M * R
. So when transforming a
* vector v
with the new matrix by using M * R * v
, the
* transformation of the right matrix will be applied first!
*
* @param right
* the right operand of the matrix multiplication
* @return this
*/
public Matrix4x3f mul(Matrix4x3fc right) {
return mul(right, this);
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#mul(org.joml.Matrix4x3fc, org.joml.Matrix4x3f)
*/
public Matrix4x3f mul(Matrix4x3fc right, Matrix4x3f dest) {
if ((properties & PROPERTY_IDENTITY) != 0)
return dest.set(right);
else if ((right.properties() & PROPERTY_IDENTITY) != 0)
return dest.set(this);
else if ((properties & PROPERTY_TRANSLATION) != 0)
return mulTranslation(right, dest);
return mulGeneric(right, dest);
}
private Matrix4x3f mulGeneric(Matrix4x3fc right, Matrix4x3f dest) {
float nm00 = m00 * right.m00() + m10 * right.m01() + m20 * right.m02();
float nm01 = m01 * right.m00() + m11 * right.m01() + m21 * right.m02();
float nm02 = m02 * right.m00() + m12 * right.m01() + m22 * right.m02();
float nm10 = m00 * right.m10() + m10 * right.m11() + m20 * right.m12();
float nm11 = m01 * right.m10() + m11 * right.m11() + m21 * right.m12();
float nm12 = m02 * right.m10() + m12 * right.m11() + m22 * right.m12();
float nm20 = m00 * right.m20() + m10 * right.m21() + m20 * right.m22();
float nm21 = m01 * right.m20() + m11 * right.m21() + m21 * right.m22();
float nm22 = m02 * right.m20() + m12 * right.m21() + m22 * right.m22();
float nm30 = m00 * right.m30() + m10 * right.m31() + m20 * right.m32() + m30;
float nm31 = m01 * right.m30() + m11 * right.m31() + m21 * right.m32() + m31;
float nm32 = m02 * right.m30() + m12 * right.m31() + m22 * right.m32() + m32;
dest.m00 = nm00;
dest.m01 = nm01;
dest.m02 = nm02;
dest.m10 = nm10;
dest.m11 = nm11;
dest.m12 = nm12;
dest.m20 = nm20;
dest.m21 = nm21;
dest.m22 = nm22;
dest.m30 = nm30;
dest.m31 = nm31;
dest.m32 = nm32;
dest.properties = this.properties & right.properties() & PROPERTY_ORTHONORMAL;
return dest;
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#mulTranslation(org.joml.Matrix4x3fc, org.joml.Matrix4x3f)
*/
public Matrix4x3f mulTranslation(Matrix4x3fc right, Matrix4x3f dest) {
float nm00 = right.m00();
float nm01 = right.m01();
float nm02 = right.m02();
float nm10 = right.m10();
float nm11 = right.m11();
float nm12 = right.m12();
float nm20 = right.m20();
float nm21 = right.m21();
float nm22 = right.m22();
float nm30 = right.m30() + m30;
float nm31 = right.m31() + m31;
float nm32 = right.m32() + m32;
dest.m00 = nm00;
dest.m01 = nm01;
dest.m02 = nm02;
dest.m10 = nm10;
dest.m11 = nm11;
dest.m12 = nm12;
dest.m20 = nm20;
dest.m21 = nm21;
dest.m22 = nm22;
dest.m30 = nm30;
dest.m31 = nm31;
dest.m32 = nm32;
dest.properties = right.properties() & PROPERTY_ORTHONORMAL;
return dest;
}
/**
* Multiply this
orthographic projection matrix by the supplied view
matrix.
*
* If M
is this
matrix and V
the view
matrix,
* then the new matrix will be M * V
. So when transforming a
* vector v
with the new matrix by using M * V * v
, the
* transformation of the view
matrix will be applied first!
*
* @param view
* the matrix which to multiply this
with
* @return this
*/
public Matrix4x3f mulOrtho(Matrix4x3fc view) {
return mulOrtho(view, this);
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#mulOrtho(org.joml.Matrix4x3fc, org.joml.Matrix4x3f)
*/
public Matrix4x3f mulOrtho(Matrix4x3fc view, Matrix4x3f dest) {
float nm00 = m00 * view.m00();
float nm01 = m11 * view.m01();
float nm02 = m22 * view.m02();
float nm10 = m00 * view.m10();
float nm11 = m11 * view.m11();
float nm12 = m22 * view.m12();
float nm20 = m00 * view.m20();
float nm21 = m11 * view.m21();
float nm22 = m22 * view.m22();
float nm30 = m00 * view.m30() + m30;
float nm31 = m11 * view.m31() + m31;
float nm32 = m22 * view.m32() + m32;
dest.m00 = nm00;
dest.m01 = nm01;
dest.m02 = nm02;
dest.m10 = nm10;
dest.m11 = nm11;
dest.m12 = nm12;
dest.m20 = nm20;
dest.m21 = nm21;
dest.m22 = nm22;
dest.m30 = nm30;
dest.m31 = nm31;
dest.m32 = nm32;
dest.properties = 0;
return dest;
}
/**
* Component-wise add this
and other
* by first multiplying each component of other
by otherFactor
and
* adding that result to this
.
*
* The matrix other
will not be changed.
*
* @param other
* the other matrix
* @param otherFactor
* the factor to multiply each of the other matrix's components
* @return this
*/
public Matrix4x3f fma(Matrix4x3fc other, float otherFactor) {
return fma(other, otherFactor, this);
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#fma(org.joml.Matrix4x3fc, float, org.joml.Matrix4x3f)
*/
public Matrix4x3f fma(Matrix4x3fc other, float otherFactor, Matrix4x3f dest) {
dest.m00 = m00 + other.m00() * otherFactor;
dest.m01 = m01 + other.m01() * otherFactor;
dest.m02 = m02 + other.m02() * otherFactor;
dest.m10 = m10 + other.m10() * otherFactor;
dest.m11 = m11 + other.m11() * otherFactor;
dest.m12 = m12 + other.m12() * otherFactor;
dest.m20 = m20 + other.m20() * otherFactor;
dest.m21 = m21 + other.m21() * otherFactor;
dest.m22 = m22 + other.m22() * otherFactor;
dest.m30 = m30 + other.m30() * otherFactor;
dest.m31 = m31 + other.m31() * otherFactor;
dest.m32 = m32 + other.m32() * otherFactor;
dest.properties = 0;
return dest;
}
/**
* Component-wise add this
and other
.
*
* @param other
* the other addend
* @return this
*/
public Matrix4x3f add(Matrix4x3fc other) {
return add(other, this);
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#add(org.joml.Matrix4x3fc, org.joml.Matrix4x3f)
*/
public Matrix4x3f add(Matrix4x3fc other, Matrix4x3f dest) {
dest.m00 = m00 + other.m00();
dest.m01 = m01 + other.m01();
dest.m02 = m02 + other.m02();
dest.m10 = m10 + other.m10();
dest.m11 = m11 + other.m11();
dest.m12 = m12 + other.m12();
dest.m20 = m20 + other.m20();
dest.m21 = m21 + other.m21();
dest.m22 = m22 + other.m22();
dest.m30 = m30 + other.m30();
dest.m31 = m31 + other.m31();
dest.m32 = m32 + other.m32();
dest.properties = 0;
return dest;
}
/**
* Component-wise subtract subtrahend
from this
.
*
* @param subtrahend
* the subtrahend
* @return this
*/
public Matrix4x3f sub(Matrix4x3fc subtrahend) {
return sub(subtrahend, this);
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#sub(org.joml.Matrix4x3fc, org.joml.Matrix4x3f)
*/
public Matrix4x3f sub(Matrix4x3fc subtrahend, Matrix4x3f dest) {
dest.m00 = m00 - subtrahend.m00();
dest.m01 = m01 - subtrahend.m01();
dest.m02 = m02 - subtrahend.m02();
dest.m10 = m10 - subtrahend.m10();
dest.m11 = m11 - subtrahend.m11();
dest.m12 = m12 - subtrahend.m12();
dest.m20 = m20 - subtrahend.m20();
dest.m21 = m21 - subtrahend.m21();
dest.m22 = m22 - subtrahend.m22();
dest.m30 = m30 - subtrahend.m30();
dest.m31 = m31 - subtrahend.m31();
dest.m32 = m32 - subtrahend.m32();
dest.properties = 0;
return dest;
}
/**
* Component-wise multiply this
by other
.
*
* @param other
* the other matrix
* @return this
*/
public Matrix4x3f mulComponentWise(Matrix4x3fc other) {
return mulComponentWise(other, this);
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#mulComponentWise(org.joml.Matrix4x3fc, org.joml.Matrix4x3f)
*/
public Matrix4x3f mulComponentWise(Matrix4x3fc other, Matrix4x3f dest) {
dest.m00 = m00 * other.m00();
dest.m01 = m01 * other.m01();
dest.m02 = m02 * other.m02();
dest.m10 = m10 * other.m10();
dest.m11 = m11 * other.m11();
dest.m12 = m12 * other.m12();
dest.m20 = m20 * other.m20();
dest.m21 = m21 * other.m21();
dest.m22 = m22 * other.m22();
dest.m30 = m30 * other.m30();
dest.m31 = m31 * other.m31();
dest.m32 = m32 * other.m32();
dest.properties = 0;
return dest;
}
/**
* Set the values within this matrix to the supplied float values. The matrix will look like this:
*
* m00, m10, m20, m30
* m01, m11, m21, m31
* m02, m12, m22, m32
*
* @param m00
* the new value of m00
* @param m01
* the new value of m01
* @param m02
* the new value of m02
* @param m10
* the new value of m10
* @param m11
* the new value of m11
* @param m12
* the new value of m12
* @param m20
* the new value of m20
* @param m21
* the new value of m21
* @param m22
* the new value of m22
* @param m30
* the new value of m30
* @param m31
* the new value of m31
* @param m32
* the new value of m32
* @return this
*/
public Matrix4x3f set(float m00, float m01, float m02,
float m10, float m11, float m12,
float m20, float m21, float m22,
float m30, float m31, float m32) {
this.m00 = m00;
this.m01 = m01;
this.m02 = m02;
this.m10 = m10;
this.m11 = m11;
this.m12 = m12;
this.m20 = m20;
this.m21 = m21;
this.m22 = m22;
this.m30 = m30;
this.m31 = m31;
this.m32 = m32;
properties = 0;
return this;
}
/**
* Set the values in the matrix using a float array that contains the matrix elements in column-major order.
*
* The results will look like this:
*
* 0, 3, 6, 9
* 1, 4, 7, 10
* 2, 5, 8, 11
*
* @see #set(float[])
*
* @param m
* the array to read the matrix values from
* @param off
* the offset into the array
* @return this
*/
public Matrix4x3f set(float m[], int off) {
MemUtil.INSTANCE.copy(m, off, this);
properties = 0;
return this;
}
/**
* Set the values in the matrix using a float array that contains the matrix elements in column-major order.
*
* The results will look like this:
*
* 0, 3, 6, 9
* 1, 4, 7, 10
* 2, 5, 8, 11
*
* @see #set(float[], int)
*
* @param m
* the array to read the matrix values from
* @return this
*/
public Matrix4x3f set(float m[]) {
return set(m, 0);
}
/**
* Set the values of this matrix by reading 12 float values from the given {@link FloatBuffer} in column-major order,
* starting at its current position.
*
* The FloatBuffer is expected to contain the values in column-major order.
*
* The position of the FloatBuffer will not be changed by this method.
*
* @param buffer
* the FloatBuffer to read the matrix values from in column-major order
* @return this
*/
public Matrix4x3f set(FloatBuffer buffer) {
MemUtil.INSTANCE.get(this, buffer.position(), buffer);
properties = 0;
return this;
}
/**
* Set the values of this matrix by reading 12 float values from the given {@link ByteBuffer} in column-major order,
* starting at its current position.
*
* The ByteBuffer is expected to contain the values in column-major order.
*
* The position of the ByteBuffer will not be changed by this method.
*
* @param buffer
* the ByteBuffer to read the matrix values from in column-major order
* @return this
*/
public Matrix4x3f set(ByteBuffer buffer) {
MemUtil.INSTANCE.get(this, buffer.position(), buffer);
properties = 0;
return this;
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#determinant()
*/
public float determinant() {
return (m00 * m11 - m01 * m10) * m22
+ (m02 * m10 - m00 * m12) * m21
+ (m01 * m12 - m02 * m11) * m20;
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#invert(org.joml.Matrix4x3f)
*/
public Matrix4x3f invert(Matrix4x3f dest) {
if ((properties & PROPERTY_IDENTITY) != 0)
return dest.identity();
else if ((properties & PROPERTY_ORTHONORMAL) != 0)
return invertOrthonormal(dest);
return invertGeneric(dest);
}
private Matrix4x3f invertGeneric(Matrix4x3f dest) {
float m11m00 = m00 * m11, m10m01 = m01 * m10, m10m02 = m02 * m10;
float m12m00 = m00 * m12, m12m01 = m01 * m12, m11m02 = m02 * m11;
float s = 1.0f / ((m11m00 - m10m01) * m22 + (m10m02 - m12m00) * m21 + (m12m01 - m11m02) * m20);
float m10m22 = m10 * m22, m10m21 = m10 * m21, m11m22 = m11 * m22;
float m11m20 = m11 * m20, m12m21 = m12 * m21, m12m20 = m12 * m20;
float m20m02 = m20 * m02, m20m01 = m20 * m01, m21m02 = m21 * m02;
float m21m00 = m21 * m00, m22m01 = m22 * m01, m22m00 = m22 * m00;
float nm00 = (m11m22 - m12m21) * s;
float nm01 = (m21m02 - m22m01) * s;
float nm02 = (m12m01 - m11m02) * s;
float nm10 = (m12m20 - m10m22) * s;
float nm11 = (m22m00 - m20m02) * s;
float nm12 = (m10m02 - m12m00) * s;
float nm20 = (m10m21 - m11m20) * s;
float nm21 = (m20m01 - m21m00) * s;
float nm22 = (m11m00 - m10m01) * s;
float nm30 = (m10m22 * m31 - m10m21 * m32 + m11m20 * m32 - m11m22 * m30 + m12m21 * m30 - m12m20 * m31) * s;
float nm31 = (m20m02 * m31 - m20m01 * m32 + m21m00 * m32 - m21m02 * m30 + m22m01 * m30 - m22m00 * m31) * s;
float nm32 = (m11m02 * m30 - m12m01 * m30 + m12m00 * m31 - m10m02 * m31 + m10m01 * m32 - m11m00 * m32) * s;
dest.m00 = nm00;
dest.m01 = nm01;
dest.m02 = nm02;
dest.m10 = nm10;
dest.m11 = nm11;
dest.m12 = nm12;
dest.m20 = nm20;
dest.m21 = nm21;
dest.m22 = nm22;
dest.m30 = nm30;
dest.m31 = nm31;
dest.m32 = nm32;
dest.properties = 0;
return dest;
}
private Matrix4x3f invertOrthonormal(Matrix4x3f dest) {
float nm30 = -(m00 * m30 + m01 * m31 + m02 * m32);
float nm31 = -(m10 * m30 + m11 * m31 + m12 * m32);
float nm32 = -(m20 * m30 + m21 * m31 + m22 * m32);
float m01 = this.m01;
float m02 = this.m02;
float m12 = this.m12;
dest.m00 = m00;
dest.m01 = m10;
dest.m02 = m20;
dest.m10 = m01;
dest.m11 = m11;
dest.m12 = m21;
dest.m20 = m02;
dest.m21 = m12;
dest.m22 = m22;
dest.m30 = nm30;
dest.m31 = nm31;
dest.m32 = nm32;
dest.properties = PROPERTY_ORTHONORMAL;
return dest;
}
/**
* Invert this matrix.
*
* @return this
*/
public Matrix4x3f invert() {
return invert(this);
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#invertOrtho(org.joml.Matrix4x3f)
*/
public Matrix4x3f invertOrtho(Matrix4x3f dest) {
float invM00 = 1.0f / m00;
float invM11 = 1.0f / m11;
float invM22 = 1.0f / m22;
dest.set(invM00, 0, 0,
0, invM11, 0,
0, 0, invM22,
-m30 * invM00, -m31 * invM11, -m32 * invM22);
dest.properties = 0;
return dest;
}
/**
* Invert this
orthographic projection matrix.
*
* This method can be used to quickly obtain the inverse of an orthographic projection matrix.
*
* @return this
*/
public Matrix4x3f invertOrtho() {
return invertOrtho(this);
}
/**
* Transpose only the left 3x3 submatrix of this matrix and set the rest of the matrix elements to identity.
*
* @return this
*/
public Matrix4x3f transpose3x3() {
return transpose3x3(this);
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#transpose3x3(org.joml.Matrix4x3f)
*/
public Matrix4x3f transpose3x3(Matrix4x3f dest) {
float nm00 = m00;
float nm01 = m10;
float nm02 = m20;
float nm10 = m01;
float nm11 = m11;
float nm12 = m21;
float nm20 = m02;
float nm21 = m12;
float nm22 = m22;
dest.m00 = nm00;
dest.m01 = nm01;
dest.m02 = nm02;
dest.m10 = nm10;
dest.m11 = nm11;
dest.m12 = nm12;
dest.m20 = nm20;
dest.m21 = nm21;
dest.m22 = nm22;
dest.properties = properties;
return dest;
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#transpose3x3(org.joml.Matrix3f)
*/
public Matrix3f transpose3x3(Matrix3f dest) {
dest.m00(m00);
dest.m01(m10);
dest.m02(m20);
dest.m10(m01);
dest.m11(m11);
dest.m12(m21);
dest.m20(m02);
dest.m21(m12);
dest.m22(m22);
return dest;
}
/**
* Set this matrix to be a simple translation matrix.
*
* The resulting matrix can be multiplied against another transformation
* matrix to obtain an additional translation.
*
* In order to post-multiply a translation transformation directly to a
* matrix, use {@link #translate(float, float, float) translate()} instead.
*
* @see #translate(float, float, float)
*
* @param x
* the offset to translate in x
* @param y
* the offset to translate in y
* @param z
* the offset to translate in z
* @return this
*/
public Matrix4x3f translation(float x, float y, float z) {
if ((properties & PROPERTY_IDENTITY) == 0)
MemUtil.INSTANCE.identity(this);
m30 = x;
m31 = y;
m32 = z;
properties = PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL;
return this;
}
/**
* Set this matrix to be a simple translation matrix.
*
* The resulting matrix can be multiplied against another transformation
* matrix to obtain an additional translation.
*
* In order to post-multiply a translation transformation directly to a
* matrix, use {@link #translate(Vector3fc) translate()} instead.
*
* @see #translate(float, float, float)
*
* @param offset
* the offsets in x, y and z to translate
* @return this
*/
public Matrix4x3f translation(Vector3fc offset) {
return translation(offset.x(), offset.y(), offset.z());
}
/**
* Set only the translation components (m30, m31, m32)
of this matrix to the given values (x, y, z)
.
*
* To build a translation matrix instead, use {@link #translation(float, float, float)}.
* To apply a translation, use {@link #translate(float, float, float)}.
*
* @see #translation(float, float, float)
* @see #translate(float, float, float)
*
* @param x
* the offset to translate in x
* @param y
* the offset to translate in y
* @param z
* the offset to translate in z
* @return this
*/
public Matrix4x3f setTranslation(float x, float y, float z) {
m30 = x;
m31 = y;
m32 = z;
properties &= ~(PROPERTY_IDENTITY);
return this;
}
/**
* Set only the translation components (m30, m31, m32)
of this matrix to the values (xyz.x, xyz.y, xyz.z)
.
*
* To build a translation matrix instead, use {@link #translation(Vector3fc)}.
* To apply a translation, use {@link #translate(Vector3fc)}.
*
* @see #translation(Vector3fc)
* @see #translate(Vector3fc)
*
* @param xyz
* the units to translate in (x, y, z)
* @return this
*/
public Matrix4x3f setTranslation(Vector3fc xyz) {
return setTranslation(xyz.x(), xyz.y(), xyz.z());
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#getTranslation(org.joml.Vector3f)
*/
public Vector3f getTranslation(Vector3f dest) {
dest.x = m30;
dest.y = m31;
dest.z = m32;
return dest;
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#getScale(org.joml.Vector3f)
*/
public Vector3f getScale(Vector3f dest) {
dest.x = (float) Math.sqrt(m00 * m00 + m01 * m01 + m02 * m02);
dest.y = (float) Math.sqrt(m10 * m10 + m11 * m11 + m12 * m12);
dest.z = (float) Math.sqrt(m20 * m20 + m21 * m21 + m22 * m22);
return dest;
}
/**
* Return a string representation of this matrix.
*
* This method creates a new {@link DecimalFormat} on every invocation with the format string "0.000E0;-
".
*
* @return the string representation
*/
public String toString() {
DecimalFormat formatter = new DecimalFormat(" 0.000E0;-");
String str = toString(formatter);
StringBuffer res = new StringBuffer();
int eIndex = Integer.MIN_VALUE;
for (int i = 0; i < str.length(); i++) {
char c = str.charAt(i);
if (c == 'E') {
eIndex = i;
} else if (c == ' ' && eIndex == i - 1) {
// workaround Java 1.4 DecimalFormat bug
res.append('+');
continue;
} else if (Character.isDigit(c) && eIndex == i - 1) {
res.append('+');
}
res.append(c);
}
return res.toString();
}
/**
* Return a string representation of this matrix by formatting the matrix elements with the given {@link NumberFormat}.
*
* @param formatter
* the {@link NumberFormat} used to format the matrix values with
* @return the string representation
*/
public String toString(NumberFormat formatter) {
return formatter.format(m00) + " " + formatter.format(m10) + " " + formatter.format(m20) + " " + formatter.format(m30) + "\n"
+ formatter.format(m01) + " " + formatter.format(m11) + " " + formatter.format(m21) + " " + formatter.format(m31) + "\n"
+ formatter.format(m02) + " " + formatter.format(m12) + " " + formatter.format(m22) + " " + formatter.format(m32) + "\n";
}
/**
* Get the current values of this
matrix and store them into
* dest
.
*
* This is the reverse method of {@link #set(Matrix4x3fc)} and allows to obtain
* intermediate calculation results when chaining multiple transformations.
*
* @see #set(Matrix4x3fc)
*
* @param dest
* the destination matrix
* @return the passed in destination
*/
public Matrix4x3f get(Matrix4x3f dest) {
return dest.set(this);
}
/**
* Get the current values of this
matrix and store them into
* dest
.
*
* This is the reverse method of {@link Matrix4x3d#set(Matrix4x3fc)} and allows to obtain
* intermediate calculation results when chaining multiple transformations.
*
* @see Matrix4x3d#set(Matrix4x3fc)
*
* @param dest
* the destination matrix
* @return the passed in destination
*/
public Matrix4x3d get(Matrix4x3d dest) {
return dest.set(this);
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#getRotation(org.joml.AxisAngle4f)
*/
public AxisAngle4f getRotation(AxisAngle4f dest) {
return dest.set(this);
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#getRotation(org.joml.AxisAngle4d)
*/
public AxisAngle4d getRotation(AxisAngle4d dest) {
return dest.set(this);
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#getUnnormalizedRotation(org.joml.Quaternionf)
*/
public Quaternionf getUnnormalizedRotation(Quaternionf dest) {
return dest.setFromUnnormalized(this);
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#getNormalizedRotation(org.joml.Quaternionf)
*/
public Quaternionf getNormalizedRotation(Quaternionf dest) {
return dest.setFromNormalized(this);
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#getUnnormalizedRotation(org.joml.Quaterniond)
*/
public Quaterniond getUnnormalizedRotation(Quaterniond dest) {
return dest.setFromUnnormalized(this);
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#getNormalizedRotation(org.joml.Quaterniond)
*/
public Quaterniond getNormalizedRotation(Quaterniond dest) {
return dest.setFromNormalized(this);
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#get(java.nio.FloatBuffer)
*/
public FloatBuffer get(FloatBuffer buffer) {
return get(buffer.position(), buffer);
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#get(int, java.nio.FloatBuffer)
*/
public FloatBuffer get(int index, FloatBuffer buffer) {
MemUtil.INSTANCE.put(this, index, buffer);
return buffer;
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#get(java.nio.ByteBuffer)
*/
public ByteBuffer get(ByteBuffer buffer) {
return get(buffer.position(), buffer);
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#get(int, java.nio.ByteBuffer)
*/
public ByteBuffer get(int index, ByteBuffer buffer) {
MemUtil.INSTANCE.put(this, index, buffer);
return buffer;
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#get(float[], int)
*/
public float[] get(float[] arr, int offset) {
MemUtil.INSTANCE.copy(this, arr, offset);
return arr;
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#get(float[])
*/
public float[] get(float[] arr) {
return get(arr, 0);
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#get4x4(float[], int)
*/
public float[] get4x4(float[] arr, int offset) {
MemUtil.INSTANCE.copy4x4(this, arr, offset);
return arr;
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#get4x4(float[])
*/
public float[] get4x4(float[] arr) {
return get4x4(arr, 0);
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#get4x4(java.nio.FloatBuffer)
*/
public FloatBuffer get4x4(FloatBuffer buffer) {
return get4x4(buffer.position(), buffer);
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#get4x4(int, java.nio.FloatBuffer)
*/
public FloatBuffer get4x4(int index, FloatBuffer buffer) {
MemUtil.INSTANCE.put4x4(this, index, buffer);
return buffer;
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#get4x4(java.nio.ByteBuffer)
*/
public ByteBuffer get4x4(ByteBuffer buffer) {
return get4x4(buffer.position(), buffer);
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#get4x4(int, java.nio.ByteBuffer)
*/
public ByteBuffer get4x4(int index, ByteBuffer buffer) {
MemUtil.INSTANCE.put4x4(this, index, buffer);
return buffer;
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#getTransposed(java.nio.FloatBuffer)
*/
public FloatBuffer getTransposed(FloatBuffer buffer) {
return getTransposed(buffer.position(), buffer);
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#getTransposed(int, java.nio.FloatBuffer)
*/
public FloatBuffer getTransposed(int index, FloatBuffer buffer) {
MemUtil.INSTANCE.putTransposed(this, index, buffer);
return buffer;
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#getTransposed(java.nio.ByteBuffer)
*/
public ByteBuffer getTransposed(ByteBuffer buffer) {
return getTransposed(buffer.position(), buffer);
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#getTransposed(int, java.nio.ByteBuffer)
*/
public ByteBuffer getTransposed(int index, ByteBuffer buffer) {
MemUtil.INSTANCE.putTransposed(this, index, buffer);
return buffer;
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#getTransposed(float[], int)
*/
public float[] getTransposed(float[] arr, int offset) {
arr[offset+0] = m00;
arr[offset+1] = m10;
arr[offset+2] = m20;
arr[offset+3] = m30;
arr[offset+4] = m01;
arr[offset+5] = m11;
arr[offset+6] = m21;
arr[offset+7] = m31;
arr[offset+8] = m02;
arr[offset+9] = m12;
arr[offset+10] = m22;
arr[offset+11] = m32;
return arr;
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#getTransposed(float[])
*/
public float[] getTransposed(float[] arr) {
return getTransposed(arr, 0);
}
/**
* Set all the values within this matrix to 0
.
*
* @return this
*/
public Matrix4x3f zero() {
MemUtil.INSTANCE.zero(this);
properties = 0;
return this;
}
/**
* Set this matrix to be a simple scale matrix, which scales all axes uniformly by the given factor.
*
* The resulting matrix can be multiplied against another transformation
* matrix to obtain an additional scaling.
*
* In order to post-multiply a scaling transformation directly to a
* matrix, use {@link #scale(float) scale()} instead.
*
* @see #scale(float)
*
* @param factor
* the scale factor in x, y and z
* @return this
*/
public Matrix4x3f scaling(float factor) {
return scaling(factor, factor, factor);
}
/**
* Set this matrix to be a simple scale matrix.
*
* The resulting matrix can be multiplied against another transformation
* matrix to obtain an additional scaling.
*
* In order to post-multiply a scaling transformation directly to a
* matrix, use {@link #scale(float, float, float) scale()} instead.
*
* @see #scale(float, float, float)
*
* @param x
* the scale in x
* @param y
* the scale in y
* @param z
* the scale in z
* @return this
*/
public Matrix4x3f scaling(float x, float y, float z) {
if ((properties & PROPERTY_IDENTITY) == 0)
MemUtil.INSTANCE.identity(this);
m00 = x;
m11 = y;
m22 = z;
boolean one = Math.abs(x) == 1.0f && Math.abs(y) == 1.0f && Math.abs(z) == 1.0f;
properties = one ? PROPERTY_ORTHONORMAL : 0;
return this;
}
/**
* Set this matrix to be a simple scale matrix which scales the base axes by xyz.x
, xyz.y
and xyz.z
respectively.
*
* The resulting matrix can be multiplied against another transformation
* matrix to obtain an additional scaling.
*
* In order to post-multiply a scaling transformation directly to a
* matrix use {@link #scale(Vector3fc) scale()} instead.
*
* @see #scale(Vector3fc)
*
* @param xyz
* the scale in x, y and z respectively
* @return this
*/
public Matrix4x3f scaling(Vector3fc xyz) {
return scaling(xyz.x(), xyz.y(), xyz.z());
}
/**
* Set this matrix to a rotation matrix which rotates the given radians about a given axis.
*
* The axis described by the axis
vector needs to be a unit vector.
*
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
*
* The resulting matrix can be multiplied against another transformation
* matrix to obtain an additional rotation.
*
* In order to post-multiply a rotation transformation directly to a
* matrix, use {@link #rotate(float, Vector3fc) rotate()} instead.
*
* @see #rotate(float, Vector3fc)
*
* @param angle
* the angle in radians
* @param axis
* the axis to rotate about (needs to be {@link Vector3f#normalize() normalized})
* @return this
*/
public Matrix4x3f rotation(float angle, Vector3fc axis) {
return rotation(angle, axis.x(), axis.y(), axis.z());
}
/**
* Set this matrix to a rotation transformation using the given {@link AxisAngle4f}.
*
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
*
* The resulting matrix can be multiplied against another transformation
* matrix to obtain an additional rotation.
*
* In order to apply the rotation transformation to an existing transformation,
* use {@link #rotate(AxisAngle4f) rotate()} instead.
*
* Reference: http://en.wikipedia.org
*
* @see #rotate(AxisAngle4f)
*
* @param axisAngle
* the {@link AxisAngle4f} (needs to be {@link AxisAngle4f#normalize() normalized})
* @return this
*/
public Matrix4x3f rotation(AxisAngle4f axisAngle) {
return rotation(axisAngle.angle, axisAngle.x, axisAngle.y, axisAngle.z);
}
/**
* Set this matrix to a rotation matrix which rotates the given radians about a given axis.
*
* The axis described by the three components needs to be a unit vector.
*
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
*
* The resulting matrix can be multiplied against another transformation
* matrix to obtain an additional rotation.
*
* In order to apply the rotation transformation to an existing transformation,
* use {@link #rotate(float, float, float, float) rotate()} instead.
*
* Reference: http://en.wikipedia.org
*
* @see #rotate(float, float, float, float)
*
* @param angle
* the angle in radians
* @param x
* the x-component of the rotation axis
* @param y
* the y-component of the rotation axis
* @param z
* the z-component of the rotation axis
* @return this
*/
public Matrix4x3f rotation(float angle, float x, float y, float z) {
if (y == 0.0f && z == 0.0f)
return rotationX(angle);
else if (x == 0.0f && z == 0.0f)
return rotationY(angle);
else if (x == 0.0f && y == 0.0f)
return rotationZ(angle);
return rotationInternal(angle, x, y, z);
}
private Matrix4x3f rotationInternal(float angle, float x, float y, float z) {
float sin = (float) Math.sin(angle);
float cos = (float) Math.cosFromSin(sin, angle);
float C = 1.0f - cos;
float xy = x * y, xz = x * z, yz = y * z;
m00 = cos + x * x * C;
m01 = xy * C + z * sin;
m02 = xz * C - y * sin;
m10 = xy * C - z * sin;
m11 = cos + y * y * C;
m12 = yz * C + x * sin;
m20 = xz * C + y * sin;
m21 = yz * C - x * sin;
m22 = cos + z * z * C;
m30 = 0.0f;
m31 = 0.0f;
m32 = 0.0f;
properties = PROPERTY_ORTHONORMAL;
return this;
}
/**
* Set this matrix to a rotation transformation about the X axis.
*
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
*
* Reference: http://en.wikipedia.org
*
* @param ang
* the angle in radians
* @return this
*/
public Matrix4x3f rotationX(float ang) {
float sin, cos;
sin = (float) Math.sin(ang);
cos = (float) Math.cosFromSin(sin, ang);
m00 = 1.0f;
m01 = 0.0f;
m02 = 0.0f;
m10 = 0.0f;
m11 = cos;
m12 = sin;
m20 = 0.0f;
m21 = -sin;
m22 = cos;
m30 = 0.0f;
m31 = 0.0f;
m32 = 0.0f;
properties = PROPERTY_ORTHONORMAL;
return this;
}
/**
* Set this matrix to a rotation transformation about the Y axis.
*
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
*
* Reference: http://en.wikipedia.org
*
* @param ang
* the angle in radians
* @return this
*/
public Matrix4x3f rotationY(float ang) {
float sin, cos;
sin = (float) Math.sin(ang);
cos = (float) Math.cosFromSin(sin, ang);
m00 = cos;
m01 = 0.0f;
m02 = -sin;
m10 = 0.0f;
m11 = 1.0f;
m12 = 0.0f;
m20 = sin;
m21 = 0.0f;
m22 = cos;
m30 = 0.0f;
m31 = 0.0f;
m32 = 0.0f;
properties = PROPERTY_ORTHONORMAL;
return this;
}
/**
* Set this matrix to a rotation transformation about the Z axis.
*
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
*
* Reference: http://en.wikipedia.org
*
* @param ang
* the angle in radians
* @return this
*/
public Matrix4x3f rotationZ(float ang) {
float sin, cos;
sin = (float) Math.sin(ang);
cos = (float) Math.cosFromSin(sin, ang);
m00 = cos;
m01 = sin;
m02 = 0.0f;
m10 = -sin;
m11 = cos;
m12 = 0.0f;
m20 = 0.0f;
m21 = 0.0f;
m22 = 1.0f;
m30 = 0.0f;
m31 = 0.0f;
m32 = 0.0f;
properties = PROPERTY_ORTHONORMAL;
return this;
}
/**
* Set this matrix to a rotation of angleX
radians about the X axis, followed by a rotation
* of angleY
radians about the Y axis and followed by a rotation of angleZ
radians about the Z axis.
*
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
*
* This method is equivalent to calling: rotationX(angleX).rotateY(angleY).rotateZ(angleZ)
*
* @param angleX
* the angle to rotate about X
* @param angleY
* the angle to rotate about Y
* @param angleZ
* the angle to rotate about Z
* @return this
*/
public Matrix4x3f rotationXYZ(float angleX, float angleY, float angleZ) {
float sinX = (float) Math.sin(angleX);
float cosX = (float) Math.cosFromSin(sinX, angleX);
float sinY = (float) Math.sin(angleY);
float cosY = (float) Math.cosFromSin(sinY, angleY);
float sinZ = (float) Math.sin(angleZ);
float cosZ = (float) Math.cosFromSin(sinZ, angleZ);
float m_sinX = -sinX;
float m_sinY = -sinY;
float m_sinZ = -sinZ;
// rotateX
float nm11 = cosX;
float nm12 = sinX;
float nm21 = m_sinX;
float nm22 = cosX;
// rotateY
float nm00 = cosY;
float nm01 = nm21 * m_sinY;
float nm02 = nm22 * m_sinY;
m20 = sinY;
m21 = nm21 * cosY;
m22 = nm22 * cosY;
// rotateZ
m00 = nm00 * cosZ;
m01 = nm01 * cosZ + nm11 * sinZ;
m02 = nm02 * cosZ + nm12 * sinZ;
m10 = nm00 * m_sinZ;
m11 = nm01 * m_sinZ + nm11 * cosZ;
m12 = nm02 * m_sinZ + nm12 * cosZ;
// set last column to identity
m30 = 0.0f;
m31 = 0.0f;
m32 = 0.0f;
properties = PROPERTY_ORTHONORMAL;
return this;
}
/**
* Set this matrix to a rotation of angleZ
radians about the Z axis, followed by a rotation
* of angleY
radians about the Y axis and followed by a rotation of angleX
radians about the X axis.
*
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
*
* This method is equivalent to calling: rotationZ(angleZ).rotateY(angleY).rotateX(angleX)
*
* @param angleZ
* the angle to rotate about Z
* @param angleY
* the angle to rotate about Y
* @param angleX
* the angle to rotate about X
* @return this
*/
public Matrix4x3f rotationZYX(float angleZ, float angleY, float angleX) {
float sinX = (float) Math.sin(angleX);
float cosX = (float) Math.cosFromSin(sinX, angleX);
float sinY = (float) Math.sin(angleY);
float cosY = (float) Math.cosFromSin(sinY, angleY);
float sinZ = (float) Math.sin(angleZ);
float cosZ = (float) Math.cosFromSin(sinZ, angleZ);
float m_sinZ = -sinZ;
float m_sinY = -sinY;
float m_sinX = -sinX;
// rotateZ
float nm00 = cosZ;
float nm01 = sinZ;
float nm10 = m_sinZ;
float nm11 = cosZ;
// rotateY
float nm20 = nm00 * sinY;
float nm21 = nm01 * sinY;
float nm22 = cosY;
m00 = nm00 * cosY;
m01 = nm01 * cosY;
m02 = m_sinY;
// rotateX
m10 = nm10 * cosX + nm20 * sinX;
m11 = nm11 * cosX + nm21 * sinX;
m12 = nm22 * sinX;
m20 = nm10 * m_sinX + nm20 * cosX;
m21 = nm11 * m_sinX + nm21 * cosX;
m22 = nm22 * cosX;
// set last column to identity
m30 = 0.0f;
m31 = 0.0f;
m32 = 0.0f;
properties = PROPERTY_ORTHONORMAL;
return this;
}
/**
* Set this matrix to a rotation of angleY
radians about the Y axis, followed by a rotation
* of angleX
radians about the X axis and followed by a rotation of angleZ
radians about the Z axis.
*
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
*
* This method is equivalent to calling: rotationY(angleY).rotateX(angleX).rotateZ(angleZ)
*
* @param angleY
* the angle to rotate about Y
* @param angleX
* the angle to rotate about X
* @param angleZ
* the angle to rotate about Z
* @return this
*/
public Matrix4x3f rotationYXZ(float angleY, float angleX, float angleZ) {
float sinX = (float) Math.sin(angleX);
float cosX = (float) Math.cosFromSin(sinX, angleX);
float sinY = (float) Math.sin(angleY);
float cosY = (float) Math.cosFromSin(sinY, angleY);
float sinZ = (float) Math.sin(angleZ);
float cosZ = (float) Math.cosFromSin(sinZ, angleZ);
float m_sinY = -sinY;
float m_sinX = -sinX;
float m_sinZ = -sinZ;
// rotateY
float nm00 = cosY;
float nm02 = m_sinY;
float nm20 = sinY;
float nm22 = cosY;
// rotateX
float nm10 = nm20 * sinX;
float nm11 = cosX;
float nm12 = nm22 * sinX;
m20 = nm20 * cosX;
m21 = m_sinX;
m22 = nm22 * cosX;
// rotateZ
m00 = nm00 * cosZ + nm10 * sinZ;
m01 = nm11 * sinZ;
m02 = nm02 * cosZ + nm12 * sinZ;
m10 = nm00 * m_sinZ + nm10 * cosZ;
m11 = nm11 * cosZ;
m12 = nm02 * m_sinZ + nm12 * cosZ;
// set last column to identity
m30 = 0.0f;
m31 = 0.0f;
m32 = 0.0f;
properties = PROPERTY_ORTHONORMAL;
return this;
}
/**
* Set only the left 3x3 submatrix of this matrix to a rotation of angleX
radians about the X axis, followed by a rotation
* of angleY
radians about the Y axis and followed by a rotation of angleZ
radians about the Z axis.
*
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
*
* @param angleX
* the angle to rotate about X
* @param angleY
* the angle to rotate about Y
* @param angleZ
* the angle to rotate about Z
* @return this
*/
public Matrix4x3f setRotationXYZ(float angleX, float angleY, float angleZ) {
float sinX = (float) Math.sin(angleX);
float cosX = (float) Math.cosFromSin(sinX, angleX);
float sinY = (float) Math.sin(angleY);
float cosY = (float) Math.cosFromSin(sinY, angleY);
float sinZ = (float) Math.sin(angleZ);
float cosZ = (float) Math.cosFromSin(sinZ, angleZ);
float m_sinX = -sinX;
float m_sinY = -sinY;
float m_sinZ = -sinZ;
// rotateX
float nm11 = cosX;
float nm12 = sinX;
float nm21 = m_sinX;
float nm22 = cosX;
// rotateY
float nm00 = cosY;
float nm01 = nm21 * m_sinY;
float nm02 = nm22 * m_sinY;
m20 = sinY;
m21 = nm21 * cosY;
m22 = nm22 * cosY;
// rotateZ
m00 = nm00 * cosZ;
m01 = nm01 * cosZ + nm11 * sinZ;
m02 = nm02 * cosZ + nm12 * sinZ;
m10 = nm00 * m_sinZ;
m11 = nm01 * m_sinZ + nm11 * cosZ;
m12 = nm02 * m_sinZ + nm12 * cosZ;
properties &= ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
return this;
}
/**
* Set only the left 3x3 submatrix of this matrix to a rotation of angleZ
radians about the Z axis, followed by a rotation
* of angleY
radians about the Y axis and followed by a rotation of angleX
radians about the X axis.
*
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
*
* @param angleZ
* the angle to rotate about Z
* @param angleY
* the angle to rotate about Y
* @param angleX
* the angle to rotate about X
* @return this
*/
public Matrix4x3f setRotationZYX(float angleZ, float angleY, float angleX) {
float sinX = (float) Math.sin(angleX);
float cosX = (float) Math.cosFromSin(sinX, angleX);
float sinY = (float) Math.sin(angleY);
float cosY = (float) Math.cosFromSin(sinY, angleY);
float sinZ = (float) Math.sin(angleZ);
float cosZ = (float) Math.cosFromSin(sinZ, angleZ);
float m_sinZ = -sinZ;
float m_sinY = -sinY;
float m_sinX = -sinX;
// rotateZ
float nm00 = cosZ;
float nm01 = sinZ;
float nm10 = m_sinZ;
float nm11 = cosZ;
// rotateY
float nm20 = nm00 * sinY;
float nm21 = nm01 * sinY;
float nm22 = cosY;
m00 = nm00 * cosY;
m01 = nm01 * cosY;
m02 = m_sinY;
// rotateX
m10 = nm10 * cosX + nm20 * sinX;
m11 = nm11 * cosX + nm21 * sinX;
m12 = nm22 * sinX;
m20 = nm10 * m_sinX + nm20 * cosX;
m21 = nm11 * m_sinX + nm21 * cosX;
m22 = nm22 * cosX;
properties &= ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
return this;
}
/**
* Set only the left 3x3 submatrix of this matrix to a rotation of angleY
radians about the Y axis, followed by a rotation
* of angleX
radians about the X axis and followed by a rotation of angleZ
radians about the Z axis.
*
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
*
* @param angleY
* the angle to rotate about Y
* @param angleX
* the angle to rotate about X
* @param angleZ
* the angle to rotate about Z
* @return this
*/
public Matrix4x3f setRotationYXZ(float angleY, float angleX, float angleZ) {
float sinX = (float) Math.sin(angleX);
float cosX = (float) Math.cosFromSin(sinX, angleX);
float sinY = (float) Math.sin(angleY);
float cosY = (float) Math.cosFromSin(sinY, angleY);
float sinZ = (float) Math.sin(angleZ);
float cosZ = (float) Math.cosFromSin(sinZ, angleZ);
float m_sinY = -sinY;
float m_sinX = -sinX;
float m_sinZ = -sinZ;
// rotateY
float nm00 = cosY;
float nm02 = m_sinY;
float nm20 = sinY;
float nm22 = cosY;
// rotateX
float nm10 = nm20 * sinX;
float nm11 = cosX;
float nm12 = nm22 * sinX;
m20 = nm20 * cosX;
m21 = m_sinX;
m22 = nm22 * cosX;
// rotateZ
m00 = nm00 * cosZ + nm10 * sinZ;
m01 = nm11 * sinZ;
m02 = nm02 * cosZ + nm12 * sinZ;
m10 = nm00 * m_sinZ + nm10 * cosZ;
m11 = nm11 * cosZ;
m12 = nm02 * m_sinZ + nm12 * cosZ;
properties &= ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
return this;
}
/**
* Set this matrix to the rotation - and possibly scaling - transformation of the given {@link Quaternionfc}.
*
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
*
* The resulting matrix can be multiplied against another transformation
* matrix to obtain an additional rotation.
*
* In order to apply the rotation transformation to an existing transformation,
* use {@link #rotate(Quaternionfc) rotate()} instead.
*
* Reference: http://en.wikipedia.org
*
* @see #rotate(Quaternionfc)
*
* @param quat
* the {@link Quaternionfc}
* @return this
*/
public Matrix4x3f rotation(Quaternionfc quat) {
float w2 = quat.w() * quat.w();
float x2 = quat.x() * quat.x();
float y2 = quat.y() * quat.y();
float z2 = quat.z() * quat.z();
float zw = quat.z() * quat.w(), dzw = zw + zw;
float xy = quat.x() * quat.y(), dxy = xy + xy;
float xz = quat.x() * quat.z(), dxz = xz + xz;
float yw = quat.y() * quat.w(), dyw = yw + yw;
float yz = quat.y() * quat.z(), dyz = yz + yz;
float xw = quat.x() * quat.w(), dxw = xw + xw;
_m00(w2 + x2 - z2 - y2);
_m01(dxy + dzw);
_m02(dxz - dyw);
_m10(dxy - dzw);
_m11(y2 - z2 + w2 - x2);
_m12(dyz + dxw);
_m20(dyw + dxz);
_m21(dyz - dxw);
_m22(z2 - y2 - x2 + w2);
_m30(0.0f);
_m31(0.0f);
_m32(0.0f);
properties = PROPERTY_ORTHONORMAL;
return this;
}
/**
* Set this
matrix to T * R * S
, where T
is a translation by the given (tx, ty, tz)
,
* R
is a rotation transformation specified by the quaternion (qx, qy, qz, qw)
, and S
is a scaling transformation
* which scales the three axes x, y and z by (sx, sy, sz)
.
*
* When transforming a vector by the resulting matrix the scaling transformation will be applied first, then the rotation and
* at last the translation.
*
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
*
* This method is equivalent to calling: translation(tx, ty, tz).rotate(quat).scale(sx, sy, sz)
*
* @see #translation(float, float, float)
* @see #rotate(Quaternionfc)
* @see #scale(float, float, float)
*
* @param tx
* the number of units by which to translate the x-component
* @param ty
* the number of units by which to translate the y-component
* @param tz
* the number of units by which to translate the z-component
* @param qx
* the x-coordinate of the vector part of the quaternion
* @param qy
* the y-coordinate of the vector part of the quaternion
* @param qz
* the z-coordinate of the vector part of the quaternion
* @param qw
* the scalar part of the quaternion
* @param sx
* the scaling factor for the x-axis
* @param sy
* the scaling factor for the y-axis
* @param sz
* the scaling factor for the z-axis
* @return this
*/
public Matrix4x3f translationRotateScale(float tx, float ty, float tz,
float qx, float qy, float qz, float qw,
float sx, float sy, float sz) {
float dqx = qx + qx;
float dqy = qy + qy;
float dqz = qz + qz;
float q00 = dqx * qx;
float q11 = dqy * qy;
float q22 = dqz * qz;
float q01 = dqx * qy;
float q02 = dqx * qz;
float q03 = dqx * qw;
float q12 = dqy * qz;
float q13 = dqy * qw;
float q23 = dqz * qw;
m00 = sx - (q11 + q22) * sx;
m01 = (q01 + q23) * sx;
m02 = (q02 - q13) * sx;
m10 = (q01 - q23) * sy;
m11 = sy - (q22 + q00) * sy;
m12 = (q12 + q03) * sy;
m20 = (q02 + q13) * sz;
m21 = (q12 - q03) * sz;
m22 = sz - (q11 + q00) * sz;
m30 = tx;
m31 = ty;
m32 = tz;
properties = 0;
return this;
}
/**
* Set this
matrix to T * R * S
, where T
is the given translation
,
* R
is a rotation transformation specified by the given quaternion, and S
is a scaling transformation
* which scales the axes by scale
.
*
* When transforming a vector by the resulting matrix the scaling transformation will be applied first, then the rotation and
* at last the translation.
*
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
*
* This method is equivalent to calling: translation(translation).rotate(quat).scale(scale)
*
* @see #translation(Vector3fc)
* @see #rotate(Quaternionfc)
*
* @param translation
* the translation
* @param quat
* the quaternion representing a rotation
* @param scale
* the scaling factors
* @return this
*/
public Matrix4x3f translationRotateScale(Vector3fc translation,
Quaternionfc quat,
Vector3fc scale) {
return translationRotateScale(translation.x(), translation.y(), translation.z(), quat.x(), quat.y(), quat.z(), quat.w(), scale.x(), scale.y(), scale.z());
}
/**
* Set this
matrix to T * R * S * M
, where T
is a translation by the given (tx, ty, tz)
,
* R
is a rotation transformation specified by the quaternion (qx, qy, qz, qw)
, S
is a scaling transformation
* which scales the three axes x, y and z by (sx, sy, sz)
.
*
* When transforming a vector by the resulting matrix the transformation described by M
will be applied first, then the scaling, then rotation and
* at last the translation.
*
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
*
* This method is equivalent to calling: translation(tx, ty, tz).rotate(quat).scale(sx, sy, sz).mul(m)
*
* @see #translation(float, float, float)
* @see #rotate(Quaternionfc)
* @see #scale(float, float, float)
* @see #mul(Matrix4x3fc)
*
* @param tx
* the number of units by which to translate the x-component
* @param ty
* the number of units by which to translate the y-component
* @param tz
* the number of units by which to translate the z-component
* @param qx
* the x-coordinate of the vector part of the quaternion
* @param qy
* the y-coordinate of the vector part of the quaternion
* @param qz
* the z-coordinate of the vector part of the quaternion
* @param qw
* the scalar part of the quaternion
* @param sx
* the scaling factor for the x-axis
* @param sy
* the scaling factor for the y-axis
* @param sz
* the scaling factor for the z-axis
* @param m
* the matrix to multiply by
* @return this
*/
public Matrix4x3f translationRotateScaleMul(float tx, float ty, float tz,
float qx, float qy, float qz, float qw,
float sx, float sy, float sz,
Matrix4x3f m) {
float dqx = qx + qx;
float dqy = qy + qy;
float dqz = qz + qz;
float q00 = dqx * qx;
float q11 = dqy * qy;
float q22 = dqz * qz;
float q01 = dqx * qy;
float q02 = dqx * qz;
float q03 = dqx * qw;
float q12 = dqy * qz;
float q13 = dqy * qw;
float q23 = dqz * qw;
float nm00 = sx - (q11 + q22) * sx;
float nm01 = (q01 + q23) * sx;
float nm02 = (q02 - q13) * sx;
float nm10 = (q01 - q23) * sy;
float nm11 = sy - (q22 + q00) * sy;
float nm12 = (q12 + q03) * sy;
float nm20 = (q02 + q13) * sz;
float nm21 = (q12 - q03) * sz;
float nm22 = sz - (q11 + q00) * sz;
float m00 = nm00 * m.m00 + nm10 * m.m01 + nm20 * m.m02;
float m01 = nm01 * m.m00 + nm11 * m.m01 + nm21 * m.m02;
m02 = nm02 * m.m00 + nm12 * m.m01 + nm22 * m.m02;
this.m00 = m00;
this.m01 = m01;
float m10 = nm00 * m.m10 + nm10 * m.m11 + nm20 * m.m12;
float m11 = nm01 * m.m10 + nm11 * m.m11 + nm21 * m.m12;
m12 = nm02 * m.m10 + nm12 * m.m11 + nm22 * m.m12;
this.m10 = m10;
this.m11 = m11;
float m20 = nm00 * m.m20 + nm10 * m.m21 + nm20 * m.m22;
float m21 = nm01 * m.m20 + nm11 * m.m21 + nm21 * m.m22;
m22 = nm02 * m.m20 + nm12 * m.m21 + nm22 * m.m22;
this.m20 = m20;
this.m21 = m21;
float m30 = nm00 * m.m30 + nm10 * m.m31 + nm20 * m.m32 + tx;
float m31 = nm01 * m.m30 + nm11 * m.m31 + nm21 * m.m32 + ty;
m32 = nm02 * m.m30 + nm12 * m.m31 + nm22 * m.m32 + tz;
this.m30 = m30;
this.m31 = m31;
properties = 0;
return this;
}
/**
* Set this
matrix to T * R * S * M
, where T
is the given translation
,
* R
is a rotation transformation specified by the given quaternion, S
is a scaling transformation
* which scales the axes by scale
.
*
* When transforming a vector by the resulting matrix the transformation described by M
will be applied first, then the scaling, then rotation and
* at last the translation.
*
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
*
* This method is equivalent to calling: translation(translation).rotate(quat).scale(scale).mul(m)
*
* @see #translation(Vector3fc)
* @see #rotate(Quaternionfc)
*
* @param translation
* the translation
* @param quat
* the quaternion representing a rotation
* @param scale
* the scaling factors
* @param m
* the matrix to multiply by
* @return this
*/
public Matrix4x3f translationRotateScaleMul(Vector3fc translation, Quaternionfc quat, Vector3fc scale, Matrix4x3f m) {
return translationRotateScaleMul(translation.x(), translation.y(), translation.z(), quat.x(), quat.y(), quat.z(), quat.w(), scale.x(), scale.y(), scale.z(), m);
}
/**
* Set this
matrix to T * R
, where T
is a translation by the given (tx, ty, tz)
and
* R
is a rotation transformation specified by the given quaternion.
*
* When transforming a vector by the resulting matrix the rotation transformation will be applied first and then the translation.
*
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
*
* This method is equivalent to calling: translation(tx, ty, tz).rotate(quat)
*
* @see #translation(float, float, float)
* @see #rotate(Quaternionfc)
*
* @param tx
* the number of units by which to translate the x-component
* @param ty
* the number of units by which to translate the y-component
* @param tz
* the number of units by which to translate the z-component
* @param quat
* the quaternion representing a rotation
* @return this
*/
public Matrix4x3f translationRotate(float tx, float ty, float tz, Quaternionfc quat) {
float dqx = quat.x() + quat.x();
float dqy = quat.y() + quat.y();
float dqz = quat.z() + quat.z();
float q00 = dqx * quat.x();
float q11 = dqy * quat.y();
float q22 = dqz * quat.z();
float q01 = dqx * quat.y();
float q02 = dqx * quat.z();
float q03 = dqx * quat.w();
float q12 = dqy * quat.z();
float q13 = dqy * quat.w();
float q23 = dqz * quat.w();
m00 = 1.0f - (q11 + q22);
m01 = q01 + q23;
m02 = q02 - q13;
m10 = q01 - q23;
m11 = 1.0f - (q22 + q00);
m12 = q12 + q03;
m20 = q02 + q13;
m21 = q12 - q03;
m22 = 1.0f - (q11 + q00);
m30 = tx;
m31 = ty;
m32 = tz;
properties = PROPERTY_ORTHONORMAL;
return this;
}
/**
* Set this
matrix to T * R * M
, where T
is a translation by the given (tx, ty, tz)
,
* R
is a rotation - and possibly scaling - transformation specified by the given quaternion and M
is the given matrix mat
.
*
* When transforming a vector by the resulting matrix the transformation described by M
will be applied first, then the scaling, then rotation and
* at last the translation.
*
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
*
* This method is equivalent to calling: translation(tx, ty, tz).rotate(quat).mul(mat)
*
* @see #translation(float, float, float)
* @see #rotate(Quaternionfc)
* @see #mul(Matrix4x3fc)
*
* @param tx
* the number of units by which to translate the x-component
* @param ty
* the number of units by which to translate the y-component
* @param tz
* the number of units by which to translate the z-component
* @param quat
* the quaternion representing a rotation
* @param mat
* the matrix to multiply with
* @return this
*/
public Matrix4x3f translationRotateMul(float tx, float ty, float tz, Quaternionfc quat, Matrix4x3fc mat) {
return translationRotateMul(tx, ty, tz, quat.x(), quat.y(), quat.z(), quat.w(), mat);
}
/**
* Set this
matrix to T * R * M
, where T
is a translation by the given (tx, ty, tz)
,
* R
is a rotation - and possibly scaling - transformation specified by the quaternion (qx, qy, qz, qw)
and M
is the given matrix mat
*
* When transforming a vector by the resulting matrix the transformation described by M
will be applied first, then the scaling, then rotation and
* at last the translation.
*
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
*
* This method is equivalent to calling: translation(tx, ty, tz).rotate(quat).mul(mat)
*
* @see #translation(float, float, float)
* @see #rotate(Quaternionfc)
* @see #mul(Matrix4x3fc)
*
* @param tx
* the number of units by which to translate the x-component
* @param ty
* the number of units by which to translate the y-component
* @param tz
* the number of units by which to translate the z-component
* @param qx
* the x-coordinate of the vector part of the quaternion
* @param qy
* the y-coordinate of the vector part of the quaternion
* @param qz
* the z-coordinate of the vector part of the quaternion
* @param qw
* the scalar part of the quaternion
* @param mat
* the matrix to multiply with
* @return this
*/
public Matrix4x3f translationRotateMul(float tx, float ty, float tz, float qx, float qy, float qz, float qw, Matrix4x3fc mat) {
float w2 = qw * qw;
float x2 = qx * qx;
float y2 = qy * qy;
float z2 = qz * qz;
float zw = qz * qw;
float xy = qx * qy;
float xz = qx * qz;
float yw = qy * qw;
float yz = qy * qz;
float xw = qx * qw;
float nm00 = w2 + x2 - z2 - y2;
float nm01 = xy + zw + zw + xy;
float nm02 = xz - yw + xz - yw;
float nm10 = -zw + xy - zw + xy;
float nm11 = y2 - z2 + w2 - x2;
float nm12 = yz + yz + xw + xw;
float nm20 = yw + xz + xz + yw;
float nm21 = yz + yz - xw - xw;
float nm22 = z2 - y2 - x2 + w2;
m00 = nm00 * mat.m00() + nm10 * mat.m01() + nm20 * mat.m02();
m01 = nm01 * mat.m00() + nm11 * mat.m01() + nm21 * mat.m02();
m02 = nm02 * mat.m00() + nm12 * mat.m01() + nm22 * mat.m02();
m10 = nm00 * mat.m10() + nm10 * mat.m11() + nm20 * mat.m12();
m11 = nm01 * mat.m10() + nm11 * mat.m11() + nm21 * mat.m12();
m12 = nm02 * mat.m10() + nm12 * mat.m11() + nm22 * mat.m12();
m20 = nm00 * mat.m20() + nm10 * mat.m21() + nm20 * mat.m22();
m21 = nm01 * mat.m20() + nm11 * mat.m21() + nm21 * mat.m22();
m22 = nm02 * mat.m20() + nm12 * mat.m21() + nm22 * mat.m22();
m30 = nm00 * mat.m30() + nm10 * mat.m31() + nm20 * mat.m32() + tx;
m31 = nm01 * mat.m30() + nm11 * mat.m31() + nm21 * mat.m32() + ty;
m32 = nm02 * mat.m30() + nm12 * mat.m31() + nm22 * mat.m32() + tz;
this.properties = 0;
return this;
}
/**
* Set the left 3x3 submatrix of this {@link Matrix4x3f} to the given {@link Matrix3fc} and don't change the other elements.
*
* @param mat
* the 3x3 matrix
* @return this
*/
public Matrix4x3f set3x3(Matrix3fc mat) {
if (mat instanceof Matrix3f) {
MemUtil.INSTANCE.copy3x3((Matrix3f) mat, this);
} else {
set3x3Matrix3fc(mat);
}
properties = 0;
return this;
}
private void set3x3Matrix3fc(Matrix3fc mat) {
m00 = mat.m00();
m01 = mat.m01();
m02 = mat.m02();
m10 = mat.m10();
m11 = mat.m11();
m12 = mat.m12();
m20 = mat.m20();
m21 = mat.m21();
m22 = mat.m22();
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#transform(org.joml.Vector4f)
*/
public Vector4f transform(Vector4f v) {
return v.mul(this);
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#transform(org.joml.Vector4fc, org.joml.Vector4f)
*/
public Vector4f transform(Vector4fc v, Vector4f dest) {
return v.mul(this, dest);
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#transformPosition(org.joml.Vector3f)
*/
public Vector3f transformPosition(Vector3f v) {
v.set(m00 * v.x + m10 * v.y + m20 * v.z + m30,
m01 * v.x + m11 * v.y + m21 * v.z + m31,
m02 * v.x + m12 * v.y + m22 * v.z + m32);
return v;
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#transformPosition(org.joml.Vector3fc, org.joml.Vector3f)
*/
public Vector3f transformPosition(Vector3fc v, Vector3f dest) {
dest.set(m00 * v.x() + m10 * v.y() + m20 * v.z() + m30,
m01 * v.x() + m11 * v.y() + m21 * v.z() + m31,
m02 * v.x() + m12 * v.y() + m22 * v.z() + m32);
return dest;
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#transformDirection(org.joml.Vector3f)
*/
public Vector3f transformDirection(Vector3f v) {
v.set(m00 * v.x + m10 * v.y + m20 * v.z,
m01 * v.x + m11 * v.y + m21 * v.z,
m02 * v.x + m12 * v.y + m22 * v.z);
return v;
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#transformDirection(org.joml.Vector3fc, org.joml.Vector3f)
*/
public Vector3f transformDirection(Vector3fc v, Vector3f dest) {
dest.set(m00 * v.x() + m10 * v.y() + m20 * v.z(),
m01 * v.x() + m11 * v.y() + m21 * v.z(),
m02 * v.x() + m12 * v.y() + m22 * v.z());
return dest;
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#scale(org.joml.Vector3fc, org.joml.Matrix4x3f)
*/
public Matrix4x3f scale(Vector3fc xyz, Matrix4x3f dest) {
return scale(xyz.x(), xyz.y(), xyz.z(), dest);
}
/**
* Apply scaling to this matrix by scaling the base axes by the given xyz.x
,
* xyz.y
and xyz.z
factors, respectively.
*
* If M
is this
matrix and S
the scaling matrix,
* then the new matrix will be M * S
. So when transforming a
* vector v
with the new matrix by using M * S * v
, the
* scaling will be applied first!
*
* @param xyz
* the factors of the x, y and z component, respectively
* @return this
*/
public Matrix4x3f scale(Vector3fc xyz) {
return scale(xyz.x(), xyz.y(), xyz.z(), this);
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#scale(float, org.joml.Matrix4x3f)
*/
public Matrix4x3f scale(float xyz, Matrix4x3f dest) {
return scale(xyz, xyz, xyz, dest);
}
/**
* Apply scaling to this matrix by uniformly scaling all base axes by the given xyz
factor.
*
* If M
is this
matrix and S
the scaling matrix,
* then the new matrix will be M * S
. So when transforming a
* vector v
with the new matrix by using M * S * v
, the
* scaling will be applied first!
*
* Individual scaling of all three axes can be applied using {@link #scale(float, float, float)}.
*
* @see #scale(float, float, float)
*
* @param xyz
* the factor for all components
* @return this
*/
public Matrix4x3f scale(float xyz) {
return scale(xyz, xyz, xyz);
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#scaleXY(float, float, org.joml.Matrix4x3f)
*/
public Matrix4x3f scaleXY(float x, float y, Matrix4x3f dest) {
return scale(x, y, 1.0f, dest);
}
/**
* Apply scaling to this matrix by scaling the X axis by x
and the Y axis by y
.
*
* If M
is this
matrix and S
the scaling matrix,
* then the new matrix will be M * S
. So when transforming a
* vector v
with the new matrix by using M * S * v
, the
* scaling will be applied first!
*
* @param x
* the factor of the x component
* @param y
* the factor of the y component
* @return this
*/
public Matrix4x3f scaleXY(float x, float y) {
return scale(x, y, 1.0f);
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#scale(float, float, float, org.joml.Matrix4x3f)
*/
public Matrix4x3f scale(float x, float y, float z, Matrix4x3f dest) {
if ((properties & PROPERTY_IDENTITY) != 0)
return dest.scaling(x, y, z);
return scaleGeneric(x, y, z, dest);
}
private Matrix4x3f scaleGeneric(float x, float y, float z, Matrix4x3f dest) {
dest.m00 = m00 * x;
dest.m01 = m01 * x;
dest.m02 = m02 * x;
dest.m10 = m10 * y;
dest.m11 = m11 * y;
dest.m12 = m12 * y;
dest.m20 = m20 * z;
dest.m21 = m21 * z;
dest.m22 = m22 * z;
dest.m30 = m30;
dest.m31 = m31;
dest.m32 = m32;
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL);
return dest;
}
/**
* Apply scaling to this matrix by scaling the base axes by the given x,
* y and z factors.
*
* If M
is this
matrix and S
the scaling matrix,
* then the new matrix will be M * S
. So when transforming a
* vector v
with the new matrix by using M * S * v
, the
* scaling will be applied first!
*
* @param x
* the factor of the x component
* @param y
* the factor of the y component
* @param z
* the factor of the z component
* @return this
*/
public Matrix4x3f scale(float x, float y, float z) {
return scale(x, y, z, this);
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#scaleLocal(float, float, float, org.joml.Matrix4x3f)
*/
public Matrix4x3f scaleLocal(float x, float y, float z, Matrix4x3f dest) {
if ((properties & PROPERTY_IDENTITY) != 0)
return dest.scaling(x, y, z);
float nm00 = x * m00;
float nm01 = y * m01;
float nm02 = z * m02;
float nm10 = x * m10;
float nm11 = y * m11;
float nm12 = z * m12;
float nm20 = x * m20;
float nm21 = y * m21;
float nm22 = z * m22;
float nm30 = x * m30;
float nm31 = y * m31;
float nm32 = z * m32;
dest.m00 = nm00;
dest.m01 = nm01;
dest.m02 = nm02;
dest.m10 = nm10;
dest.m11 = nm11;
dest.m12 = nm12;
dest.m20 = nm20;
dest.m21 = nm21;
dest.m22 = nm22;
dest.m30 = nm30;
dest.m31 = nm31;
dest.m32 = nm32;
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL);
return dest;
}
/**
* Pre-multiply scaling to this matrix by scaling the base axes by the given x,
* y and z factors.
*
* If M
is this
matrix and S
the scaling matrix,
* then the new matrix will be S * M
. So when transforming a
* vector v
with the new matrix by using S * M * v
, the
* scaling will be applied last!
*
* @param x
* the factor of the x component
* @param y
* the factor of the y component
* @param z
* the factor of the z component
* @return this
*/
public Matrix4x3f scaleLocal(float x, float y, float z) {
return scaleLocal(x, y, z, this);
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#rotateX(float, org.joml.Matrix4x3f)
*/
public Matrix4x3f rotateX(float ang, Matrix4x3f dest) {
if ((properties & PROPERTY_IDENTITY) != 0)
return dest.rotationX(ang);
else if ((properties & PROPERTY_TRANSLATION) != 0) {
float x = m30, y = m31, z = m32;
return dest.rotationX(ang).setTranslation(x, y, z);
}
return rotateXInternal(ang, dest);
}
private Matrix4x3f rotateXInternal(float ang, Matrix4x3f dest) {
float sin, cos;
sin = (float) Math.sin(ang);
cos = (float) Math.cosFromSin(sin, ang);
float rm11 = cos;
float rm12 = sin;
float rm21 = -sin;
float rm22 = cos;
// add temporaries for dependent values
float nm10 = m10 * rm11 + m20 * rm12;
float nm11 = m11 * rm11 + m21 * rm12;
float nm12 = m12 * rm11 + m22 * rm12;
// set non-dependent values directly
dest.m20 = m10 * rm21 + m20 * rm22;
dest.m21 = m11 * rm21 + m21 * rm22;
dest.m22 = m12 * rm21 + m22 * rm22;
// set other values
dest.m10 = nm10;
dest.m11 = nm11;
dest.m12 = nm12;
dest.m00 = m00;
dest.m01 = m01;
dest.m02 = m02;
dest.m30 = m30;
dest.m31 = m31;
dest.m32 = m32;
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
return dest;
}
/**
* Apply rotation about the X axis to this matrix by rotating the given amount of radians.
*
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
*
* If M
is this
matrix and R
the rotation matrix,
* then the new matrix will be M * R
. So when transforming a
* vector v
with the new matrix by using M * R * v
, the
* rotation will be applied first!
*
* Reference: http://en.wikipedia.org
*
* @param ang
* the angle in radians
* @return this
*/
public Matrix4x3f rotateX(float ang) {
return rotateX(ang, this);
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#rotateY(float, org.joml.Matrix4x3f)
*/
public Matrix4x3f rotateY(float ang, Matrix4x3f dest) {
if ((properties & PROPERTY_IDENTITY) != 0)
return dest.rotationY(ang);
else if ((properties & PROPERTY_TRANSLATION) != 0) {
float x = m30, y = m31, z = m32;
return dest.rotationY(ang).setTranslation(x, y, z);
}
return rotateYInternal(ang, dest);
}
private Matrix4x3f rotateYInternal(float ang, Matrix4x3f dest) {
float cos, sin;
sin = (float) Math.sin(ang);
cos = (float) Math.cosFromSin(sin, ang);
float rm00 = cos;
float rm02 = -sin;
float rm20 = sin;
float rm22 = cos;
// add temporaries for dependent values
float nm00 = m00 * rm00 + m20 * rm02;
float nm01 = m01 * rm00 + m21 * rm02;
float nm02 = m02 * rm00 + m22 * rm02;
// set non-dependent values directly
dest.m20 = m00 * rm20 + m20 * rm22;
dest.m21 = m01 * rm20 + m21 * rm22;
dest.m22 = m02 * rm20 + m22 * rm22;
// set other values
dest.m00 = nm00;
dest.m01 = nm01;
dest.m02 = nm02;
dest.m10 = m10;
dest.m11 = m11;
dest.m12 = m12;
dest.m30 = m30;
dest.m31 = m31;
dest.m32 = m32;
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
return dest;
}
/**
* Apply rotation about the Y axis to this matrix by rotating the given amount of radians.
*
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
*
* If M
is this
matrix and R
the rotation matrix,
* then the new matrix will be M * R
. So when transforming a
* vector v
with the new matrix by using M * R * v
, the
* rotation will be applied first!
*
* Reference: http://en.wikipedia.org
*
* @param ang
* the angle in radians
* @return this
*/
public Matrix4x3f rotateY(float ang) {
return rotateY(ang, this);
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#rotateZ(float, org.joml.Matrix4x3f)
*/
public Matrix4x3f rotateZ(float ang, Matrix4x3f dest) {
if ((properties & PROPERTY_IDENTITY) != 0)
return dest.rotationZ(ang);
else if ((properties & PROPERTY_TRANSLATION) != 0) {
float x = m30, y = m31, z = m32;
return dest.rotationZ(ang).setTranslation(x, y, z);
}
return rotateZInternal(ang, dest);
}
private Matrix4x3f rotateZInternal(float ang, Matrix4x3f dest) {
float sin, cos;
sin = (float) Math.sin(ang);
cos = (float) Math.cosFromSin(sin, ang);
float rm00 = cos;
float rm01 = sin;
float rm10 = -sin;
float rm11 = cos;
// add temporaries for dependent values
float nm00 = m00 * rm00 + m10 * rm01;
float nm01 = m01 * rm00 + m11 * rm01;
float nm02 = m02 * rm00 + m12 * rm01;
// set non-dependent values directly
dest.m10 = m00 * rm10 + m10 * rm11;
dest.m11 = m01 * rm10 + m11 * rm11;
dest.m12 = m02 * rm10 + m12 * rm11;
// set other values
dest.m00 = nm00;
dest.m01 = nm01;
dest.m02 = nm02;
dest.m20 = m20;
dest.m21 = m21;
dest.m22 = m22;
dest.m30 = m30;
dest.m31 = m31;
dest.m32 = m32;
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
return dest;
}
/**
* Apply rotation about the Z axis to this matrix by rotating the given amount of radians.
*
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
*
* If M
is this
matrix and R
the rotation matrix,
* then the new matrix will be M * R
. So when transforming a
* vector v
with the new matrix by using M * R * v
, the
* rotation will be applied first!
*
* Reference: http://en.wikipedia.org
*
* @param ang
* the angle in radians
* @return this
*/
public Matrix4x3f rotateZ(float ang) {
return rotateZ(ang, this);
}
/**
* Apply rotation of angles.x
radians about the X axis, followed by a rotation of angles.y
radians about the Y axis and
* followed by a rotation of angles.z
radians about the Z axis.
*
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
*
* If M
is this
matrix and R
the rotation matrix,
* then the new matrix will be M * R
. So when transforming a
* vector v
with the new matrix by using M * R * v
, the
* rotation will be applied first!
*
* This method is equivalent to calling: rotateX(angles.x).rotateY(angles.y).rotateZ(angles.z)
*
* @param angles
* the Euler angles
* @return this
*/
public Matrix4x3f rotateXYZ(Vector3f angles) {
return rotateXYZ(angles.x, angles.y, angles.z);
}
/**
* Apply rotation of angleX
radians about the X axis, followed by a rotation of angleY
radians about the Y axis and
* followed by a rotation of angleZ
radians about the Z axis.
*
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
*
* If M
is this
matrix and R
the rotation matrix,
* then the new matrix will be M * R
. So when transforming a
* vector v
with the new matrix by using M * R * v
, the
* rotation will be applied first!
*
* This method is equivalent to calling: rotateX(angleX).rotateY(angleY).rotateZ(angleZ)
*
* @param angleX
* the angle to rotate about X
* @param angleY
* the angle to rotate about Y
* @param angleZ
* the angle to rotate about Z
* @return this
*/
public Matrix4x3f rotateXYZ(float angleX, float angleY, float angleZ) {
return rotateXYZ(angleX, angleY, angleZ, this);
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#rotateXYZ(float, float, float, org.joml.Matrix4x3f)
*/
public Matrix4x3f rotateXYZ(float angleX, float angleY, float angleZ, Matrix4x3f dest) {
if ((properties & PROPERTY_IDENTITY) != 0)
return dest.rotationXYZ(angleX, angleY, angleZ);
else if ((properties & PROPERTY_TRANSLATION) != 0) {
float tx = m30, ty = m31, tz = m32;
return dest.rotationXYZ(angleX, angleY, angleZ).setTranslation(tx, ty, tz);
}
return rotateXYZInternal(angleX, angleY, angleZ, dest);
}
private Matrix4x3f rotateXYZInternal(float angleX, float angleY, float angleZ, Matrix4x3f dest) {
float sinX = (float) Math.sin(angleX);
float cosX = (float) Math.cosFromSin(sinX, angleX);
float sinY = (float) Math.sin(angleY);
float cosY = (float) Math.cosFromSin(sinY, angleY);
float sinZ = (float) Math.sin(angleZ);
float cosZ = (float) Math.cosFromSin(sinZ, angleZ);
float m_sinX = -sinX;
float m_sinY = -sinY;
float m_sinZ = -sinZ;
// rotateX
float nm10 = m10 * cosX + m20 * sinX;
float nm11 = m11 * cosX + m21 * sinX;
float nm12 = m12 * cosX + m22 * sinX;
float nm20 = m10 * m_sinX + m20 * cosX;
float nm21 = m11 * m_sinX + m21 * cosX;
float nm22 = m12 * m_sinX + m22 * cosX;
// rotateY
float nm00 = m00 * cosY + nm20 * m_sinY;
float nm01 = m01 * cosY + nm21 * m_sinY;
float nm02 = m02 * cosY + nm22 * m_sinY;
dest.m20 = m00 * sinY + nm20 * cosY;
dest.m21 = m01 * sinY + nm21 * cosY;
dest.m22 = m02 * sinY + nm22 * cosY;
// rotateZ
dest.m00 = nm00 * cosZ + nm10 * sinZ;
dest.m01 = nm01 * cosZ + nm11 * sinZ;
dest.m02 = nm02 * cosZ + nm12 * sinZ;
dest.m10 = nm00 * m_sinZ + nm10 * cosZ;
dest.m11 = nm01 * m_sinZ + nm11 * cosZ;
dest.m12 = nm02 * m_sinZ + nm12 * cosZ;
// copy last column from 'this'
dest.m30 = m30;
dest.m31 = m31;
dest.m32 = m32;
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
return dest;
}
/**
* Apply rotation of angles.z
radians about the Z axis, followed by a rotation of angles.y
radians about the Y axis and
* followed by a rotation of angles.x
radians about the X axis.
*
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
*
* If M
is this
matrix and R
the rotation matrix,
* then the new matrix will be M * R
. So when transforming a
* vector v
with the new matrix by using M * R * v
, the
* rotation will be applied first!
*
* This method is equivalent to calling: rotateZ(angles.z).rotateY(angles.y).rotateX(angles.x)
*
* @param angles
* the Euler angles
* @return this
*/
public Matrix4x3f rotateZYX(Vector3f angles) {
return rotateZYX(angles.z, angles.y, angles.x);
}
/**
* Apply rotation of angleZ
radians about the Z axis, followed by a rotation of angleY
radians about the Y axis and
* followed by a rotation of angleX
radians about the X axis.
*
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
*
* If M
is this
matrix and R
the rotation matrix,
* then the new matrix will be M * R
. So when transforming a
* vector v
with the new matrix by using M * R * v
, the
* rotation will be applied first!
*
* This method is equivalent to calling: rotateZ(angleZ).rotateY(angleY).rotateX(angleX)
*
* @param angleZ
* the angle to rotate about Z
* @param angleY
* the angle to rotate about Y
* @param angleX
* the angle to rotate about X
* @return this
*/
public Matrix4x3f rotateZYX(float angleZ, float angleY, float angleX) {
return rotateZYX(angleZ, angleY, angleX, this);
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#rotateZYX(float, float, float, org.joml.Matrix4x3f)
*/
public Matrix4x3f rotateZYX(float angleZ, float angleY, float angleX, Matrix4x3f dest) {
if ((properties & PROPERTY_IDENTITY) != 0)
return dest.rotationZYX(angleZ, angleY, angleX);
else if ((properties & PROPERTY_TRANSLATION) != 0) {
float tx = m30, ty = m31, tz = m32;
return dest.rotationZYX(angleZ, angleY, angleX).setTranslation(tx, ty, tz);
}
return rotateZYXInternal(angleZ, angleY, angleX, dest);
}
private Matrix4x3f rotateZYXInternal(float angleZ, float angleY, float angleX, Matrix4x3f dest) {
float sinX = (float) Math.sin(angleX);
float cosX = (float) Math.cosFromSin(sinX, angleX);
float sinY = (float) Math.sin(angleY);
float cosY = (float) Math.cosFromSin(sinY, angleY);
float sinZ = (float) Math.sin(angleZ);
float cosZ = (float) Math.cosFromSin(sinZ, angleZ);
float m_sinZ = -sinZ;
float m_sinY = -sinY;
float m_sinX = -sinX;
// rotateZ
float nm00 = m00 * cosZ + m10 * sinZ;
float nm01 = m01 * cosZ + m11 * sinZ;
float nm02 = m02 * cosZ + m12 * sinZ;
float nm10 = m00 * m_sinZ + m10 * cosZ;
float nm11 = m01 * m_sinZ + m11 * cosZ;
float nm12 = m02 * m_sinZ + m12 * cosZ;
// rotateY
float nm20 = nm00 * sinY + m20 * cosY;
float nm21 = nm01 * sinY + m21 * cosY;
float nm22 = nm02 * sinY + m22 * cosY;
dest.m00 = nm00 * cosY + m20 * m_sinY;
dest.m01 = nm01 * cosY + m21 * m_sinY;
dest.m02 = nm02 * cosY + m22 * m_sinY;
// rotateX
dest.m10 = nm10 * cosX + nm20 * sinX;
dest.m11 = nm11 * cosX + nm21 * sinX;
dest.m12 = nm12 * cosX + nm22 * sinX;
dest.m20 = nm10 * m_sinX + nm20 * cosX;
dest.m21 = nm11 * m_sinX + nm21 * cosX;
dest.m22 = nm12 * m_sinX + nm22 * cosX;
// copy last column from 'this'
dest.m30 = m30;
dest.m31 = m31;
dest.m32 = m32;
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
return dest;
}
/**
* Apply rotation of angles.y
radians about the Y axis, followed by a rotation of angles.x
radians about the X axis and
* followed by a rotation of angles.z
radians about the Z axis.
*
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
*
* If M
is this
matrix and R
the rotation matrix,
* then the new matrix will be M * R
. So when transforming a
* vector v
with the new matrix by using M * R * v
, the
* rotation will be applied first!
*
* This method is equivalent to calling: rotateY(angles.y).rotateX(angles.x).rotateZ(angles.z)
*
* @param angles
* the Euler angles
* @return this
*/
public Matrix4x3f rotateYXZ(Vector3f angles) {
return rotateYXZ(angles.y, angles.x, angles.z);
}
/**
* Apply rotation of angleY
radians about the Y axis, followed by a rotation of angleX
radians about the X axis and
* followed by a rotation of angleZ
radians about the Z axis.
*
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
*
* If M
is this
matrix and R
the rotation matrix,
* then the new matrix will be M * R
. So when transforming a
* vector v
with the new matrix by using M * R * v
, the
* rotation will be applied first!
*
* This method is equivalent to calling: rotateY(angleY).rotateX(angleX).rotateZ(angleZ)
*
* @param angleY
* the angle to rotate about Y
* @param angleX
* the angle to rotate about X
* @param angleZ
* the angle to rotate about Z
* @return this
*/
public Matrix4x3f rotateYXZ(float angleY, float angleX, float angleZ) {
return rotateYXZ(angleY, angleX, angleZ, this);
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#rotateYXZ(float, float, float, org.joml.Matrix4x3f)
*/
public Matrix4x3f rotateYXZ(float angleY, float angleX, float angleZ, Matrix4x3f dest) {
if ((properties & PROPERTY_IDENTITY) != 0)
return dest.rotationYXZ(angleY, angleX, angleZ);
else if ((properties & PROPERTY_TRANSLATION) != 0) {
float tx = m30, ty = m31, tz = m32;
return dest.rotationYXZ(angleY, angleX, angleZ).setTranslation(tx, ty, tz);
}
return rotateYXZInternal(angleY, angleX, angleZ, dest);
}
private Matrix4x3f rotateYXZInternal(float angleY, float angleX, float angleZ, Matrix4x3f dest) {
float sinX = (float) Math.sin(angleX);
float cosX = (float) Math.cosFromSin(sinX, angleX);
float sinY = (float) Math.sin(angleY);
float cosY = (float) Math.cosFromSin(sinY, angleY);
float sinZ = (float) Math.sin(angleZ);
float cosZ = (float) Math.cosFromSin(sinZ, angleZ);
float m_sinY = -sinY;
float m_sinX = -sinX;
float m_sinZ = -sinZ;
// rotateY
float nm20 = m00 * sinY + m20 * cosY;
float nm21 = m01 * sinY + m21 * cosY;
float nm22 = m02 * sinY + m22 * cosY;
float nm00 = m00 * cosY + m20 * m_sinY;
float nm01 = m01 * cosY + m21 * m_sinY;
float nm02 = m02 * cosY + m22 * m_sinY;
// rotateX
float nm10 = m10 * cosX + nm20 * sinX;
float nm11 = m11 * cosX + nm21 * sinX;
float nm12 = m12 * cosX + nm22 * sinX;
dest.m20 = m10 * m_sinX + nm20 * cosX;
dest.m21 = m11 * m_sinX + nm21 * cosX;
dest.m22 = m12 * m_sinX + nm22 * cosX;
// rotateZ
dest.m00 = nm00 * cosZ + nm10 * sinZ;
dest.m01 = nm01 * cosZ + nm11 * sinZ;
dest.m02 = nm02 * cosZ + nm12 * sinZ;
dest.m10 = nm00 * m_sinZ + nm10 * cosZ;
dest.m11 = nm01 * m_sinZ + nm11 * cosZ;
dest.m12 = nm02 * m_sinZ + nm12 * cosZ;
// copy last column from 'this'
dest.m30 = m30;
dest.m31 = m31;
dest.m32 = m32;
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
return dest;
}
/**
* Apply rotation to this matrix by rotating the given amount of radians
* about the specified (x, y, z)
axis and store the result in dest
.
*
* The axis described by the three components needs to be a unit vector.
*
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
*
* If M
is this
matrix and R
the rotation matrix,
* then the new matrix will be M * R
. So when transforming a
* vector v
with the new matrix by using M * R * v
, the
* rotation will be applied first!
*
* In order to set the matrix to a rotation matrix without post-multiplying the rotation
* transformation, use {@link #rotation(float, float, float, float) rotation()}.
*
* Reference: http://en.wikipedia.org
*
* @see #rotation(float, float, float, float)
*
* @param ang
* the angle in radians
* @param x
* the x component of the axis
* @param y
* the y component of the axis
* @param z
* the z component of the axis
* @param dest
* will hold the result
* @return dest
*/
public Matrix4x3f rotate(float ang, float x, float y, float z, Matrix4x3f dest) {
if ((properties & PROPERTY_IDENTITY) != 0)
return dest.rotation(ang, x, y, z);
else if ((properties & PROPERTY_TRANSLATION) != 0)
return rotateTranslation(ang, x, y, z, dest);
return rotateGeneric(ang, x, y, z, dest);
}
private Matrix4x3f rotateGeneric(float ang, float x, float y, float z, Matrix4x3f dest) {
if (y == 0.0f && z == 0.0f)
return rotateX(ang, dest);
else if (x == 0.0f && z == 0.0f)
return rotateY(ang, dest);
else if (x == 0.0f && y == 0.0f)
return rotateZ(ang, dest);
return rotateGenericInternal(ang, x, y, z, dest);
}
private Matrix4x3f rotateGenericInternal(float ang, float x, float y, float z, Matrix4x3f dest) {
float s = (float) Math.sin(ang);
float c = (float) Math.cosFromSin(s, ang);
float C = 1.0f - c;
float xx = x * x, xy = x * y, xz = x * z;
float yy = y * y, yz = y * z;
float zz = z * z;
float rm00 = xx * C + c;
float rm01 = xy * C + z * s;
float rm02 = xz * C - y * s;
float rm10 = xy * C - z * s;
float rm11 = yy * C + c;
float rm12 = yz * C + x * s;
float rm20 = xz * C + y * s;
float rm21 = yz * C - x * s;
float rm22 = zz * C + c;
float nm00 = m00 * rm00 + m10 * rm01 + m20 * rm02;
float nm01 = m01 * rm00 + m11 * rm01 + m21 * rm02;
float nm02 = m02 * rm00 + m12 * rm01 + m22 * rm02;
float nm10 = m00 * rm10 + m10 * rm11 + m20 * rm12;
float nm11 = m01 * rm10 + m11 * rm11 + m21 * rm12;
float nm12 = m02 * rm10 + m12 * rm11 + m22 * rm12;
dest.m20 = m00 * rm20 + m10 * rm21 + m20 * rm22;
dest.m21 = m01 * rm20 + m11 * rm21 + m21 * rm22;
dest.m22 = m02 * rm20 + m12 * rm21 + m22 * rm22;
dest.m00 = nm00;
dest.m01 = nm01;
dest.m02 = nm02;
dest.m10 = nm10;
dest.m11 = nm11;
dest.m12 = nm12;
dest.m30 = m30;
dest.m31 = m31;
dest.m32 = m32;
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
return dest;
}
/**
* Apply rotation to this matrix by rotating the given amount of radians
* about the specified (x, y, z)
axis.
*
* The axis described by the three components needs to be a unit vector.
*
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
*
* If M
is this
matrix and R
the rotation matrix,
* then the new matrix will be M * R
. So when transforming a
* vector v
with the new matrix by using M * R * v
, the
* rotation will be applied first!
*
* In order to set the matrix to a rotation matrix without post-multiplying the rotation
* transformation, use {@link #rotation(float, float, float, float) rotation()}.
*
* Reference: http://en.wikipedia.org
*
* @see #rotation(float, float, float, float)
*
* @param ang
* the angle in radians
* @param x
* the x component of the axis
* @param y
* the y component of the axis
* @param z
* the z component of the axis
* @return this
*/
public Matrix4x3f rotate(float ang, float x, float y, float z) {
return rotate(ang, x, y, z, this);
}
/**
* Apply rotation to this matrix, which is assumed to only contain a translation, by rotating the given amount of radians
* about the specified (x, y, z)
axis and store the result in dest
.
*
* This method assumes this
to only contain a translation.
*
* The axis described by the three components needs to be a unit vector.
*
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
*
* If M
is this
matrix and R
the rotation matrix,
* then the new matrix will be M * R
. So when transforming a
* vector v
with the new matrix by using M * R * v
, the
* rotation will be applied first!
*
* In order to set the matrix to a rotation matrix without post-multiplying the rotation
* transformation, use {@link #rotation(float, float, float, float) rotation()}.
*
* Reference: http://en.wikipedia.org
*
* @see #rotation(float, float, float, float)
*
* @param ang
* the angle in radians
* @param x
* the x component of the axis
* @param y
* the y component of the axis
* @param z
* the z component of the axis
* @param dest
* will hold the result
* @return dest
*/
public Matrix4x3f rotateTranslation(float ang, float x, float y, float z, Matrix4x3f dest) {
float tx = m30, ty = m31, tz = m32;
if (y == 0.0f && z == 0.0f)
return dest.rotationX(ang).setTranslation(tx, ty, tz);
else if (x == 0.0f && z == 0.0f)
return dest.rotationY(ang).setTranslation(tx, ty, tz);
else if (x == 0.0f && y == 0.0f)
return dest.rotationZ(ang).setTranslation(tx, ty, tz);
return rotateTranslationInternal(ang, x, y, z, dest);
}
private Matrix4x3f rotateTranslationInternal(float ang, float x, float y, float z, Matrix4x3f dest) {
float s = (float) Math.sin(ang);
float c = (float) Math.cosFromSin(s, ang);
float C = 1.0f - c;
float xx = x * x, xy = x * y, xz = x * z;
float yy = y * y, yz = y * z;
float zz = z * z;
float rm00 = xx * C + c;
float rm01 = xy * C + z * s;
float rm02 = xz * C - y * s;
float rm10 = xy * C - z * s;
float rm11 = yy * C + c;
float rm12 = yz * C + x * s;
float rm20 = xz * C + y * s;
float rm21 = yz * C - x * s;
float rm22 = zz * C + c;
float nm00 = rm00;
float nm01 = rm01;
float nm02 = rm02;
float nm10 = rm10;
float nm11 = rm11;
float nm12 = rm12;
// set non-dependent values directly
dest.m20 = rm20;
dest.m21 = rm21;
dest.m22 = rm22;
// set other values
dest.m00 = nm00;
dest.m01 = nm01;
dest.m02 = nm02;
dest.m10 = nm10;
dest.m11 = nm11;
dest.m12 = nm12;
dest.m30 = m30;
dest.m31 = m31;
dest.m32 = m32;
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
return dest;
}
/**
* Apply the rotation transformation of the given {@link Quaternionfc} to this matrix while using (ox, oy, oz)
as the rotation origin.
*
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
*
* If M
is this
matrix and Q
the rotation matrix obtained from the given quaternion,
* then the new matrix will be M * Q
. So when transforming a
* vector v
with the new matrix by using M * Q * v
,
* the quaternion rotation will be applied first!
*
* This method is equivalent to calling: translate(ox, oy, oz).rotate(quat).translate(-ox, -oy, -oz)
*
* Reference: http://en.wikipedia.org
*
* @param quat
* the {@link Quaternionfc}
* @param ox
* the x coordinate of the rotation origin
* @param oy
* the y coordinate of the rotation origin
* @param oz
* the z coordinate of the rotation origin
* @return a matrix holding the result
*/
public Matrix4x3f rotateAround(Quaternionfc quat, float ox, float oy, float oz) {
return rotateAround(quat, ox, oy, oz, this);
}
private Matrix4x3f rotateAroundAffine(Quaternionfc quat, float ox, float oy, float oz, Matrix4x3f dest) {
float w2 = quat.w() * quat.w(), x2 = quat.x() * quat.x();
float y2 = quat.y() * quat.y(), z2 = quat.z() * quat.z();
float zw = quat.z() * quat.w(), dzw = zw + zw, xy = quat.x() * quat.y(), dxy = xy + xy;
float xz = quat.x() * quat.z(), dxz = xz + xz, yw = quat.y() * quat.w(), dyw = yw + yw;
float yz = quat.y() * quat.z(), dyz = yz + yz, xw = quat.x() * quat.w(), dxw = xw + xw;
float rm00 = w2 + x2 - z2 - y2;
float rm01 = dxy + dzw;
float rm02 = dxz - dyw;
float rm10 = dxy - dzw;
float rm11 = y2 - z2 + w2 - x2;
float rm12 = dyz + dxw;
float rm20 = dyw + dxz;
float rm21 = dyz - dxw;
float rm22 = z2 - y2 - x2 + w2;
float tm30 = m00 * ox + m10 * oy + m20 * oz + m30;
float tm31 = m01 * ox + m11 * oy + m21 * oz + m31;
float tm32 = m02 * ox + m12 * oy + m22 * oz + m32;
float nm00 = m00 * rm00 + m10 * rm01 + m20 * rm02;
float nm01 = m01 * rm00 + m11 * rm01 + m21 * rm02;
float nm02 = m02 * rm00 + m12 * rm01 + m22 * rm02;
float nm10 = m00 * rm10 + m10 * rm11 + m20 * rm12;
float nm11 = m01 * rm10 + m11 * rm11 + m21 * rm12;
float nm12 = m02 * rm10 + m12 * rm11 + m22 * rm12;
dest._m20(m00 * rm20 + m10 * rm21 + m20 * rm22);
dest._m21(m01 * rm20 + m11 * rm21 + m21 * rm22);
dest._m22(m02 * rm20 + m12 * rm21 + m22 * rm22);
dest._m00(nm00);
dest._m01(nm01);
dest._m02(nm02);
dest._m10(nm10);
dest._m11(nm11);
dest._m12(nm12);
dest._m30(-nm00 * ox - nm10 * oy - m20 * oz + tm30);
dest._m31(-nm01 * ox - nm11 * oy - m21 * oz + tm31);
dest._m32(-nm02 * ox - nm12 * oy - m22 * oz + tm32);
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
return dest;
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#rotateAround(org.joml.Quaternionfc, float, float, float, org.joml.Matrix4x3f)
*/
public Matrix4x3f rotateAround(Quaternionfc quat, float ox, float oy, float oz, Matrix4x3f dest) {
if ((properties & PROPERTY_IDENTITY) != 0)
return rotationAround(quat, ox, oy, oz);
return rotateAroundAffine(quat, ox, oy, oz, dest);
}
/**
* Set this matrix to a transformation composed of a rotation of the specified {@link Quaternionfc} while using (ox, oy, oz)
as the rotation origin.
*
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
*
* This method is equivalent to calling: translation(ox, oy, oz).rotate(quat).translate(-ox, -oy, -oz)
*
* Reference: http://en.wikipedia.org
*
* @param quat
* the {@link Quaternionfc}
* @param ox
* the x coordinate of the rotation origin
* @param oy
* the y coordinate of the rotation origin
* @param oz
* the z coordinate of the rotation origin
* @return this
*/
public Matrix4x3f rotationAround(Quaternionfc quat, float ox, float oy, float oz) {
float w2 = quat.w() * quat.w(), x2 = quat.x() * quat.x();
float y2 = quat.y() * quat.y(), z2 = quat.z() * quat.z();
float zw = quat.z() * quat.w(), dzw = zw + zw, xy = quat.x() * quat.y(), dxy = xy + xy;
float xz = quat.x() * quat.z(), dxz = xz + xz, yw = quat.y() * quat.w(), dyw = yw + yw;
float yz = quat.y() * quat.z(), dyz = yz + yz, xw = quat.x() * quat.w(), dxw = xw + xw;
this._m20(dyw + dxz);
this._m21(dyz - dxw);
this._m22(z2 - y2 - x2 + w2);
this._m00(w2 + x2 - z2 - y2);
this._m01(dxy + dzw);
this._m02(dxz - dyw);
this._m10(dxy - dzw);
this._m11(y2 - z2 + w2 - x2);
this._m12(dyz + dxw);
this._m30(-m00 * ox - m10 * oy - m20 * oz + ox);
this._m31(-m01 * ox - m11 * oy - m21 * oz + oy);
this._m32(-m02 * ox - m12 * oy - m22 * oz + oz);
this.properties = PROPERTY_ORTHONORMAL;
return this;
}
/**
* Pre-multiply a rotation to this matrix by rotating the given amount of radians
* about the specified (x, y, z)
axis and store the result in dest
.
*
* The axis described by the three components needs to be a unit vector.
*
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
*
* If M
is this
matrix and R
the rotation matrix,
* then the new matrix will be R * M
. So when transforming a
* vector v
with the new matrix by using R * M * v
, the
* rotation will be applied last!
*
* In order to set the matrix to a rotation matrix without pre-multiplying the rotation
* transformation, use {@link #rotation(float, float, float, float) rotation()}.
*
* Reference: http://en.wikipedia.org
*
* @see #rotation(float, float, float, float)
*
* @param ang
* the angle in radians
* @param x
* the x component of the axis
* @param y
* the y component of the axis
* @param z
* the z component of the axis
* @param dest
* will hold the result
* @return dest
*/
public Matrix4x3f rotateLocal(float ang, float x, float y, float z, Matrix4x3f dest) {
if (y == 0.0f && z == 0.0f)
return rotateLocalX(ang, dest);
else if (x == 0.0f && z == 0.0f)
return rotateLocalY(ang, dest);
else if (x == 0.0f && y == 0.0f)
return rotateLocalZ(ang, dest);
float s = (float) Math.sin(ang);
float c = (float) Math.cosFromSin(s, ang);
float C = 1.0f - c;
float xx = x * x, xy = x * y, xz = x * z;
float yy = y * y, yz = y * z;
float zz = z * z;
float lm00 = xx * C + c;
float lm01 = xy * C + z * s;
float lm02 = xz * C - y * s;
float lm10 = xy * C - z * s;
float lm11 = yy * C + c;
float lm12 = yz * C + x * s;
float lm20 = xz * C + y * s;
float lm21 = yz * C - x * s;
float lm22 = zz * C + c;
float nm00 = lm00 * m00 + lm10 * m01 + lm20 * m02;
float nm01 = lm01 * m00 + lm11 * m01 + lm21 * m02;
float nm02 = lm02 * m00 + lm12 * m01 + lm22 * m02;
float nm10 = lm00 * m10 + lm10 * m11 + lm20 * m12;
float nm11 = lm01 * m10 + lm11 * m11 + lm21 * m12;
float nm12 = lm02 * m10 + lm12 * m11 + lm22 * m12;
float nm20 = lm00 * m20 + lm10 * m21 + lm20 * m22;
float nm21 = lm01 * m20 + lm11 * m21 + lm21 * m22;
float nm22 = lm02 * m20 + lm12 * m21 + lm22 * m22;
float nm30 = lm00 * m30 + lm10 * m31 + lm20 * m32;
float nm31 = lm01 * m30 + lm11 * m31 + lm21 * m32;
float nm32 = lm02 * m30 + lm12 * m31 + lm22 * m32;
dest.m00 = nm00;
dest.m01 = nm01;
dest.m02 = nm02;
dest.m10 = nm10;
dest.m11 = nm11;
dest.m12 = nm12;
dest.m20 = nm20;
dest.m21 = nm21;
dest.m22 = nm22;
dest.m30 = nm30;
dest.m31 = nm31;
dest.m32 = nm32;
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
return dest;
}
/**
* Pre-multiply a rotation to this matrix by rotating the given amount of radians
* about the specified (x, y, z)
axis.
*
* The axis described by the three components needs to be a unit vector.
*
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
*
* If M
is this
matrix and R
the rotation matrix,
* then the new matrix will be R * M
. So when transforming a
* vector v
with the new matrix by using R * M * v
, the
* rotation will be applied last!
*
* In order to set the matrix to a rotation matrix without pre-multiplying the rotation
* transformation, use {@link #rotation(float, float, float, float) rotation()}.
*
* Reference: http://en.wikipedia.org
*
* @see #rotation(float, float, float, float)
*
* @param ang
* the angle in radians
* @param x
* the x component of the axis
* @param y
* the y component of the axis
* @param z
* the z component of the axis
* @return this
*/
public Matrix4x3f rotateLocal(float ang, float x, float y, float z) {
return rotateLocal(ang, x, y, z, this);
}
/**
* Pre-multiply a rotation around the X axis to this matrix by rotating the given amount of radians
* about the X axis and store the result in dest
.
*
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
*
* If M
is this
matrix and R
the rotation matrix,
* then the new matrix will be R * M
. So when transforming a
* vector v
with the new matrix by using R * M * v
, the
* rotation will be applied last!
*
* In order to set the matrix to a rotation matrix without pre-multiplying the rotation
* transformation, use {@link #rotationX(float) rotationX()}.
*
* Reference: http://en.wikipedia.org
*
* @see #rotationX(float)
*
* @param ang
* the angle in radians to rotate about the X axis
* @param dest
* will hold the result
* @return dest
*/
public Matrix4x3f rotateLocalX(float ang, Matrix4x3f dest) {
float sin = (float) Math.sin(ang);
float cos = (float) Math.cosFromSin(sin, ang);
float nm01 = cos * m01 - sin * m02;
float nm02 = sin * m01 + cos * m02;
float nm11 = cos * m11 - sin * m12;
float nm12 = sin * m11 + cos * m12;
float nm21 = cos * m21 - sin * m22;
float nm22 = sin * m21 + cos * m22;
float nm31 = cos * m31 - sin * m32;
float nm32 = sin * m31 + cos * m32;
dest._m00(m00);
dest._m01(nm01);
dest._m02(nm02);
dest._m10(m10);
dest._m11(nm11);
dest._m12(nm12);
dest._m20(m20);
dest._m21(nm21);
dest._m22(nm22);
dest._m30(m30);
dest._m31(nm31);
dest._m32(nm32);
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
return dest;
}
/**
* Pre-multiply a rotation to this matrix by rotating the given amount of radians about the X axis.
*
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
*
* If M
is this
matrix and R
the rotation matrix,
* then the new matrix will be R * M
. So when transforming a
* vector v
with the new matrix by using R * M * v
, the
* rotation will be applied last!
*
* In order to set the matrix to a rotation matrix without pre-multiplying the rotation
* transformation, use {@link #rotationX(float) rotationX()}.
*
* Reference: http://en.wikipedia.org
*
* @see #rotationX(float)
*
* @param ang
* the angle in radians to rotate about the X axis
* @return a matrix holding the result
*/
public Matrix4x3f rotateLocalX(float ang) {
return rotateLocalX(ang, this);
}
/**
* Pre-multiply a rotation around the Y axis to this matrix by rotating the given amount of radians
* about the Y axis and store the result in dest
.
*
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
*
* If M
is this
matrix and R
the rotation matrix,
* then the new matrix will be R * M
. So when transforming a
* vector v
with the new matrix by using R * M * v
, the
* rotation will be applied last!
*
* In order to set the matrix to a rotation matrix without pre-multiplying the rotation
* transformation, use {@link #rotationY(float) rotationY()}.
*
* Reference: http://en.wikipedia.org
*
* @see #rotationY(float)
*
* @param ang
* the angle in radians to rotate about the Y axis
* @param dest
* will hold the result
* @return dest
*/
public Matrix4x3f rotateLocalY(float ang, Matrix4x3f dest) {
float sin = (float) Math.sin(ang);
float cos = (float) Math.cosFromSin(sin, ang);
float nm00 = cos * m00 + sin * m02;
float nm02 = -sin * m00 + cos * m02;
float nm10 = cos * m10 + sin * m12;
float nm12 = -sin * m10 + cos * m12;
float nm20 = cos * m20 + sin * m22;
float nm22 = -sin * m20 + cos * m22;
float nm30 = cos * m30 + sin * m32;
float nm32 = -sin * m30 + cos * m32;
dest._m00(nm00);
dest._m01(m01);
dest._m02(nm02);
dest._m10(nm10);
dest._m11(m11);
dest._m12(nm12);
dest._m20(nm20);
dest._m21(m21);
dest._m22(nm22);
dest._m30(nm30);
dest._m31(m31);
dest._m32(nm32);
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
return dest;
}
/**
* Pre-multiply a rotation to this matrix by rotating the given amount of radians about the Y axis.
*
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
*
* If M
is this
matrix and R
the rotation matrix,
* then the new matrix will be R * M
. So when transforming a
* vector v
with the new matrix by using R * M * v
, the
* rotation will be applied last!
*
* In order to set the matrix to a rotation matrix without pre-multiplying the rotation
* transformation, use {@link #rotationY(float) rotationY()}.
*
* Reference: http://en.wikipedia.org
*
* @see #rotationY(float)
*
* @param ang
* the angle in radians to rotate about the Y axis
* @return a matrix holding the result
*/
public Matrix4x3f rotateLocalY(float ang) {
return rotateLocalY(ang, this);
}
/**
* Pre-multiply a rotation around the Z axis to this matrix by rotating the given amount of radians
* about the Z axis and store the result in dest
.
*
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
*
* If M
is this
matrix and R
the rotation matrix,
* then the new matrix will be R * M
. So when transforming a
* vector v
with the new matrix by using R * M * v
, the
* rotation will be applied last!
*
* In order to set the matrix to a rotation matrix without pre-multiplying the rotation
* transformation, use {@link #rotationZ(float) rotationZ()}.
*
* Reference: http://en.wikipedia.org
*
* @see #rotationZ(float)
*
* @param ang
* the angle in radians to rotate about the Z axis
* @param dest
* will hold the result
* @return dest
*/
public Matrix4x3f rotateLocalZ(float ang, Matrix4x3f dest) {
float sin = (float) Math.sin(ang);
float cos = (float) Math.cosFromSin(sin, ang);
float nm00 = cos * m00 - sin * m01;
float nm01 = sin * m00 + cos * m01;
float nm10 = cos * m10 - sin * m11;
float nm11 = sin * m10 + cos * m11;
float nm20 = cos * m20 - sin * m21;
float nm21 = sin * m20 + cos * m21;
float nm30 = cos * m30 - sin * m31;
float nm31 = sin * m30 + cos * m31;
dest._m00(nm00);
dest._m01(nm01);
dest._m02(m02);
dest._m10(nm10);
dest._m11(nm11);
dest._m12(m12);
dest._m20(nm20);
dest._m21(nm21);
dest._m22(m22);
dest._m30(nm30);
dest._m31(nm31);
dest._m32(m32);
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
return dest;
}
/**
* Pre-multiply a rotation to this matrix by rotating the given amount of radians about the Z axis.
*
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
*
* If M
is this
matrix and R
the rotation matrix,
* then the new matrix will be R * M
. So when transforming a
* vector v
with the new matrix by using R * M * v
, the
* rotation will be applied last!
*
* In order to set the matrix to a rotation matrix without pre-multiplying the rotation
* transformation, use {@link #rotationZ(float) rotationY()}.
*
* Reference: http://en.wikipedia.org
*
* @see #rotationY(float)
*
* @param ang
* the angle in radians to rotate about the Z axis
* @return a matrix holding the result
*/
public Matrix4x3f rotateLocalZ(float ang) {
return rotateLocalZ(ang, this);
}
/**
* Apply a translation to this matrix by translating by the given number of
* units in x, y and z.
*
* If M
is this
matrix and T
the translation
* matrix, then the new matrix will be M * T
. So when
* transforming a vector v
with the new matrix by using
* M * T * v
, the translation will be applied first!
*
* In order to set the matrix to a translation transformation without post-multiplying
* it, use {@link #translation(Vector3fc)}.
*
* @see #translation(Vector3fc)
*
* @param offset
* the number of units in x, y and z by which to translate
* @return this
*/
public Matrix4x3f translate(Vector3fc offset) {
return translate(offset.x(), offset.y(), offset.z());
}
/**
* Apply a translation to this matrix by translating by the given number of
* units in x, y and z and store the result in dest
.
*
* If M
is this
matrix and T
the translation
* matrix, then the new matrix will be M * T
. So when
* transforming a vector v
with the new matrix by using
* M * T * v
, the translation will be applied first!
*
* In order to set the matrix to a translation transformation without post-multiplying
* it, use {@link #translation(Vector3fc)}.
*
* @see #translation(Vector3fc)
*
* @param offset
* the number of units in x, y and z by which to translate
* @param dest
* will hold the result
* @return dest
*/
public Matrix4x3f translate(Vector3fc offset, Matrix4x3f dest) {
return translate(offset.x(), offset.y(), offset.z(), dest);
}
/**
* Apply a translation to this matrix by translating by the given number of
* units in x, y and z and store the result in dest
.
*
* If M
is this
matrix and T
the translation
* matrix, then the new matrix will be M * T
. So when
* transforming a vector v
with the new matrix by using
* M * T * v
, the translation will be applied first!
*
* In order to set the matrix to a translation transformation without post-multiplying
* it, use {@link #translation(float, float, float)}.
*
* @see #translation(float, float, float)
*
* @param x
* the offset to translate in x
* @param y
* the offset to translate in y
* @param z
* the offset to translate in z
* @param dest
* will hold the result
* @return dest
*/
public Matrix4x3f translate(float x, float y, float z, Matrix4x3f dest) {
if ((properties & PROPERTY_IDENTITY) != 0)
return dest.translation(x, y, z);
return translateGeneric(x, y, z, dest);
}
private Matrix4x3f translateGeneric(float x, float y, float z, Matrix4x3f dest) {
MemUtil.INSTANCE.copy(this, dest);
dest.m30 = m00 * x + m10 * y + m20 * z + m30;
dest.m31 = m01 * x + m11 * y + m21 * z + m31;
dest.m32 = m02 * x + m12 * y + m22 * z + m32;
dest.properties = properties & ~(PROPERTY_IDENTITY);
return dest;
}
/**
* Apply a translation to this matrix by translating by the given number of
* units in x, y and z.
*
* If M
is this
matrix and T
the translation
* matrix, then the new matrix will be M * T
. So when
* transforming a vector v
with the new matrix by using
* M * T * v
, the translation will be applied first!
*
* In order to set the matrix to a translation transformation without post-multiplying
* it, use {@link #translation(float, float, float)}.
*
* @see #translation(float, float, float)
*
* @param x
* the offset to translate in x
* @param y
* the offset to translate in y
* @param z
* the offset to translate in z
* @return this
*/
public Matrix4x3f translate(float x, float y, float z) {
if ((properties & PROPERTY_IDENTITY) != 0)
return translation(x, y, z);
Matrix4x3f c = this;
c.m30 = c.m00 * x + c.m10 * y + c.m20 * z + c.m30;
c.m31 = c.m01 * x + c.m11 * y + c.m21 * z + c.m31;
c.m32 = c.m02 * x + c.m12 * y + c.m22 * z + c.m32;
c.properties &= ~(PROPERTY_IDENTITY);
return this;
}
/**
* Pre-multiply a translation to this matrix by translating by the given number of
* units in x, y and z.
*
* If M
is this
matrix and T
the translation
* matrix, then the new matrix will be T * M
. So when
* transforming a vector v
with the new matrix by using
* T * M * v
, the translation will be applied last!
*
* In order to set the matrix to a translation transformation without pre-multiplying
* it, use {@link #translation(Vector3fc)}.
*
* @see #translation(Vector3fc)
*
* @param offset
* the number of units in x, y and z by which to translate
* @return this
*/
public Matrix4x3f translateLocal(Vector3fc offset) {
return translateLocal(offset.x(), offset.y(), offset.z());
}
/**
* Pre-multiply a translation to this matrix by translating by the given number of
* units in x, y and z and store the result in dest
.
*
* If M
is this
matrix and T
the translation
* matrix, then the new matrix will be T * M
. So when
* transforming a vector v
with the new matrix by using
* T * M * v
, the translation will be applied last!
*
* In order to set the matrix to a translation transformation without pre-multiplying
* it, use {@link #translation(Vector3fc)}.
*
* @see #translation(Vector3fc)
*
* @param offset
* the number of units in x, y and z by which to translate
* @param dest
* will hold the result
* @return dest
*/
public Matrix4x3f translateLocal(Vector3fc offset, Matrix4x3f dest) {
return translateLocal(offset.x(), offset.y(), offset.z(), dest);
}
/**
* Pre-multiply a translation to this matrix by translating by the given number of
* units in x, y and z and store the result in dest
.
*
* If M
is this
matrix and T
the translation
* matrix, then the new matrix will be T * M
. So when
* transforming a vector v
with the new matrix by using
* T * M * v
, the translation will be applied last!
*
* In order to set the matrix to a translation transformation without pre-multiplying
* it, use {@link #translation(float, float, float)}.
*
* @see #translation(float, float, float)
*
* @param x
* the offset to translate in x
* @param y
* the offset to translate in y
* @param z
* the offset to translate in z
* @param dest
* will hold the result
* @return dest
*/
public Matrix4x3f translateLocal(float x, float y, float z, Matrix4x3f dest) {
dest.m00 = m00;
dest.m01 = m01;
dest.m02 = m02;
dest.m10 = m10;
dest.m11 = m11;
dest.m12 = m12;
dest.m20 = m20;
dest.m21 = m21;
dest.m22 = m22;
dest.m30 = m30 + x;
dest.m31 = m31 + y;
dest.m32 = m32 + z;
dest.properties = properties & ~(PROPERTY_IDENTITY);
return dest;
}
/**
* Pre-multiply a translation to this matrix by translating by the given number of
* units in x, y and z.
*
* If M
is this
matrix and T
the translation
* matrix, then the new matrix will be T * M
. So when
* transforming a vector v
with the new matrix by using
* T * M * v
, the translation will be applied last!
*
* In order to set the matrix to a translation transformation without pre-multiplying
* it, use {@link #translation(float, float, float)}.
*
* @see #translation(float, float, float)
*
* @param x
* the offset to translate in x
* @param y
* the offset to translate in y
* @param z
* the offset to translate in z
* @return this
*/
public Matrix4x3f translateLocal(float x, float y, float z) {
return translateLocal(x, y, z, this);
}
public void writeExternal(ObjectOutput out) throws IOException {
out.writeFloat(m00);
out.writeFloat(m01);
out.writeFloat(m02);
out.writeFloat(m10);
out.writeFloat(m11);
out.writeFloat(m12);
out.writeFloat(m20);
out.writeFloat(m21);
out.writeFloat(m22);
out.writeFloat(m30);
out.writeFloat(m31);
out.writeFloat(m32);
}
public void readExternal(ObjectInput in) throws IOException {
m00 = in.readFloat();
m01 = in.readFloat();
m02 = in.readFloat();
m10 = in.readFloat();
m11 = in.readFloat();
m12 = in.readFloat();
m20 = in.readFloat();
m21 = in.readFloat();
m22 = in.readFloat();
m30 = in.readFloat();
m31 = in.readFloat();
m32 = in.readFloat();
determineProperties();
}
/**
* Apply an orthographic projection transformation for a right-handed coordinate system
* using the given NDC z range to this matrix and store the result in dest
.
*
* If M
is this
matrix and O
the orthographic projection matrix,
* then the new matrix will be M * O
. So when transforming a
* vector v
with the new matrix by using M * O * v
, the
* orthographic projection transformation will be applied first!
*
* In order to set the matrix to an orthographic projection without post-multiplying it,
* use {@link #setOrtho(float, float, float, float, float, float, boolean) setOrtho()}.
*
* Reference: http://www.songho.ca
*
* @see #setOrtho(float, float, float, float, float, float, boolean)
*
* @param left
* the distance from the center to the left frustum edge
* @param right
* the distance from the center to the right frustum edge
* @param bottom
* the distance from the center to the bottom frustum edge
* @param top
* the distance from the center to the top frustum edge
* @param zNear
* near clipping plane distance
* @param zFar
* far clipping plane distance
* @param zZeroToOne
* whether to use Vulkan's and Direct3D's NDC z range of [0..+1]
when true
* or whether to use OpenGL's NDC z range of [-1..+1]
when false
* @param dest
* will hold the result
* @return dest
*/
public Matrix4x3f ortho(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne, Matrix4x3f dest) {
// calculate right matrix elements
float rm00 = 2.0f / (right - left);
float rm11 = 2.0f / (top - bottom);
float rm22 = (zZeroToOne ? 1.0f : 2.0f) / (zNear - zFar);
float rm30 = (left + right) / (left - right);
float rm31 = (top + bottom) / (bottom - top);
float rm32 = (zZeroToOne ? zNear : (zFar + zNear)) / (zNear - zFar);
// perform optimized multiplication
// compute the last column first, because other columns do not depend on it
dest.m30 = m00 * rm30 + m10 * rm31 + m20 * rm32 + m30;
dest.m31 = m01 * rm30 + m11 * rm31 + m21 * rm32 + m31;
dest.m32 = m02 * rm30 + m12 * rm31 + m22 * rm32 + m32;
dest.m00 = m00 * rm00;
dest.m01 = m01 * rm00;
dest.m02 = m02 * rm00;
dest.m10 = m10 * rm11;
dest.m11 = m11 * rm11;
dest.m12 = m12 * rm11;
dest.m20 = m20 * rm22;
dest.m21 = m21 * rm22;
dest.m22 = m22 * rm22;
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL);
return dest;
}
/**
* Apply an orthographic projection transformation for a right-handed coordinate system
* using OpenGL's NDC z range of [-1..+1]
to this matrix and store the result in dest
.
*
* If M
is this
matrix and O
the orthographic projection matrix,
* then the new matrix will be M * O
. So when transforming a
* vector v
with the new matrix by using M * O * v
, the
* orthographic projection transformation will be applied first!
*
* In order to set the matrix to an orthographic projection without post-multiplying it,
* use {@link #setOrtho(float, float, float, float, float, float) setOrtho()}.
*
* Reference: http://www.songho.ca
*
* @see #setOrtho(float, float, float, float, float, float)
*
* @param left
* the distance from the center to the left frustum edge
* @param right
* the distance from the center to the right frustum edge
* @param bottom
* the distance from the center to the bottom frustum edge
* @param top
* the distance from the center to the top frustum edge
* @param zNear
* near clipping plane distance
* @param zFar
* far clipping plane distance
* @param dest
* will hold the result
* @return dest
*/
public Matrix4x3f ortho(float left, float right, float bottom, float top, float zNear, float zFar, Matrix4x3f dest) {
return ortho(left, right, bottom, top, zNear, zFar, false, dest);
}
/**
* Apply an orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix.
*
* If M
is this
matrix and O
the orthographic projection matrix,
* then the new matrix will be M * O
. So when transforming a
* vector v
with the new matrix by using M * O * v
, the
* orthographic projection transformation will be applied first!
*
* In order to set the matrix to an orthographic projection without post-multiplying it,
* use {@link #setOrtho(float, float, float, float, float, float, boolean) setOrtho()}.
*
* Reference: http://www.songho.ca
*
* @see #setOrtho(float, float, float, float, float, float, boolean)
*
* @param left
* the distance from the center to the left frustum edge
* @param right
* the distance from the center to the right frustum edge
* @param bottom
* the distance from the center to the bottom frustum edge
* @param top
* the distance from the center to the top frustum edge
* @param zNear
* near clipping plane distance
* @param zFar
* far clipping plane distance
* @param zZeroToOne
* whether to use Vulkan's and Direct3D's NDC z range of [0..+1]
when true
* or whether to use OpenGL's NDC z range of [-1..+1]
when false
* @return this
*/
public Matrix4x3f ortho(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne) {
return ortho(left, right, bottom, top, zNear, zFar, zZeroToOne, this);
}
/**
* Apply an orthographic projection transformation for a right-handed coordinate system
* using OpenGL's NDC z range of [-1..+1]
to this matrix.
*
* If M
is this
matrix and O
the orthographic projection matrix,
* then the new matrix will be M * O
. So when transforming a
* vector v
with the new matrix by using M * O * v
, the
* orthographic projection transformation will be applied first!
*
* In order to set the matrix to an orthographic projection without post-multiplying it,
* use {@link #setOrtho(float, float, float, float, float, float) setOrtho()}.
*
* Reference: http://www.songho.ca
*
* @see #setOrtho(float, float, float, float, float, float)
*
* @param left
* the distance from the center to the left frustum edge
* @param right
* the distance from the center to the right frustum edge
* @param bottom
* the distance from the center to the bottom frustum edge
* @param top
* the distance from the center to the top frustum edge
* @param zNear
* near clipping plane distance
* @param zFar
* far clipping plane distance
* @return this
*/
public Matrix4x3f ortho(float left, float right, float bottom, float top, float zNear, float zFar) {
return ortho(left, right, bottom, top, zNear, zFar, false);
}
/**
* Apply an orthographic projection transformation for a left-handed coordiante system
* using the given NDC z range to this matrix and store the result in dest
.
*
* If M
is this
matrix and O
the orthographic projection matrix,
* then the new matrix will be M * O
. So when transforming a
* vector v
with the new matrix by using M * O * v
, the
* orthographic projection transformation will be applied first!
*
* In order to set the matrix to an orthographic projection without post-multiplying it,
* use {@link #setOrthoLH(float, float, float, float, float, float, boolean) setOrthoLH()}.
*
* Reference: http://www.songho.ca
*
* @see #setOrthoLH(float, float, float, float, float, float, boolean)
*
* @param left
* the distance from the center to the left frustum edge
* @param right
* the distance from the center to the right frustum edge
* @param bottom
* the distance from the center to the bottom frustum edge
* @param top
* the distance from the center to the top frustum edge
* @param zNear
* near clipping plane distance
* @param zFar
* far clipping plane distance
* @param zZeroToOne
* whether to use Vulkan's and Direct3D's NDC z range of [0..+1]
when true
* or whether to use OpenGL's NDC z range of [-1..+1]
when false
* @param dest
* will hold the result
* @return dest
*/
public Matrix4x3f orthoLH(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne, Matrix4x3f dest) {
// calculate right matrix elements
float rm00 = 2.0f / (right - left);
float rm11 = 2.0f / (top - bottom);
float rm22 = (zZeroToOne ? 1.0f : 2.0f) / (zFar - zNear);
float rm30 = (left + right) / (left - right);
float rm31 = (top + bottom) / (bottom - top);
float rm32 = (zZeroToOne ? zNear : (zFar + zNear)) / (zNear - zFar);
// perform optimized multiplication
// compute the last column first, because other columns do not depend on it
dest.m30 = m00 * rm30 + m10 * rm31 + m20 * rm32 + m30;
dest.m31 = m01 * rm30 + m11 * rm31 + m21 * rm32 + m31;
dest.m32 = m02 * rm30 + m12 * rm31 + m22 * rm32 + m32;
dest.m00 = m00 * rm00;
dest.m01 = m01 * rm00;
dest.m02 = m02 * rm00;
dest.m10 = m10 * rm11;
dest.m11 = m11 * rm11;
dest.m12 = m12 * rm11;
dest.m20 = m20 * rm22;
dest.m21 = m21 * rm22;
dest.m22 = m22 * rm22;
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL);
return dest;
}
/**
* Apply an orthographic projection transformation for a left-handed coordiante system
* using OpenGL's NDC z range of [-1..+1]
to this matrix and store the result in dest
.
*
* If M
is this
matrix and O
the orthographic projection matrix,
* then the new matrix will be M * O
. So when transforming a
* vector v
with the new matrix by using M * O * v
, the
* orthographic projection transformation will be applied first!
*
* In order to set the matrix to an orthographic projection without post-multiplying it,
* use {@link #setOrthoLH(float, float, float, float, float, float) setOrthoLH()}.
*
* Reference: http://www.songho.ca
*
* @see #setOrthoLH(float, float, float, float, float, float)
*
* @param left
* the distance from the center to the left frustum edge
* @param right
* the distance from the center to the right frustum edge
* @param bottom
* the distance from the center to the bottom frustum edge
* @param top
* the distance from the center to the top frustum edge
* @param zNear
* near clipping plane distance
* @param zFar
* far clipping plane distance
* @param dest
* will hold the result
* @return dest
*/
public Matrix4x3f orthoLH(float left, float right, float bottom, float top, float zNear, float zFar, Matrix4x3f dest) {
return orthoLH(left, right, bottom, top, zNear, zFar, false, dest);
}
/**
* Apply an orthographic projection transformation for a left-handed coordiante system
* using the given NDC z range to this matrix.
*
* If M
is this
matrix and O
the orthographic projection matrix,
* then the new matrix will be M * O
. So when transforming a
* vector v
with the new matrix by using M * O * v
, the
* orthographic projection transformation will be applied first!
*
* In order to set the matrix to an orthographic projection without post-multiplying it,
* use {@link #setOrthoLH(float, float, float, float, float, float, boolean) setOrthoLH()}.
*
* Reference: http://www.songho.ca
*
* @see #setOrthoLH(float, float, float, float, float, float, boolean)
*
* @param left
* the distance from the center to the left frustum edge
* @param right
* the distance from the center to the right frustum edge
* @param bottom
* the distance from the center to the bottom frustum edge
* @param top
* the distance from the center to the top frustum edge
* @param zNear
* near clipping plane distance
* @param zFar
* far clipping plane distance
* @param zZeroToOne
* whether to use Vulkan's and Direct3D's NDC z range of [0..+1]
when true
* or whether to use OpenGL's NDC z range of [-1..+1]
when false
* @return this
*/
public Matrix4x3f orthoLH(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne) {
return orthoLH(left, right, bottom, top, zNear, zFar, zZeroToOne, this);
}
/**
* Apply an orthographic projection transformation for a left-handed coordiante system
* using OpenGL's NDC z range of [-1..+1]
to this matrix.
*
* If M
is this
matrix and O
the orthographic projection matrix,
* then the new matrix will be M * O
. So when transforming a
* vector v
with the new matrix by using M * O * v
, the
* orthographic projection transformation will be applied first!
*
* In order to set the matrix to an orthographic projection without post-multiplying it,
* use {@link #setOrthoLH(float, float, float, float, float, float) setOrthoLH()}.
*
* Reference: http://www.songho.ca
*
* @see #setOrthoLH(float, float, float, float, float, float)
*
* @param left
* the distance from the center to the left frustum edge
* @param right
* the distance from the center to the right frustum edge
* @param bottom
* the distance from the center to the bottom frustum edge
* @param top
* the distance from the center to the top frustum edge
* @param zNear
* near clipping plane distance
* @param zFar
* far clipping plane distance
* @return this
*/
public Matrix4x3f orthoLH(float left, float right, float bottom, float top, float zNear, float zFar) {
return orthoLH(left, right, bottom, top, zNear, zFar, false);
}
/**
* Set this matrix to be an orthographic projection transformation for a right-handed coordinate system
* using the given NDC z range.
*
* In order to apply the orthographic projection to an already existing transformation,
* use {@link #ortho(float, float, float, float, float, float, boolean) ortho()}.
*
* Reference: http://www.songho.ca
*
* @see #ortho(float, float, float, float, float, float, boolean)
*
* @param left
* the distance from the center to the left frustum edge
* @param right
* the distance from the center to the right frustum edge
* @param bottom
* the distance from the center to the bottom frustum edge
* @param top
* the distance from the center to the top frustum edge
* @param zNear
* near clipping plane distance
* @param zFar
* far clipping plane distance
* @param zZeroToOne
* whether to use Vulkan's and Direct3D's NDC z range of [0..+1]
when true
* or whether to use OpenGL's NDC z range of [-1..+1]
when false
* @return this
*/
public Matrix4x3f setOrtho(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne) {
MemUtil.INSTANCE.identity(this);
m00 = 2.0f / (right - left);
m11 = 2.0f / (top - bottom);
m22 = (zZeroToOne ? 1.0f : 2.0f) / (zNear - zFar);
m30 = (right + left) / (left - right);
m31 = (top + bottom) / (bottom - top);
m32 = (zZeroToOne ? zNear : (zFar + zNear)) / (zNear - zFar);
properties = 0;
return this;
}
/**
* Set this matrix to be an orthographic projection transformation for a right-handed coordinate system
* using OpenGL's NDC z range of [-1..+1]
.
*
* In order to apply the orthographic projection to an already existing transformation,
* use {@link #ortho(float, float, float, float, float, float) ortho()}.
*
* Reference: http://www.songho.ca
*
* @see #ortho(float, float, float, float, float, float)
*
* @param left
* the distance from the center to the left frustum edge
* @param right
* the distance from the center to the right frustum edge
* @param bottom
* the distance from the center to the bottom frustum edge
* @param top
* the distance from the center to the top frustum edge
* @param zNear
* near clipping plane distance
* @param zFar
* far clipping plane distance
* @return this
*/
public Matrix4x3f setOrtho(float left, float right, float bottom, float top, float zNear, float zFar) {
return setOrtho(left, right, bottom, top, zNear, zFar, false);
}
/**
* Set this matrix to be an orthographic projection transformation for a left-handed coordinate system
* using the given NDC z range.
*
* In order to apply the orthographic projection to an already existing transformation,
* use {@link #orthoLH(float, float, float, float, float, float, boolean) orthoLH()}.
*
* Reference: http://www.songho.ca
*
* @see #orthoLH(float, float, float, float, float, float, boolean)
*
* @param left
* the distance from the center to the left frustum edge
* @param right
* the distance from the center to the right frustum edge
* @param bottom
* the distance from the center to the bottom frustum edge
* @param top
* the distance from the center to the top frustum edge
* @param zNear
* near clipping plane distance
* @param zFar
* far clipping plane distance
* @param zZeroToOne
* whether to use Vulkan's and Direct3D's NDC z range of [0..+1]
when true
* or whether to use OpenGL's NDC z range of [-1..+1]
when false
* @return this
*/
public Matrix4x3f setOrthoLH(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne) {
MemUtil.INSTANCE.identity(this);
m00 = 2.0f / (right - left);
m11 = 2.0f / (top - bottom);
m22 = (zZeroToOne ? 1.0f : 2.0f) / (zFar - zNear);
m30 = (right + left) / (left - right);
m31 = (top + bottom) / (bottom - top);
m32 = (zZeroToOne ? zNear : (zFar + zNear)) / (zNear - zFar);
properties = 0;
return this;
}
/**
* Set this matrix to be an orthographic projection transformation for a left-handed coordinate system
* using OpenGL's NDC z range of [-1..+1]
.
*
* In order to apply the orthographic projection to an already existing transformation,
* use {@link #orthoLH(float, float, float, float, float, float) orthoLH()}.
*
* Reference: http://www.songho.ca
*
* @see #orthoLH(float, float, float, float, float, float)
*
* @param left
* the distance from the center to the left frustum edge
* @param right
* the distance from the center to the right frustum edge
* @param bottom
* the distance from the center to the bottom frustum edge
* @param top
* the distance from the center to the top frustum edge
* @param zNear
* near clipping plane distance
* @param zFar
* far clipping plane distance
* @return this
*/
public Matrix4x3f setOrthoLH(float left, float right, float bottom, float top, float zNear, float zFar) {
return setOrthoLH(left, right, bottom, top, zNear, zFar, false);
}
/**
* Apply a symmetric orthographic projection transformation for a right-handed coordinate system
* using the given NDC z range to this matrix and store the result in dest
.
*
* This method is equivalent to calling {@link #ortho(float, float, float, float, float, float, boolean, Matrix4x3f) ortho()} with
* left=-width/2
, right=+width/2
, bottom=-height/2
and top=+height/2
.
*
* If M
is this
matrix and O
the orthographic projection matrix,
* then the new matrix will be M * O
. So when transforming a
* vector v
with the new matrix by using M * O * v
, the
* orthographic projection transformation will be applied first!
*
* In order to set the matrix to a symmetric orthographic projection without post-multiplying it,
* use {@link #setOrthoSymmetric(float, float, float, float, boolean) setOrthoSymmetric()}.
*
* Reference: http://www.songho.ca
*
* @see #setOrthoSymmetric(float, float, float, float, boolean)
*
* @param width
* the distance between the right and left frustum edges
* @param height
* the distance between the top and bottom frustum edges
* @param zNear
* near clipping plane distance
* @param zFar
* far clipping plane distance
* @param dest
* will hold the result
* @param zZeroToOne
* whether to use Vulkan's and Direct3D's NDC z range of [0..+1]
when true
* or whether to use OpenGL's NDC z range of [-1..+1]
when false
* @return dest
*/
public Matrix4x3f orthoSymmetric(float width, float height, float zNear, float zFar, boolean zZeroToOne, Matrix4x3f dest) {
// calculate right matrix elements
float rm00 = 2.0f / width;
float rm11 = 2.0f / height;
float rm22 = (zZeroToOne ? 1.0f : 2.0f) / (zNear - zFar);
float rm32 = (zZeroToOne ? zNear : (zFar + zNear)) / (zNear - zFar);
// perform optimized multiplication
// compute the last column first, because other columns do not depend on it
dest.m30 = m20 * rm32 + m30;
dest.m31 = m21 * rm32 + m31;
dest.m32 = m22 * rm32 + m32;
dest.m00 = m00 * rm00;
dest.m01 = m01 * rm00;
dest.m02 = m02 * rm00;
dest.m10 = m10 * rm11;
dest.m11 = m11 * rm11;
dest.m12 = m12 * rm11;
dest.m20 = m20 * rm22;
dest.m21 = m21 * rm22;
dest.m22 = m22 * rm22;
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL);
return dest;
}
/**
* Apply a symmetric orthographic projection transformation for a right-handed coordinate system
* using OpenGL's NDC z range of [-1..+1]
to this matrix and store the result in dest
.
*
* This method is equivalent to calling {@link #ortho(float, float, float, float, float, float, Matrix4x3f) ortho()} with
* left=-width/2
, right=+width/2
, bottom=-height/2
and top=+height/2
.
*
* If M
is this
matrix and O
the orthographic projection matrix,
* then the new matrix will be M * O
. So when transforming a
* vector v
with the new matrix by using M * O * v
, the
* orthographic projection transformation will be applied first!
*
* In order to set the matrix to a symmetric orthographic projection without post-multiplying it,
* use {@link #setOrthoSymmetric(float, float, float, float) setOrthoSymmetric()}.
*
* Reference: http://www.songho.ca
*
* @see #setOrthoSymmetric(float, float, float, float)
*
* @param width
* the distance between the right and left frustum edges
* @param height
* the distance between the top and bottom frustum edges
* @param zNear
* near clipping plane distance
* @param zFar
* far clipping plane distance
* @param dest
* will hold the result
* @return dest
*/
public Matrix4x3f orthoSymmetric(float width, float height, float zNear, float zFar, Matrix4x3f dest) {
return orthoSymmetric(width, height, zNear, zFar, false, dest);
}
/**
* Apply a symmetric orthographic projection transformation for a right-handed coordinate system
* using the given NDC z range to this matrix.
*
* This method is equivalent to calling {@link #ortho(float, float, float, float, float, float, boolean) ortho()} with
* left=-width/2
, right=+width/2
, bottom=-height/2
and top=+height/2
.
*
* If M
is this
matrix and O
the orthographic projection matrix,
* then the new matrix will be M * O
. So when transforming a
* vector v
with the new matrix by using M * O * v
, the
* orthographic projection transformation will be applied first!
*
* In order to set the matrix to a symmetric orthographic projection without post-multiplying it,
* use {@link #setOrthoSymmetric(float, float, float, float, boolean) setOrthoSymmetric()}.
*
* Reference: http://www.songho.ca
*
* @see #setOrthoSymmetric(float, float, float, float, boolean)
*
* @param width
* the distance between the right and left frustum edges
* @param height
* the distance between the top and bottom frustum edges
* @param zNear
* near clipping plane distance
* @param zFar
* far clipping plane distance
* @param zZeroToOne
* whether to use Vulkan's and Direct3D's NDC z range of [0..+1]
when true
* or whether to use OpenGL's NDC z range of [-1..+1]
when false
* @return this
*/
public Matrix4x3f orthoSymmetric(float width, float height, float zNear, float zFar, boolean zZeroToOne) {
return orthoSymmetric(width, height, zNear, zFar, zZeroToOne, this);
}
/**
* Apply a symmetric orthographic projection transformation for a right-handed coordinate system
* using OpenGL's NDC z range of [-1..+1]
to this matrix.
*
* This method is equivalent to calling {@link #ortho(float, float, float, float, float, float) ortho()} with
* left=-width/2
, right=+width/2
, bottom=-height/2
and top=+height/2
.
*
* If M
is this
matrix and O
the orthographic projection matrix,
* then the new matrix will be M * O
. So when transforming a
* vector v
with the new matrix by using M * O * v
, the
* orthographic projection transformation will be applied first!
*
* In order to set the matrix to a symmetric orthographic projection without post-multiplying it,
* use {@link #setOrthoSymmetric(float, float, float, float) setOrthoSymmetric()}.
*
* Reference: http://www.songho.ca
*
* @see #setOrthoSymmetric(float, float, float, float)
*
* @param width
* the distance between the right and left frustum edges
* @param height
* the distance between the top and bottom frustum edges
* @param zNear
* near clipping plane distance
* @param zFar
* far clipping plane distance
* @return this
*/
public Matrix4x3f orthoSymmetric(float width, float height, float zNear, float zFar) {
return orthoSymmetric(width, height, zNear, zFar, false, this);
}
/**
* Apply a symmetric orthographic projection transformation for a left-handed coordinate system
* using the given NDC z range to this matrix and store the result in dest
.
*
* This method is equivalent to calling {@link #orthoLH(float, float, float, float, float, float, boolean, Matrix4x3f) orthoLH()} with
* left=-width/2
, right=+width/2
, bottom=-height/2
and top=+height/2
.
*
* If M
is this
matrix and O
the orthographic projection matrix,
* then the new matrix will be M * O
. So when transforming a
* vector v
with the new matrix by using M * O * v
, the
* orthographic projection transformation will be applied first!
*
* In order to set the matrix to a symmetric orthographic projection without post-multiplying it,
* use {@link #setOrthoSymmetricLH(float, float, float, float, boolean) setOrthoSymmetricLH()}.
*
* Reference: http://www.songho.ca
*
* @see #setOrthoSymmetricLH(float, float, float, float, boolean)
*
* @param width
* the distance between the right and left frustum edges
* @param height
* the distance between the top and bottom frustum edges
* @param zNear
* near clipping plane distance
* @param zFar
* far clipping plane distance
* @param dest
* will hold the result
* @param zZeroToOne
* whether to use Vulkan's and Direct3D's NDC z range of [0..+1]
when true
* or whether to use OpenGL's NDC z range of [-1..+1]
when false
* @return dest
*/
public Matrix4x3f orthoSymmetricLH(float width, float height, float zNear, float zFar, boolean zZeroToOne, Matrix4x3f dest) {
// calculate right matrix elements
float rm00 = 2.0f / width;
float rm11 = 2.0f / height;
float rm22 = (zZeroToOne ? 1.0f : 2.0f) / (zFar - zNear);
float rm32 = (zZeroToOne ? zNear : (zFar + zNear)) / (zNear - zFar);
// perform optimized multiplication
// compute the last column first, because other columns do not depend on it
dest.m30 = m20 * rm32 + m30;
dest.m31 = m21 * rm32 + m31;
dest.m32 = m22 * rm32 + m32;
dest.m00 = m00 * rm00;
dest.m01 = m01 * rm00;
dest.m02 = m02 * rm00;
dest.m10 = m10 * rm11;
dest.m11 = m11 * rm11;
dest.m12 = m12 * rm11;
dest.m20 = m20 * rm22;
dest.m21 = m21 * rm22;
dest.m22 = m22 * rm22;
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL);
return dest;
}
/**
* Apply a symmetric orthographic projection transformation for a left-handed coordinate system
* using OpenGL's NDC z range of [-1..+1]
to this matrix and store the result in dest
.
*
* This method is equivalent to calling {@link #orthoLH(float, float, float, float, float, float, Matrix4x3f) orthoLH()} with
* left=-width/2
, right=+width/2
, bottom=-height/2
and top=+height/2
.
*
* If M
is this
matrix and O
the orthographic projection matrix,
* then the new matrix will be M * O
. So when transforming a
* vector v
with the new matrix by using M * O * v
, the
* orthographic projection transformation will be applied first!
*
* In order to set the matrix to a symmetric orthographic projection without post-multiplying it,
* use {@link #setOrthoSymmetricLH(float, float, float, float) setOrthoSymmetricLH()}.
*
* Reference: http://www.songho.ca
*
* @see #setOrthoSymmetricLH(float, float, float, float)
*
* @param width
* the distance between the right and left frustum edges
* @param height
* the distance between the top and bottom frustum edges
* @param zNear
* near clipping plane distance
* @param zFar
* far clipping plane distance
* @param dest
* will hold the result
* @return dest
*/
public Matrix4x3f orthoSymmetricLH(float width, float height, float zNear, float zFar, Matrix4x3f dest) {
return orthoSymmetricLH(width, height, zNear, zFar, false, dest);
}
/**
* Apply a symmetric orthographic projection transformation for a left-handed coordinate system
* using the given NDC z range to this matrix.
*
* This method is equivalent to calling {@link #orthoLH(float, float, float, float, float, float, boolean) orthoLH()} with
* left=-width/2
, right=+width/2
, bottom=-height/2
and top=+height/2
.
*
* If M
is this
matrix and O
the orthographic projection matrix,
* then the new matrix will be M * O
. So when transforming a
* vector v
with the new matrix by using M * O * v
, the
* orthographic projection transformation will be applied first!
*
* In order to set the matrix to a symmetric orthographic projection without post-multiplying it,
* use {@link #setOrthoSymmetricLH(float, float, float, float, boolean) setOrthoSymmetricLH()}.
*
* Reference: http://www.songho.ca
*
* @see #setOrthoSymmetricLH(float, float, float, float, boolean)
*
* @param width
* the distance between the right and left frustum edges
* @param height
* the distance between the top and bottom frustum edges
* @param zNear
* near clipping plane distance
* @param zFar
* far clipping plane distance
* @param zZeroToOne
* whether to use Vulkan's and Direct3D's NDC z range of [0..+1]
when true
* or whether to use OpenGL's NDC z range of [-1..+1]
when false
* @return this
*/
public Matrix4x3f orthoSymmetricLH(float width, float height, float zNear, float zFar, boolean zZeroToOne) {
return orthoSymmetricLH(width, height, zNear, zFar, zZeroToOne, this);
}
/**
* Apply a symmetric orthographic projection transformation for a left-handed coordinate system
* using OpenGL's NDC z range of [-1..+1]
to this matrix.
*
* This method is equivalent to calling {@link #orthoLH(float, float, float, float, float, float) orthoLH()} with
* left=-width/2
, right=+width/2
, bottom=-height/2
and top=+height/2
.
*
* If M
is this
matrix and O
the orthographic projection matrix,
* then the new matrix will be M * O
. So when transforming a
* vector v
with the new matrix by using M * O * v
, the
* orthographic projection transformation will be applied first!
*
* In order to set the matrix to a symmetric orthographic projection without post-multiplying it,
* use {@link #setOrthoSymmetricLH(float, float, float, float) setOrthoSymmetricLH()}.
*
* Reference: http://www.songho.ca
*
* @see #setOrthoSymmetricLH(float, float, float, float)
*
* @param width
* the distance between the right and left frustum edges
* @param height
* the distance between the top and bottom frustum edges
* @param zNear
* near clipping plane distance
* @param zFar
* far clipping plane distance
* @return this
*/
public Matrix4x3f orthoSymmetricLH(float width, float height, float zNear, float zFar) {
return orthoSymmetricLH(width, height, zNear, zFar, false, this);
}
/**
* Set this matrix to be a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range.
*
* This method is equivalent to calling {@link #setOrtho(float, float, float, float, float, float, boolean) setOrtho()} with
* left=-width/2
, right=+width/2
, bottom=-height/2
and top=+height/2
.
*
* In order to apply the symmetric orthographic projection to an already existing transformation,
* use {@link #orthoSymmetric(float, float, float, float, boolean) orthoSymmetric()}.
*
* Reference: http://www.songho.ca
*
* @see #orthoSymmetric(float, float, float, float, boolean)
*
* @param width
* the distance between the right and left frustum edges
* @param height
* the distance between the top and bottom frustum edges
* @param zNear
* near clipping plane distance
* @param zFar
* far clipping plane distance
* @param zZeroToOne
* whether to use Vulkan's and Direct3D's NDC z range of [0..+1]
when true
* or whether to use OpenGL's NDC z range of [-1..+1]
when false
* @return this
*/
public Matrix4x3f setOrthoSymmetric(float width, float height, float zNear, float zFar, boolean zZeroToOne) {
MemUtil.INSTANCE.identity(this);
m00 = 2.0f / width;
m11 = 2.0f / height;
m22 = (zZeroToOne ? 1.0f : 2.0f) / (zNear - zFar);
m32 = (zZeroToOne ? zNear : (zFar + zNear)) / (zNear - zFar);
properties = 0;
return this;
}
/**
* Set this matrix to be a symmetric orthographic projection transformation for a right-handed coordinate system
* using OpenGL's NDC z range of [-1..+1]
.
*
* This method is equivalent to calling {@link #setOrtho(float, float, float, float, float, float) setOrtho()} with
* left=-width/2
, right=+width/2
, bottom=-height/2
and top=+height/2
.
*
* In order to apply the symmetric orthographic projection to an already existing transformation,
* use {@link #orthoSymmetric(float, float, float, float) orthoSymmetric()}.
*
* Reference: http://www.songho.ca
*
* @see #orthoSymmetric(float, float, float, float)
*
* @param width
* the distance between the right and left frustum edges
* @param height
* the distance between the top and bottom frustum edges
* @param zNear
* near clipping plane distance
* @param zFar
* far clipping plane distance
* @return this
*/
public Matrix4x3f setOrthoSymmetric(float width, float height, float zNear, float zFar) {
return setOrthoSymmetric(width, height, zNear, zFar, false);
}
/**
* Set this matrix to be a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range.
*
* This method is equivalent to calling {@link #setOrtho(float, float, float, float, float, float, boolean) setOrtho()} with
* left=-width/2
, right=+width/2
, bottom=-height/2
and top=+height/2
.
*
* In order to apply the symmetric orthographic projection to an already existing transformation,
* use {@link #orthoSymmetricLH(float, float, float, float, boolean) orthoSymmetricLH()}.
*
* Reference: http://www.songho.ca
*
* @see #orthoSymmetricLH(float, float, float, float, boolean)
*
* @param width
* the distance between the right and left frustum edges
* @param height
* the distance between the top and bottom frustum edges
* @param zNear
* near clipping plane distance
* @param zFar
* far clipping plane distance
* @param zZeroToOne
* whether to use Vulkan's and Direct3D's NDC z range of [0..+1]
when true
* or whether to use OpenGL's NDC z range of [-1..+1]
when false
* @return this
*/
public Matrix4x3f setOrthoSymmetricLH(float width, float height, float zNear, float zFar, boolean zZeroToOne) {
MemUtil.INSTANCE.identity(this);
m00 = 2.0f / width;
m11 = 2.0f / height;
m22 = (zZeroToOne ? 1.0f : 2.0f) / (zFar - zNear);
m32 = (zZeroToOne ? zNear : (zFar + zNear)) / (zNear - zFar);
properties = 0;
return this;
}
/**
* Set this matrix to be a symmetric orthographic projection transformation for a left-handed coordinate system
* using OpenGL's NDC z range of [-1..+1]
.
*
* This method is equivalent to calling {@link #setOrthoLH(float, float, float, float, float, float) setOrthoLH()} with
* left=-width/2
, right=+width/2
, bottom=-height/2
and top=+height/2
.
*
* In order to apply the symmetric orthographic projection to an already existing transformation,
* use {@link #orthoSymmetricLH(float, float, float, float) orthoSymmetricLH()}.
*
* Reference: http://www.songho.ca
*
* @see #orthoSymmetricLH(float, float, float, float)
*
* @param width
* the distance between the right and left frustum edges
* @param height
* the distance between the top and bottom frustum edges
* @param zNear
* near clipping plane distance
* @param zFar
* far clipping plane distance
* @return this
*/
public Matrix4x3f setOrthoSymmetricLH(float width, float height, float zNear, float zFar) {
return setOrthoSymmetricLH(width, height, zNear, zFar, false);
}
/**
* Apply an orthographic projection transformation for a right-handed coordinate system to this matrix
* and store the result in dest
.
*
* This method is equivalent to calling {@link #ortho(float, float, float, float, float, float, Matrix4x3f) ortho()} with
* zNear=-1
and zFar=+1
.
*
* If M
is this
matrix and O
the orthographic projection matrix,
* then the new matrix will be M * O
. So when transforming a
* vector v
with the new matrix by using M * O * v
, the
* orthographic projection transformation will be applied first!
*
* In order to set the matrix to an orthographic projection without post-multiplying it,
* use {@link #setOrtho2D(float, float, float, float) setOrtho()}.
*
* Reference: http://www.songho.ca
*
* @see #ortho(float, float, float, float, float, float, Matrix4x3f)
* @see #setOrtho2D(float, float, float, float)
*
* @param left
* the distance from the center to the left frustum edge
* @param right
* the distance from the center to the right frustum edge
* @param bottom
* the distance from the center to the bottom frustum edge
* @param top
* the distance from the center to the top frustum edge
* @param dest
* will hold the result
* @return dest
*/
public Matrix4x3f ortho2D(float left, float right, float bottom, float top, Matrix4x3f dest) {
// calculate right matrix elements
float rm00 = 2.0f / (right - left);
float rm11 = 2.0f / (top - bottom);
float rm30 = -(right + left) / (right - left);
float rm31 = -(top + bottom) / (top - bottom);
// perform optimized multiplication
// compute the last column first, because other columns do not depend on it
dest.m30 = m00 * rm30 + m10 * rm31 + m30;
dest.m31 = m01 * rm30 + m11 * rm31 + m31;
dest.m32 = m02 * rm30 + m12 * rm31 + m32;
dest.m00 = m00 * rm00;
dest.m01 = m01 * rm00;
dest.m02 = m02 * rm00;
dest.m10 = m10 * rm11;
dest.m11 = m11 * rm11;
dest.m12 = m12 * rm11;
dest.m20 = -m20;
dest.m21 = -m21;
dest.m22 = -m22;
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL);
return dest;
}
/**
* Apply an orthographic projection transformation for a right-handed coordinate system to this matrix.
*
* This method is equivalent to calling {@link #ortho(float, float, float, float, float, float) ortho()} with
* zNear=-1
and zFar=+1
.
*
* If M
is this
matrix and O
the orthographic projection matrix,
* then the new matrix will be M * O
. So when transforming a
* vector v
with the new matrix by using M * O * v
, the
* orthographic projection transformation will be applied first!
*
* In order to set the matrix to an orthographic projection without post-multiplying it,
* use {@link #setOrtho2D(float, float, float, float) setOrtho2D()}.
*
* Reference: http://www.songho.ca
*
* @see #ortho(float, float, float, float, float, float)
* @see #setOrtho2D(float, float, float, float)
*
* @param left
* the distance from the center to the left frustum edge
* @param right
* the distance from the center to the right frustum edge
* @param bottom
* the distance from the center to the bottom frustum edge
* @param top
* the distance from the center to the top frustum edge
* @return this
*/
public Matrix4x3f ortho2D(float left, float right, float bottom, float top) {
return ortho2D(left, right, bottom, top, this);
}
/**
* Apply an orthographic projection transformation for a left-handed coordinate system to this matrix and store the result in dest
.
*
* This method is equivalent to calling {@link #orthoLH(float, float, float, float, float, float, Matrix4x3f) orthoLH()} with
* zNear=-1
and zFar=+1
.
*
* If M
is this
matrix and O
the orthographic projection matrix,
* then the new matrix will be M * O
. So when transforming a
* vector v
with the new matrix by using M * O * v
, the
* orthographic projection transformation will be applied first!
*
* In order to set the matrix to an orthographic projection without post-multiplying it,
* use {@link #setOrtho2DLH(float, float, float, float) setOrthoLH()}.
*
* Reference: http://www.songho.ca
*
* @see #orthoLH(float, float, float, float, float, float, Matrix4x3f)
* @see #setOrtho2DLH(float, float, float, float)
*
* @param left
* the distance from the center to the left frustum edge
* @param right
* the distance from the center to the right frustum edge
* @param bottom
* the distance from the center to the bottom frustum edge
* @param top
* the distance from the center to the top frustum edge
* @param dest
* will hold the result
* @return dest
*/
public Matrix4x3f ortho2DLH(float left, float right, float bottom, float top, Matrix4x3f dest) {
// calculate right matrix elements
float rm00 = 2.0f / (right - left);
float rm11 = 2.0f / (top - bottom);
float rm30 = -(right + left) / (right - left);
float rm31 = -(top + bottom) / (top - bottom);
// perform optimized multiplication
// compute the last column first, because other columns do not depend on it
dest.m30 = m00 * rm30 + m10 * rm31 + m30;
dest.m31 = m01 * rm30 + m11 * rm31 + m31;
dest.m32 = m02 * rm30 + m12 * rm31 + m32;
dest.m00 = m00 * rm00;
dest.m01 = m01 * rm00;
dest.m02 = m02 * rm00;
dest.m10 = m10 * rm11;
dest.m11 = m11 * rm11;
dest.m12 = m12 * rm11;
dest.m20 = m20;
dest.m21 = m21;
dest.m22 = m22;
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL);
return dest;
}
/**
* Apply an orthographic projection transformation for a left-handed coordinate system to this matrix.
*
* This method is equivalent to calling {@link #orthoLH(float, float, float, float, float, float) orthoLH()} with
* zNear=-1
and zFar=+1
.
*
* If M
is this
matrix and O
the orthographic projection matrix,
* then the new matrix will be M * O
. So when transforming a
* vector v
with the new matrix by using M * O * v
, the
* orthographic projection transformation will be applied first!
*
* In order to set the matrix to an orthographic projection without post-multiplying it,
* use {@link #setOrtho2DLH(float, float, float, float) setOrtho2DLH()}.
*
* Reference: http://www.songho.ca
*
* @see #orthoLH(float, float, float, float, float, float)
* @see #setOrtho2DLH(float, float, float, float)
*
* @param left
* the distance from the center to the left frustum edge
* @param right
* the distance from the center to the right frustum edge
* @param bottom
* the distance from the center to the bottom frustum edge
* @param top
* the distance from the center to the top frustum edge
* @return this
*/
public Matrix4x3f ortho2DLH(float left, float right, float bottom, float top) {
return ortho2DLH(left, right, bottom, top, this);
}
/**
* Set this matrix to be an orthographic projection transformation for a right-handed coordinate system.
*
* This method is equivalent to calling {@link #setOrtho(float, float, float, float, float, float) setOrtho()} with
* zNear=-1
and zFar=+1
.
*
* In order to apply the orthographic projection to an already existing transformation,
* use {@link #ortho2D(float, float, float, float) ortho2D()}.
*
* Reference: http://www.songho.ca
*
* @see #setOrtho(float, float, float, float, float, float)
* @see #ortho2D(float, float, float, float)
*
* @param left
* the distance from the center to the left frustum edge
* @param right
* the distance from the center to the right frustum edge
* @param bottom
* the distance from the center to the bottom frustum edge
* @param top
* the distance from the center to the top frustum edge
* @return this
*/
public Matrix4x3f setOrtho2D(float left, float right, float bottom, float top) {
MemUtil.INSTANCE.identity(this);
m00 = 2.0f / (right - left);
m11 = 2.0f / (top - bottom);
m22 = -1.0f;
m30 = -(right + left) / (right - left);
m31 = -(top + bottom) / (top - bottom);
properties = 0;
return this;
}
/**
* Set this matrix to be an orthographic projection transformation for a left-handed coordinate system.
*
* This method is equivalent to calling {@link #setOrtho(float, float, float, float, float, float) setOrthoLH()} with
* zNear=-1
and zFar=+1
.
*
* In order to apply the orthographic projection to an already existing transformation,
* use {@link #ortho2DLH(float, float, float, float) ortho2DLH()}.
*
* Reference: http://www.songho.ca
*
* @see #setOrthoLH(float, float, float, float, float, float)
* @see #ortho2DLH(float, float, float, float)
*
* @param left
* the distance from the center to the left frustum edge
* @param right
* the distance from the center to the right frustum edge
* @param bottom
* the distance from the center to the bottom frustum edge
* @param top
* the distance from the center to the top frustum edge
* @return this
*/
public Matrix4x3f setOrtho2DLH(float left, float right, float bottom, float top) {
MemUtil.INSTANCE.identity(this);
m00 = 2.0f / (right - left);
m11 = 2.0f / (top - bottom);
m22 = 1.0f;
m30 = -(right + left) / (right - left);
m31 = -(top + bottom) / (top - bottom);
properties = 0;
return this;
}
/**
* Apply a rotation transformation to this matrix to make -z
point along dir
.
*
* If M
is this
matrix and L
the lookalong rotation matrix,
* then the new matrix will be M * L
. So when transforming a
* vector v
with the new matrix by using M * L * v
, the
* lookalong rotation transformation will be applied first!
*
* This is equivalent to calling
* {@link #lookAt(Vector3fc, Vector3fc, Vector3fc) lookAt}
* with eye = (0, 0, 0)
and center = dir
.
*
* In order to set the matrix to a lookalong transformation without post-multiplying it,
* use {@link #setLookAlong(Vector3fc, Vector3fc) setLookAlong()}.
*
* @see #lookAlong(float, float, float, float, float, float)
* @see #lookAt(Vector3fc, Vector3fc, Vector3fc)
* @see #setLookAlong(Vector3fc, Vector3fc)
*
* @param dir
* the direction in space to look along
* @param up
* the direction of 'up'
* @return this
*/
public Matrix4x3f lookAlong(Vector3fc dir, Vector3fc up) {
return lookAlong(dir.x(), dir.y(), dir.z(), up.x(), up.y(), up.z(), this);
}
/**
* Apply a rotation transformation to this matrix to make -z
point along dir
* and store the result in dest
.
*
* If M
is this
matrix and L
the lookalong rotation matrix,
* then the new matrix will be M * L
. So when transforming a
* vector v
with the new matrix by using M * L * v
, the
* lookalong rotation transformation will be applied first!
*
* This is equivalent to calling
* {@link #lookAt(Vector3fc, Vector3fc, Vector3fc) lookAt}
* with eye = (0, 0, 0)
and center = dir
.
*
* In order to set the matrix to a lookalong transformation without post-multiplying it,
* use {@link #setLookAlong(Vector3fc, Vector3fc) setLookAlong()}.
*
* @see #lookAlong(float, float, float, float, float, float)
* @see #lookAt(Vector3fc, Vector3fc, Vector3fc)
* @see #setLookAlong(Vector3fc, Vector3fc)
*
* @param dir
* the direction in space to look along
* @param up
* the direction of 'up'
* @param dest
* will hold the result
* @return dest
*/
public Matrix4x3f lookAlong(Vector3fc dir, Vector3fc up, Matrix4x3f dest) {
return lookAlong(dir.x(), dir.y(), dir.z(), up.x(), up.y(), up.z(), dest);
}
/**
* Apply a rotation transformation to this matrix to make -z
point along dir
* and store the result in dest
.
*
* If M
is this
matrix and L
the lookalong rotation matrix,
* then the new matrix will be M * L
. So when transforming a
* vector v
with the new matrix by using M * L * v
, the
* lookalong rotation transformation will be applied first!
*
* This is equivalent to calling
* {@link #lookAt(float, float, float, float, float, float, float, float, float) lookAt()}
* with eye = (0, 0, 0)
and center = dir
.
*
* In order to set the matrix to a lookalong transformation without post-multiplying it,
* use {@link #setLookAlong(float, float, float, float, float, float) setLookAlong()}
*
* @see #lookAt(float, float, float, float, float, float, float, float, float)
* @see #setLookAlong(float, float, float, float, float, float)
*
* @param dirX
* the x-coordinate of the direction to look along
* @param dirY
* the y-coordinate of the direction to look along
* @param dirZ
* the z-coordinate of the direction to look along
* @param upX
* the x-coordinate of the up vector
* @param upY
* the y-coordinate of the up vector
* @param upZ
* the z-coordinate of the up vector
* @param dest
* will hold the result
* @return dest
*/
public Matrix4x3f lookAlong(float dirX, float dirY, float dirZ, float upX, float upY, float upZ, Matrix4x3f dest) {
if ((properties & PROPERTY_IDENTITY) != 0)
return setLookAlong(dirX, dirY, dirZ, upX, upY, upZ);
// Normalize direction
float invDirLength = 1.0f / (float) Math.sqrt(dirX * dirX + dirY * dirY + dirZ * dirZ);
dirX *= -invDirLength;
dirY *= -invDirLength;
dirZ *= -invDirLength;
// left = up x direction
float leftX, leftY, leftZ;
leftX = upY * dirZ - upZ * dirY;
leftY = upZ * dirX - upX * dirZ;
leftZ = upX * dirY - upY * dirX;
// normalize left
float invLeftLength = 1.0f / (float) Math.sqrt(leftX * leftX + leftY * leftY + leftZ * leftZ);
leftX *= invLeftLength;
leftY *= invLeftLength;
leftZ *= invLeftLength;
// up = direction x left
float upnX = dirY * leftZ - dirZ * leftY;
float upnY = dirZ * leftX - dirX * leftZ;
float upnZ = dirX * leftY - dirY * leftX;
// calculate right matrix elements
float rm00 = leftX;
float rm01 = upnX;
float rm02 = dirX;
float rm10 = leftY;
float rm11 = upnY;
float rm12 = dirY;
float rm20 = leftZ;
float rm21 = upnZ;
float rm22 = dirZ;
// perform optimized matrix multiplication
// introduce temporaries for dependent results
float nm00 = m00 * rm00 + m10 * rm01 + m20 * rm02;
float nm01 = m01 * rm00 + m11 * rm01 + m21 * rm02;
float nm02 = m02 * rm00 + m12 * rm01 + m22 * rm02;
float nm10 = m00 * rm10 + m10 * rm11 + m20 * rm12;
float nm11 = m01 * rm10 + m11 * rm11 + m21 * rm12;
float nm12 = m02 * rm10 + m12 * rm11 + m22 * rm12;
dest.m20 = m00 * rm20 + m10 * rm21 + m20 * rm22;
dest.m21 = m01 * rm20 + m11 * rm21 + m21 * rm22;
dest.m22 = m02 * rm20 + m12 * rm21 + m22 * rm22;
// set the rest of the matrix elements
dest.m00 = nm00;
dest.m01 = nm01;
dest.m02 = nm02;
dest.m10 = nm10;
dest.m11 = nm11;
dest.m12 = nm12;
dest.m30 = m30;
dest.m31 = m31;
dest.m32 = m32;
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
return dest;
}
/**
* Apply a rotation transformation to this matrix to make -z
point along dir
.
*
* If M
is this
matrix and L
the lookalong rotation matrix,
* then the new matrix will be M * L
. So when transforming a
* vector v
with the new matrix by using M * L * v
, the
* lookalong rotation transformation will be applied first!
*
* This is equivalent to calling
* {@link #lookAt(float, float, float, float, float, float, float, float, float) lookAt()}
* with eye = (0, 0, 0)
and center = dir
.
*
* In order to set the matrix to a lookalong transformation without post-multiplying it,
* use {@link #setLookAlong(float, float, float, float, float, float) setLookAlong()}
*
* @see #lookAt(float, float, float, float, float, float, float, float, float)
* @see #setLookAlong(float, float, float, float, float, float)
*
* @param dirX
* the x-coordinate of the direction to look along
* @param dirY
* the y-coordinate of the direction to look along
* @param dirZ
* the z-coordinate of the direction to look along
* @param upX
* the x-coordinate of the up vector
* @param upY
* the y-coordinate of the up vector
* @param upZ
* the z-coordinate of the up vector
* @return this
*/
public Matrix4x3f lookAlong(float dirX, float dirY, float dirZ, float upX, float upY, float upZ) {
return lookAlong(dirX, dirY, dirZ, upX, upY, upZ, this);
}
/**
* Set this matrix to a rotation transformation to make -z
* point along dir
.
*
* This is equivalent to calling
* {@link #setLookAt(Vector3fc, Vector3fc, Vector3fc) setLookAt()}
* with eye = (0, 0, 0)
and center = dir
.
*
* In order to apply the lookalong transformation to any previous existing transformation,
* use {@link #lookAlong(Vector3fc, Vector3fc)}.
*
* @see #setLookAlong(Vector3fc, Vector3fc)
* @see #lookAlong(Vector3fc, Vector3fc)
*
* @param dir
* the direction in space to look along
* @param up
* the direction of 'up'
* @return this
*/
public Matrix4x3f setLookAlong(Vector3fc dir, Vector3fc up) {
return setLookAlong(dir.x(), dir.y(), dir.z(), up.x(), up.y(), up.z());
}
/**
* Set this matrix to a rotation transformation to make -z
* point along dir
.
*
* This is equivalent to calling
* {@link #setLookAt(float, float, float, float, float, float, float, float, float)
* setLookAt()} with eye = (0, 0, 0)
and center = dir
.
*
* In order to apply the lookalong transformation to any previous existing transformation,
* use {@link #lookAlong(float, float, float, float, float, float) lookAlong()}
*
* @see #setLookAlong(float, float, float, float, float, float)
* @see #lookAlong(float, float, float, float, float, float)
*
* @param dirX
* the x-coordinate of the direction to look along
* @param dirY
* the y-coordinate of the direction to look along
* @param dirZ
* the z-coordinate of the direction to look along
* @param upX
* the x-coordinate of the up vector
* @param upY
* the y-coordinate of the up vector
* @param upZ
* the z-coordinate of the up vector
* @return this
*/
public Matrix4x3f setLookAlong(float dirX, float dirY, float dirZ, float upX, float upY, float upZ) {
// Normalize direction
float invDirLength = 1.0f / (float) Math.sqrt(dirX * dirX + dirY * dirY + dirZ * dirZ);
dirX *= -invDirLength;
dirY *= -invDirLength;
dirZ *= -invDirLength;
// left = up x direction
float leftX, leftY, leftZ;
leftX = upY * dirZ - upZ * dirY;
leftY = upZ * dirX - upX * dirZ;
leftZ = upX * dirY - upY * dirX;
// normalize left
float invLeftLength = 1.0f / (float) Math.sqrt(leftX * leftX + leftY * leftY + leftZ * leftZ);
leftX *= invLeftLength;
leftY *= invLeftLength;
leftZ *= invLeftLength;
// up = direction x left
float upnX = dirY * leftZ - dirZ * leftY;
float upnY = dirZ * leftX - dirX * leftZ;
float upnZ = dirX * leftY - dirY * leftX;
m00 = leftX;
m01 = upnX;
m02 = dirX;
m10 = leftY;
m11 = upnY;
m12 = dirY;
m20 = leftZ;
m21 = upnZ;
m22 = dirZ;
m30 = 0.0f;
m31 = 0.0f;
m32 = 0.0f;
properties = PROPERTY_ORTHONORMAL;
return this;
}
/**
* Set this matrix to be a "lookat" transformation for a right-handed coordinate system, that aligns
* -z
with center - eye
.
*
* In order to not make use of vectors to specify eye
, center
and up
but use primitives,
* like in the GLU function, use {@link #setLookAt(float, float, float, float, float, float, float, float, float) setLookAt()}
* instead.
*
* In order to apply the lookat transformation to a previous existing transformation,
* use {@link #lookAt(Vector3fc, Vector3fc, Vector3fc) lookAt()}.
*
* @see #setLookAt(float, float, float, float, float, float, float, float, float)
* @see #lookAt(Vector3fc, Vector3fc, Vector3fc)
*
* @param eye
* the position of the camera
* @param center
* the point in space to look at
* @param up
* the direction of 'up'
* @return this
*/
public Matrix4x3f setLookAt(Vector3fc eye, Vector3fc center, Vector3fc up) {
return setLookAt(eye.x(), eye.y(), eye.z(), center.x(), center.y(), center.z(), up.x(), up.y(), up.z());
}
/**
* Set this matrix to be a "lookat" transformation for a right-handed coordinate system,
* that aligns -z
with center - eye
.
*
* In order to apply the lookat transformation to a previous existing transformation,
* use {@link #lookAt(float, float, float, float, float, float, float, float, float) lookAt}.
*
* @see #setLookAt(Vector3fc, Vector3fc, Vector3fc)
* @see #lookAt(float, float, float, float, float, float, float, float, float)
*
* @param eyeX
* the x-coordinate of the eye/camera location
* @param eyeY
* the y-coordinate of the eye/camera location
* @param eyeZ
* the z-coordinate of the eye/camera location
* @param centerX
* the x-coordinate of the point to look at
* @param centerY
* the y-coordinate of the point to look at
* @param centerZ
* the z-coordinate of the point to look at
* @param upX
* the x-coordinate of the up vector
* @param upY
* the y-coordinate of the up vector
* @param upZ
* the z-coordinate of the up vector
* @return this
*/
public Matrix4x3f setLookAt(float eyeX, float eyeY, float eyeZ,
float centerX, float centerY, float centerZ,
float upX, float upY, float upZ) {
// Compute direction from position to lookAt
float dirX, dirY, dirZ;
dirX = eyeX - centerX;
dirY = eyeY - centerY;
dirZ = eyeZ - centerZ;
// Normalize direction
float invDirLength = 1.0f / (float) Math.sqrt(dirX * dirX + dirY * dirY + dirZ * dirZ);
dirX *= invDirLength;
dirY *= invDirLength;
dirZ *= invDirLength;
// left = up x direction
float leftX, leftY, leftZ;
leftX = upY * dirZ - upZ * dirY;
leftY = upZ * dirX - upX * dirZ;
leftZ = upX * dirY - upY * dirX;
// normalize left
float invLeftLength = 1.0f / (float) Math.sqrt(leftX * leftX + leftY * leftY + leftZ * leftZ);
leftX *= invLeftLength;
leftY *= invLeftLength;
leftZ *= invLeftLength;
// up = direction x left
float upnX = dirY * leftZ - dirZ * leftY;
float upnY = dirZ * leftX - dirX * leftZ;
float upnZ = dirX * leftY - dirY * leftX;
m00 = leftX;
m01 = upnX;
m02 = dirX;
m10 = leftY;
m11 = upnY;
m12 = dirY;
m20 = leftZ;
m21 = upnZ;
m22 = dirZ;
m30 = -(leftX * eyeX + leftY * eyeY + leftZ * eyeZ);
m31 = -(upnX * eyeX + upnY * eyeY + upnZ * eyeZ);
m32 = -(dirX * eyeX + dirY * eyeY + dirZ * eyeZ);
properties = PROPERTY_ORTHONORMAL;
return this;
}
/**
* Apply a "lookat" transformation to this matrix for a right-handed coordinate system,
* that aligns -z
with center - eye
and store the result in dest
.
*
* If M
is this
matrix and L
the lookat matrix,
* then the new matrix will be M * L
. So when transforming a
* vector v
with the new matrix by using M * L * v
,
* the lookat transformation will be applied first!
*
* In order to set the matrix to a lookat transformation without post-multiplying it,
* use {@link #setLookAt(Vector3fc, Vector3fc, Vector3fc)}.
*
* @see #lookAt(float, float, float, float, float, float, float, float, float)
* @see #setLookAlong(Vector3fc, Vector3fc)
*
* @param eye
* the position of the camera
* @param center
* the point in space to look at
* @param up
* the direction of 'up'
* @param dest
* will hold the result
* @return dest
*/
public Matrix4x3f lookAt(Vector3fc eye, Vector3fc center, Vector3fc up, Matrix4x3f dest) {
return lookAt(eye.x(), eye.y(), eye.z(), center.x(), center.y(), center.z(), up.x(), up.y(), up.z(), dest);
}
/**
* Apply a "lookat" transformation to this matrix for a right-handed coordinate system,
* that aligns -z
with center - eye
.
*
* If M
is this
matrix and L
the lookat matrix,
* then the new matrix will be M * L
. So when transforming a
* vector v
with the new matrix by using M * L * v
,
* the lookat transformation will be applied first!
*
* In order to set the matrix to a lookat transformation without post-multiplying it,
* use {@link #setLookAt(Vector3fc, Vector3fc, Vector3fc)}.
*
* @see #lookAt(float, float, float, float, float, float, float, float, float)
* @see #setLookAlong(Vector3fc, Vector3fc)
*
* @param eye
* the position of the camera
* @param center
* the point in space to look at
* @param up
* the direction of 'up'
* @return this
*/
public Matrix4x3f lookAt(Vector3fc eye, Vector3fc center, Vector3fc up) {
return lookAt(eye.x(), eye.y(), eye.z(), center.x(), center.y(), center.z(), up.x(), up.y(), up.z(), this);
}
/**
* Apply a "lookat" transformation to this matrix for a right-handed coordinate system,
* that aligns -z
with center - eye
and store the result in dest
.
*
* If M
is this
matrix and L
the lookat matrix,
* then the new matrix will be M * L
. So when transforming a
* vector v
with the new matrix by using M * L * v
,
* the lookat transformation will be applied first!
*
* In order to set the matrix to a lookat transformation without post-multiplying it,
* use {@link #setLookAt(float, float, float, float, float, float, float, float, float) setLookAt()}.
*
* @see #lookAt(Vector3fc, Vector3fc, Vector3fc)
* @see #setLookAt(float, float, float, float, float, float, float, float, float)
*
* @param eyeX
* the x-coordinate of the eye/camera location
* @param eyeY
* the y-coordinate of the eye/camera location
* @param eyeZ
* the z-coordinate of the eye/camera location
* @param centerX
* the x-coordinate of the point to look at
* @param centerY
* the y-coordinate of the point to look at
* @param centerZ
* the z-coordinate of the point to look at
* @param upX
* the x-coordinate of the up vector
* @param upY
* the y-coordinate of the up vector
* @param upZ
* the z-coordinate of the up vector
* @param dest
* will hold the result
* @return dest
*/
public Matrix4x3f lookAt(float eyeX, float eyeY, float eyeZ,
float centerX, float centerY, float centerZ,
float upX, float upY, float upZ, Matrix4x3f dest) {
if ((properties & PROPERTY_IDENTITY) != 0)
return dest.setLookAt(eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ);
return lookAtGeneric(eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ, dest);
}
private Matrix4x3f lookAtGeneric(float eyeX, float eyeY, float eyeZ,
float centerX, float centerY, float centerZ,
float upX, float upY, float upZ, Matrix4x3f dest) {
// Compute direction from position to lookAt
float dirX, dirY, dirZ;
dirX = eyeX - centerX;
dirY = eyeY - centerY;
dirZ = eyeZ - centerZ;
// Normalize direction
float invDirLength = 1.0f / (float) Math.sqrt(dirX * dirX + dirY * dirY + dirZ * dirZ);
dirX *= invDirLength;
dirY *= invDirLength;
dirZ *= invDirLength;
// left = up x direction
float leftX, leftY, leftZ;
leftX = upY * dirZ - upZ * dirY;
leftY = upZ * dirX - upX * dirZ;
leftZ = upX * dirY - upY * dirX;
// normalize left
float invLeftLength = 1.0f / (float) Math.sqrt(leftX * leftX + leftY * leftY + leftZ * leftZ);
leftX *= invLeftLength;
leftY *= invLeftLength;
leftZ *= invLeftLength;
// up = direction x left
float upnX = dirY * leftZ - dirZ * leftY;
float upnY = dirZ * leftX - dirX * leftZ;
float upnZ = dirX * leftY - dirY * leftX;
// calculate right matrix elements
float rm00 = leftX;
float rm01 = upnX;
float rm02 = dirX;
float rm10 = leftY;
float rm11 = upnY;
float rm12 = dirY;
float rm20 = leftZ;
float rm21 = upnZ;
float rm22 = dirZ;
float rm30 = -(leftX * eyeX + leftY * eyeY + leftZ * eyeZ);
float rm31 = -(upnX * eyeX + upnY * eyeY + upnZ * eyeZ);
float rm32 = -(dirX * eyeX + dirY * eyeY + dirZ * eyeZ);
// perform optimized matrix multiplication
// compute last column first, because others do not depend on it
dest.m30 = m00 * rm30 + m10 * rm31 + m20 * rm32 + m30;
dest.m31 = m01 * rm30 + m11 * rm31 + m21 * rm32 + m31;
dest.m32 = m02 * rm30 + m12 * rm31 + m22 * rm32 + m32;
// introduce temporaries for dependent results
float nm00 = m00 * rm00 + m10 * rm01 + m20 * rm02;
float nm01 = m01 * rm00 + m11 * rm01 + m21 * rm02;
float nm02 = m02 * rm00 + m12 * rm01 + m22 * rm02;
float nm10 = m00 * rm10 + m10 * rm11 + m20 * rm12;
float nm11 = m01 * rm10 + m11 * rm11 + m21 * rm12;
float nm12 = m02 * rm10 + m12 * rm11 + m22 * rm12;
dest.m20 = m00 * rm20 + m10 * rm21 + m20 * rm22;
dest.m21 = m01 * rm20 + m11 * rm21 + m21 * rm22;
dest.m22 = m02 * rm20 + m12 * rm21 + m22 * rm22;
// set the rest of the matrix elements
dest.m00 = nm00;
dest.m01 = nm01;
dest.m02 = nm02;
dest.m10 = nm10;
dest.m11 = nm11;
dest.m12 = nm12;
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
return dest;
}
/**
* Apply a "lookat" transformation to this matrix for a right-handed coordinate system,
* that aligns -z
with center - eye
.
*
* If M
is this
matrix and L
the lookat matrix,
* then the new matrix will be M * L
. So when transforming a
* vector v
with the new matrix by using M * L * v
,
* the lookat transformation will be applied first!
*
* In order to set the matrix to a lookat transformation without post-multiplying it,
* use {@link #setLookAt(float, float, float, float, float, float, float, float, float) setLookAt()}.
*
* @see #lookAt(Vector3fc, Vector3fc, Vector3fc)
* @see #setLookAt(float, float, float, float, float, float, float, float, float)
*
* @param eyeX
* the x-coordinate of the eye/camera location
* @param eyeY
* the y-coordinate of the eye/camera location
* @param eyeZ
* the z-coordinate of the eye/camera location
* @param centerX
* the x-coordinate of the point to look at
* @param centerY
* the y-coordinate of the point to look at
* @param centerZ
* the z-coordinate of the point to look at
* @param upX
* the x-coordinate of the up vector
* @param upY
* the y-coordinate of the up vector
* @param upZ
* the z-coordinate of the up vector
* @return this
*/
public Matrix4x3f lookAt(float eyeX, float eyeY, float eyeZ,
float centerX, float centerY, float centerZ,
float upX, float upY, float upZ) {
return lookAt(eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ, this);
}
/**
* Set this matrix to be a "lookat" transformation for a left-handed coordinate system, that aligns
* +z
with center - eye
.
*
* In order to not make use of vectors to specify eye
, center
and up
but use primitives,
* like in the GLU function, use {@link #setLookAtLH(float, float, float, float, float, float, float, float, float) setLookAtLH()}
* instead.
*
* In order to apply the lookat transformation to a previous existing transformation,
* use {@link #lookAtLH(Vector3fc, Vector3fc, Vector3fc) lookAt()}.
*
* @see #setLookAtLH(float, float, float, float, float, float, float, float, float)
* @see #lookAtLH(Vector3fc, Vector3fc, Vector3fc)
*
* @param eye
* the position of the camera
* @param center
* the point in space to look at
* @param up
* the direction of 'up'
* @return this
*/
public Matrix4x3f setLookAtLH(Vector3fc eye, Vector3fc center, Vector3fc up) {
return setLookAtLH(eye.x(), eye.y(), eye.z(), center.x(), center.y(), center.z(), up.x(), up.y(), up.z());
}
/**
* Set this matrix to be a "lookat" transformation for a left-handed coordinate system,
* that aligns +z
with center - eye
.
*
* In order to apply the lookat transformation to a previous existing transformation,
* use {@link #lookAtLH(float, float, float, float, float, float, float, float, float) lookAtLH}.
*
* @see #setLookAtLH(Vector3fc, Vector3fc, Vector3fc)
* @see #lookAtLH(float, float, float, float, float, float, float, float, float)
*
* @param eyeX
* the x-coordinate of the eye/camera location
* @param eyeY
* the y-coordinate of the eye/camera location
* @param eyeZ
* the z-coordinate of the eye/camera location
* @param centerX
* the x-coordinate of the point to look at
* @param centerY
* the y-coordinate of the point to look at
* @param centerZ
* the z-coordinate of the point to look at
* @param upX
* the x-coordinate of the up vector
* @param upY
* the y-coordinate of the up vector
* @param upZ
* the z-coordinate of the up vector
* @return this
*/
public Matrix4x3f setLookAtLH(float eyeX, float eyeY, float eyeZ,
float centerX, float centerY, float centerZ,
float upX, float upY, float upZ) {
// Compute direction from position to lookAt
float dirX, dirY, dirZ;
dirX = centerX - eyeX;
dirY = centerY - eyeY;
dirZ = centerZ - eyeZ;
// Normalize direction
float invDirLength = 1.0f / (float) Math.sqrt(dirX * dirX + dirY * dirY + dirZ * dirZ);
dirX *= invDirLength;
dirY *= invDirLength;
dirZ *= invDirLength;
// left = up x direction
float leftX, leftY, leftZ;
leftX = upY * dirZ - upZ * dirY;
leftY = upZ * dirX - upX * dirZ;
leftZ = upX * dirY - upY * dirX;
// normalize left
float invLeftLength = 1.0f / (float) Math.sqrt(leftX * leftX + leftY * leftY + leftZ * leftZ);
leftX *= invLeftLength;
leftY *= invLeftLength;
leftZ *= invLeftLength;
// up = direction x left
float upnX = dirY * leftZ - dirZ * leftY;
float upnY = dirZ * leftX - dirX * leftZ;
float upnZ = dirX * leftY - dirY * leftX;
m00 = leftX;
m01 = upnX;
m02 = dirX;
m10 = leftY;
m11 = upnY;
m12 = dirY;
m20 = leftZ;
m21 = upnZ;
m22 = dirZ;
m30 = -(leftX * eyeX + leftY * eyeY + leftZ * eyeZ);
m31 = -(upnX * eyeX + upnY * eyeY + upnZ * eyeZ);
m32 = -(dirX * eyeX + dirY * eyeY + dirZ * eyeZ);
properties = PROPERTY_ORTHONORMAL;
return this;
}
/**
* Apply a "lookat" transformation to this matrix for a left-handed coordinate system,
* that aligns +z
with center - eye
and store the result in dest
.
*
* If M
is this
matrix and L
the lookat matrix,
* then the new matrix will be M * L
. So when transforming a
* vector v
with the new matrix by using M * L * v
,
* the lookat transformation will be applied first!
*
* In order to set the matrix to a lookat transformation without post-multiplying it,
* use {@link #setLookAtLH(Vector3fc, Vector3fc, Vector3fc)}.
*
* @see #lookAtLH(float, float, float, float, float, float, float, float, float)
*
* @param eye
* the position of the camera
* @param center
* the point in space to look at
* @param up
* the direction of 'up'
* @param dest
* will hold the result
* @return dest
*/
public Matrix4x3f lookAtLH(Vector3fc eye, Vector3fc center, Vector3fc up, Matrix4x3f dest) {
return lookAtLH(eye.x(), eye.y(), eye.z(), center.x(), center.y(), center.z(), up.x(), up.y(), up.z(), dest);
}
/**
* Apply a "lookat" transformation to this matrix for a left-handed coordinate system,
* that aligns +z
with center - eye
.
*
* If M
is this
matrix and L
the lookat matrix,
* then the new matrix will be M * L
. So when transforming a
* vector v
with the new matrix by using M * L * v
,
* the lookat transformation will be applied first!
*
* In order to set the matrix to a lookat transformation without post-multiplying it,
* use {@link #setLookAtLH(Vector3fc, Vector3fc, Vector3fc)}.
*
* @see #lookAtLH(float, float, float, float, float, float, float, float, float)
*
* @param eye
* the position of the camera
* @param center
* the point in space to look at
* @param up
* the direction of 'up'
* @return this
*/
public Matrix4x3f lookAtLH(Vector3fc eye, Vector3fc center, Vector3fc up) {
return lookAtLH(eye.x(), eye.y(), eye.z(), center.x(), center.y(), center.z(), up.x(), up.y(), up.z(), this);
}
/**
* Apply a "lookat" transformation to this matrix for a left-handed coordinate system,
* that aligns +z
with center - eye
and store the result in dest
.
*
* If M
is this
matrix and L
the lookat matrix,
* then the new matrix will be M * L
. So when transforming a
* vector v
with the new matrix by using M * L * v
,
* the lookat transformation will be applied first!
*
* In order to set the matrix to a lookat transformation without post-multiplying it,
* use {@link #setLookAtLH(float, float, float, float, float, float, float, float, float) setLookAtLH()}.
*
* @see #lookAtLH(Vector3fc, Vector3fc, Vector3fc)
* @see #setLookAtLH(float, float, float, float, float, float, float, float, float)
*
* @param eyeX
* the x-coordinate of the eye/camera location
* @param eyeY
* the y-coordinate of the eye/camera location
* @param eyeZ
* the z-coordinate of the eye/camera location
* @param centerX
* the x-coordinate of the point to look at
* @param centerY
* the y-coordinate of the point to look at
* @param centerZ
* the z-coordinate of the point to look at
* @param upX
* the x-coordinate of the up vector
* @param upY
* the y-coordinate of the up vector
* @param upZ
* the z-coordinate of the up vector
* @param dest
* will hold the result
* @return dest
*/
public Matrix4x3f lookAtLH(float eyeX, float eyeY, float eyeZ,
float centerX, float centerY, float centerZ,
float upX, float upY, float upZ, Matrix4x3f dest) {
if ((properties & PROPERTY_IDENTITY) != 0)
return dest.setLookAtLH(eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ);
return lookAtLHGeneric(eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ, dest);
}
private Matrix4x3f lookAtLHGeneric(float eyeX, float eyeY, float eyeZ,
float centerX, float centerY, float centerZ,
float upX, float upY, float upZ, Matrix4x3f dest) {
// Compute direction from position to lookAt
float dirX, dirY, dirZ;
dirX = centerX - eyeX;
dirY = centerY - eyeY;
dirZ = centerZ - eyeZ;
// Normalize direction
float invDirLength = 1.0f / (float) Math.sqrt(dirX * dirX + dirY * dirY + dirZ * dirZ);
dirX *= invDirLength;
dirY *= invDirLength;
dirZ *= invDirLength;
// left = up x direction
float leftX, leftY, leftZ;
leftX = upY * dirZ - upZ * dirY;
leftY = upZ * dirX - upX * dirZ;
leftZ = upX * dirY - upY * dirX;
// normalize left
float invLeftLength = 1.0f / (float) Math.sqrt(leftX * leftX + leftY * leftY + leftZ * leftZ);
leftX *= invLeftLength;
leftY *= invLeftLength;
leftZ *= invLeftLength;
// up = direction x left
float upnX = dirY * leftZ - dirZ * leftY;
float upnY = dirZ * leftX - dirX * leftZ;
float upnZ = dirX * leftY - dirY * leftX;
// calculate right matrix elements
float rm00 = leftX;
float rm01 = upnX;
float rm02 = dirX;
float rm10 = leftY;
float rm11 = upnY;
float rm12 = dirY;
float rm20 = leftZ;
float rm21 = upnZ;
float rm22 = dirZ;
float rm30 = -(leftX * eyeX + leftY * eyeY + leftZ * eyeZ);
float rm31 = -(upnX * eyeX + upnY * eyeY + upnZ * eyeZ);
float rm32 = -(dirX * eyeX + dirY * eyeY + dirZ * eyeZ);
// perform optimized matrix multiplication
// compute last column first, because others do not depend on it
dest.m30 = m00 * rm30 + m10 * rm31 + m20 * rm32 + m30;
dest.m31 = m01 * rm30 + m11 * rm31 + m21 * rm32 + m31;
dest.m32 = m02 * rm30 + m12 * rm31 + m22 * rm32 + m32;
// introduce temporaries for dependent results
float nm00 = m00 * rm00 + m10 * rm01 + m20 * rm02;
float nm01 = m01 * rm00 + m11 * rm01 + m21 * rm02;
float nm02 = m02 * rm00 + m12 * rm01 + m22 * rm02;
float nm10 = m00 * rm10 + m10 * rm11 + m20 * rm12;
float nm11 = m01 * rm10 + m11 * rm11 + m21 * rm12;
float nm12 = m02 * rm10 + m12 * rm11 + m22 * rm12;
dest.m20 = m00 * rm20 + m10 * rm21 + m20 * rm22;
dest.m21 = m01 * rm20 + m11 * rm21 + m21 * rm22;
dest.m22 = m02 * rm20 + m12 * rm21 + m22 * rm22;
// set the rest of the matrix elements
dest.m00 = nm00;
dest.m01 = nm01;
dest.m02 = nm02;
dest.m10 = nm10;
dest.m11 = nm11;
dest.m12 = nm12;
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
return dest;
}
/**
* Apply a "lookat" transformation to this matrix for a left-handed coordinate system,
* that aligns +z
with center - eye
.
*
* If M
is this
matrix and L
the lookat matrix,
* then the new matrix will be M * L
. So when transforming a
* vector v
with the new matrix by using M * L * v
,
* the lookat transformation will be applied first!
*
* In order to set the matrix to a lookat transformation without post-multiplying it,
* use {@link #setLookAtLH(float, float, float, float, float, float, float, float, float) setLookAtLH()}.
*
* @see #lookAtLH(Vector3fc, Vector3fc, Vector3fc)
* @see #setLookAtLH(float, float, float, float, float, float, float, float, float)
*
* @param eyeX
* the x-coordinate of the eye/camera location
* @param eyeY
* the y-coordinate of the eye/camera location
* @param eyeZ
* the z-coordinate of the eye/camera location
* @param centerX
* the x-coordinate of the point to look at
* @param centerY
* the y-coordinate of the point to look at
* @param centerZ
* the z-coordinate of the point to look at
* @param upX
* the x-coordinate of the up vector
* @param upY
* the y-coordinate of the up vector
* @param upZ
* the z-coordinate of the up vector
* @return this
*/
public Matrix4x3f lookAtLH(float eyeX, float eyeY, float eyeZ,
float centerX, float centerY, float centerZ,
float upX, float upY, float upZ) {
return lookAtLH(eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ, this);
}
/**
* Apply the rotation - and possibly scaling - transformation of the given {@link Quaternionfc} to this matrix and store
* the result in dest
.
*
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
*
* If M
is this
matrix and Q
the rotation matrix obtained from the given quaternion,
* then the new matrix will be M * Q
. So when transforming a
* vector v
with the new matrix by using M * Q * v
,
* the quaternion rotation will be applied first!
*
* In order to set the matrix to a rotation transformation without post-multiplying,
* use {@link #rotation(Quaternionfc)}.
*
* Reference: http://en.wikipedia.org
*
* @see #rotation(Quaternionfc)
*
* @param quat
* the {@link Quaternionfc}
* @param dest
* will hold the result
* @return dest
*/
public Matrix4x3f rotate(Quaternionfc quat, Matrix4x3f dest) {
if ((properties & PROPERTY_IDENTITY) != 0)
return dest.rotation(quat);
else if ((properties & PROPERTY_TRANSLATION) != 0)
return rotateTranslation(quat, dest);
return rotateGeneric(quat, dest);
}
private Matrix4x3f rotateGeneric(Quaternionfc quat, Matrix4x3f dest) {
float w2 = quat.w() * quat.w(), x2 = quat.x() * quat.x();
float y2 = quat.y() * quat.y(), z2 = quat.z() * quat.z();
float zw = quat.z() * quat.w(), dzw = zw + zw, xy = quat.x() * quat.y(), dxy = xy + xy;
float xz = quat.x() * quat.z(), dxz = xz + xz, yw = quat.y() * quat.w(), dyw = yw + yw;
float yz = quat.y() * quat.z(), dyz = yz + yz, xw = quat.x() * quat.w(), dxw = xw + xw;
float rm00 = w2 + x2 - z2 - y2;
float rm01 = dxy + dzw;
float rm02 = dxz - dyw;
float rm10 = dxy - dzw;
float rm11 = y2 - z2 + w2 - x2;
float rm12 = dyz + dxw;
float rm20 = dyw + dxz;
float rm21 = dyz - dxw;
float rm22 = z2 - y2 - x2 + w2;
float nm00 = m00 * rm00 + m10 * rm01 + m20 * rm02;
float nm01 = m01 * rm00 + m11 * rm01 + m21 * rm02;
float nm02 = m02 * rm00 + m12 * rm01 + m22 * rm02;
float nm10 = m00 * rm10 + m10 * rm11 + m20 * rm12;
float nm11 = m01 * rm10 + m11 * rm11 + m21 * rm12;
float nm12 = m02 * rm10 + m12 * rm11 + m22 * rm12;
dest.m20 = m00 * rm20 + m10 * rm21 + m20 * rm22;
dest.m21 = m01 * rm20 + m11 * rm21 + m21 * rm22;
dest.m22 = m02 * rm20 + m12 * rm21 + m22 * rm22;
dest.m00 = nm00;
dest.m01 = nm01;
dest.m02 = nm02;
dest.m10 = nm10;
dest.m11 = nm11;
dest.m12 = nm12;
dest.m30 = m30;
dest.m31 = m31;
dest.m32 = m32;
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
return dest;
}
/**
* Apply the rotation - and possibly scaling - transformation of the given {@link Quaternionfc} to this matrix.
*
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
*
* If M
is this
matrix and Q
the rotation matrix obtained from the given quaternion,
* then the new matrix will be M * Q
. So when transforming a
* vector v
with the new matrix by using M * Q * v
,
* the quaternion rotation will be applied first!
*
* In order to set the matrix to a rotation transformation without post-multiplying,
* use {@link #rotation(Quaternionfc)}.
*
* Reference: http://en.wikipedia.org
*
* @see #rotation(Quaternionfc)
*
* @param quat
* the {@link Quaternionfc}
* @return this
*/
public Matrix4x3f rotate(Quaternionfc quat) {
return rotate(quat, this);
}
/**
* Apply the rotation - and possibly scaling - transformation of the given {@link Quaternionfc} to this matrix, which is assumed to only contain a translation, and store
* the result in dest
.
*
* This method assumes this
to only contain a translation.
*
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
*
* If M
is this
matrix and Q
the rotation matrix obtained from the given quaternion,
* then the new matrix will be M * Q
. So when transforming a
* vector v
with the new matrix by using M * Q * v
,
* the quaternion rotation will be applied first!
*
* In order to set the matrix to a rotation transformation without post-multiplying,
* use {@link #rotation(Quaternionfc)}.
*
* Reference: http://en.wikipedia.org
*
* @see #rotation(Quaternionfc)
*
* @param quat
* the {@link Quaternionfc}
* @param dest
* will hold the result
* @return dest
*/
public Matrix4x3f rotateTranslation(Quaternionfc quat, Matrix4x3f dest) {
float w2 = quat.w() * quat.w(), x2 = quat.x() * quat.x();
float y2 = quat.y() * quat.y(), z2 = quat.z() * quat.z();
float zw = quat.z() * quat.w(), dzw = zw + zw, xy = quat.x() * quat.y(), dxy = xy + xy;
float xz = quat.x() * quat.z(), dxz = xz + xz, yw = quat.y() * quat.w(), dyw = yw + yw;
float yz = quat.y() * quat.z(), dyz = yz + yz, xw = quat.x() * quat.w(), dxw = xw + xw;
float rm00 = w2 + x2 - z2 - y2;
float rm01 = dxy + dzw;
float rm02 = dxz - dyw;
float rm10 = dxy - dzw;
float rm11 = y2 - z2 + w2 - x2;
float rm12 = dyz + dxw;
float rm20 = dyw + dxz;
float rm21 = dyz - dxw;
float rm22 = z2 - y2 - x2 + w2;
dest.m20 = rm20;
dest.m21 = rm21;
dest.m22 = rm22;
dest.m00 = rm00;
dest.m01 = rm01;
dest.m02 = rm02;
dest.m10 = rm10;
dest.m11 = rm11;
dest.m12 = rm12;
dest.m30 = m30;
dest.m31 = m31;
dest.m32 = m32;
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
return dest;
}
/**
* Pre-multiply the rotation - and possibly scaling - transformation of the given {@link Quaternionfc} to this matrix and store
* the result in dest
.
*
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
*
* If M
is this
matrix and Q
the rotation matrix obtained from the given quaternion,
* then the new matrix will be Q * M
. So when transforming a
* vector v
with the new matrix by using Q * M * v
,
* the quaternion rotation will be applied last!
*
* In order to set the matrix to a rotation transformation without pre-multiplying,
* use {@link #rotation(Quaternionfc)}.
*
* Reference: http://en.wikipedia.org
*
* @see #rotation(Quaternionfc)
*
* @param quat
* the {@link Quaternionfc}
* @param dest
* will hold the result
* @return dest
*/
public Matrix4x3f rotateLocal(Quaternionfc quat, Matrix4x3f dest) {
float w2 = quat.w() * quat.w();
float x2 = quat.x() * quat.x();
float y2 = quat.y() * quat.y();
float z2 = quat.z() * quat.z();
float zw = quat.z() * quat.w();
float xy = quat.x() * quat.y();
float xz = quat.x() * quat.z();
float yw = quat.y() * quat.w();
float yz = quat.y() * quat.z();
float xw = quat.x() * quat.w();
float lm00 = w2 + x2 - z2 - y2;
float lm01 = xy + zw + zw + xy;
float lm02 = xz - yw + xz - yw;
float lm10 = -zw + xy - zw + xy;
float lm11 = y2 - z2 + w2 - x2;
float lm12 = yz + yz + xw + xw;
float lm20 = yw + xz + xz + yw;
float lm21 = yz + yz - xw - xw;
float lm22 = z2 - y2 - x2 + w2;
float nm00 = lm00 * m00 + lm10 * m01 + lm20 * m02;
float nm01 = lm01 * m00 + lm11 * m01 + lm21 * m02;
float nm02 = lm02 * m00 + lm12 * m01 + lm22 * m02;
float nm10 = lm00 * m10 + lm10 * m11 + lm20 * m12;
float nm11 = lm01 * m10 + lm11 * m11 + lm21 * m12;
float nm12 = lm02 * m10 + lm12 * m11 + lm22 * m12;
float nm20 = lm00 * m20 + lm10 * m21 + lm20 * m22;
float nm21 = lm01 * m20 + lm11 * m21 + lm21 * m22;
float nm22 = lm02 * m20 + lm12 * m21 + lm22 * m22;
float nm30 = lm00 * m30 + lm10 * m31 + lm20 * m32;
float nm31 = lm01 * m30 + lm11 * m31 + lm21 * m32;
float nm32 = lm02 * m30 + lm12 * m31 + lm22 * m32;
dest.m00 = nm00;
dest.m01 = nm01;
dest.m02 = nm02;
dest.m10 = nm10;
dest.m11 = nm11;
dest.m12 = nm12;
dest.m20 = nm20;
dest.m21 = nm21;
dest.m22 = nm22;
dest.m30 = nm30;
dest.m31 = nm31;
dest.m32 = nm32;
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
return dest;
}
/**
* Pre-multiply the rotation - and possibly scaling - transformation of the given {@link Quaternionfc} to this matrix.
*
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
*
* If M
is this
matrix and Q
the rotation matrix obtained from the given quaternion,
* then the new matrix will be Q * M
. So when transforming a
* vector v
with the new matrix by using Q * M * v
,
* the quaternion rotation will be applied last!
*
* In order to set the matrix to a rotation transformation without pre-multiplying,
* use {@link #rotation(Quaternionfc)}.
*
* Reference: http://en.wikipedia.org
*
* @see #rotation(Quaternionfc)
*
* @param quat
* the {@link Quaternionfc}
* @return this
*/
public Matrix4x3f rotateLocal(Quaternionfc quat) {
return rotateLocal(quat, this);
}
/**
* Apply a rotation transformation, rotating about the given {@link AxisAngle4f}, to this matrix.
*
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
*
* If M
is this
matrix and A
the rotation matrix obtained from the given {@link AxisAngle4f},
* then the new matrix will be M * A
. So when transforming a
* vector v
with the new matrix by using M * A * v
,
* the {@link AxisAngle4f} rotation will be applied first!
*
* In order to set the matrix to a rotation transformation without post-multiplying,
* use {@link #rotation(AxisAngle4f)}.
*
* Reference: http://en.wikipedia.org
*
* @see #rotate(float, float, float, float)
* @see #rotation(AxisAngle4f)
*
* @param axisAngle
* the {@link AxisAngle4f} (needs to be {@link AxisAngle4f#normalize() normalized})
* @return this
*/
public Matrix4x3f rotate(AxisAngle4f axisAngle) {
return rotate(axisAngle.angle, axisAngle.x, axisAngle.y, axisAngle.z);
}
/**
* Apply a rotation transformation, rotating about the given {@link AxisAngle4f} and store the result in dest
.
*
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
*
* If M
is this
matrix and A
the rotation matrix obtained from the given {@link AxisAngle4f},
* then the new matrix will be M * A
. So when transforming a
* vector v
with the new matrix by using M * A * v
,
* the {@link AxisAngle4f} rotation will be applied first!
*
* In order to set the matrix to a rotation transformation without post-multiplying,
* use {@link #rotation(AxisAngle4f)}.
*
* Reference: http://en.wikipedia.org
*
* @see #rotate(float, float, float, float)
* @see #rotation(AxisAngle4f)
*
* @param axisAngle
* the {@link AxisAngle4f} (needs to be {@link AxisAngle4f#normalize() normalized})
* @param dest
* will hold the result
* @return dest
*/
public Matrix4x3f rotate(AxisAngle4f axisAngle, Matrix4x3f dest) {
return rotate(axisAngle.angle, axisAngle.x, axisAngle.y, axisAngle.z, dest);
}
/**
* Apply a rotation transformation, rotating the given radians about the specified axis, to this matrix.
*
* The axis described by the axis
vector needs to be a unit vector.
*
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
*
* If M
is this
matrix and A
the rotation matrix obtained from the given axis-angle,
* then the new matrix will be M * A
. So when transforming a
* vector v
with the new matrix by using M * A * v
,
* the axis-angle rotation will be applied first!
*
* In order to set the matrix to a rotation transformation without post-multiplying,
* use {@link #rotation(float, Vector3fc)}.
*
* Reference: http://en.wikipedia.org
*
* @see #rotate(float, float, float, float)
* @see #rotation(float, Vector3fc)
*
* @param angle
* the angle in radians
* @param axis
* the rotation axis (needs to be {@link Vector3f#normalize() normalized})
* @return this
*/
public Matrix4x3f rotate(float angle, Vector3fc axis) {
return rotate(angle, axis.x(), axis.y(), axis.z());
}
/**
* Apply a rotation transformation, rotating the given radians about the specified axis and store the result in dest
.
*
* The axis described by the axis
vector needs to be a unit vector.
*
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
*
* If M
is this
matrix and A
the rotation matrix obtained from the given axis-angle,
* then the new matrix will be M * A
. So when transforming a
* vector v
with the new matrix by using M * A * v
,
* the axis-angle rotation will be applied first!
*
* In order to set the matrix to a rotation transformation without post-multiplying,
* use {@link #rotation(float, Vector3fc)}.
*
* Reference: http://en.wikipedia.org
*
* @see #rotate(float, float, float, float)
* @see #rotation(float, Vector3fc)
*
* @param angle
* the angle in radians
* @param axis
* the rotation axis (needs to be {@link Vector3f#normalize() normalized})
* @param dest
* will hold the result
* @return dest
*/
public Matrix4x3f rotate(float angle, Vector3fc axis, Matrix4x3f dest) {
return rotate(angle, axis.x(), axis.y(), axis.z(), dest);
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#reflect(float, float, float, float, org.joml.Matrix4x3f)
*/
public Matrix4x3f reflect(float a, float b, float c, float d, Matrix4x3f dest) {
if ((properties & PROPERTY_IDENTITY) != 0)
return dest.reflection(a, b, c, d);
float da = a + a, db = b + b, dc = c + c, dd = d + d;
float rm00 = 1.0f - da * a;
float rm01 = -da * b;
float rm02 = -da * c;
float rm10 = -db * a;
float rm11 = 1.0f - db * b;
float rm12 = -db * c;
float rm20 = -dc * a;
float rm21 = -dc * b;
float rm22 = 1.0f - dc * c;
float rm30 = -dd * a;
float rm31 = -dd * b;
float rm32 = -dd * c;
// matrix multiplication
dest.m30 = m00 * rm30 + m10 * rm31 + m20 * rm32 + m30;
dest.m31 = m01 * rm30 + m11 * rm31 + m21 * rm32 + m31;
dest.m32 = m02 * rm30 + m12 * rm31 + m22 * rm32 + m32;
float nm00 = m00 * rm00 + m10 * rm01 + m20 * rm02;
float nm01 = m01 * rm00 + m11 * rm01 + m21 * rm02;
float nm02 = m02 * rm00 + m12 * rm01 + m22 * rm02;
float nm10 = m00 * rm10 + m10 * rm11 + m20 * rm12;
float nm11 = m01 * rm10 + m11 * rm11 + m21 * rm12;
float nm12 = m02 * rm10 + m12 * rm11 + m22 * rm12;
dest.m20 = m00 * rm20 + m10 * rm21 + m20 * rm22;
dest.m21 = m01 * rm20 + m11 * rm21 + m21 * rm22;
dest.m22 = m02 * rm20 + m12 * rm21 + m22 * rm22;
dest.m00 = nm00;
dest.m01 = nm01;
dest.m02 = nm02;
dest.m10 = nm10;
dest.m11 = nm11;
dest.m12 = nm12;
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
return dest;
}
/**
* Apply a mirror/reflection transformation to this matrix that reflects about the given plane
* specified via the equation x*a + y*b + z*c + d = 0
.
*
* The vector (a, b, c)
must be a unit vector.
*
* If M
is this
matrix and R
the reflection matrix,
* then the new matrix will be M * R
. So when transforming a
* vector v
with the new matrix by using M * R * v
, the
* reflection will be applied first!
*
* Reference: msdn.microsoft.com
*
* @param a
* the x factor in the plane equation
* @param b
* the y factor in the plane equation
* @param c
* the z factor in the plane equation
* @param d
* the constant in the plane equation
* @return this
*/
public Matrix4x3f reflect(float a, float b, float c, float d) {
return reflect(a, b, c, d, this);
}
/**
* Apply a mirror/reflection transformation to this matrix that reflects about the given plane
* specified via the plane normal and a point on the plane.
*
* If M
is this
matrix and R
the reflection matrix,
* then the new matrix will be M * R
. So when transforming a
* vector v
with the new matrix by using M * R * v
, the
* reflection will be applied first!
*
* @param nx
* the x-coordinate of the plane normal
* @param ny
* the y-coordinate of the plane normal
* @param nz
* the z-coordinate of the plane normal
* @param px
* the x-coordinate of a point on the plane
* @param py
* the y-coordinate of a point on the plane
* @param pz
* the z-coordinate of a point on the plane
* @return this
*/
public Matrix4x3f reflect(float nx, float ny, float nz, float px, float py, float pz) {
return reflect(nx, ny, nz, px, py, pz, this);
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#reflect(float, float, float, float, float, float, org.joml.Matrix4x3f)
*/
public Matrix4x3f reflect(float nx, float ny, float nz, float px, float py, float pz, Matrix4x3f dest) {
float invLength = 1.0f / (float) Math.sqrt(nx * nx + ny * ny + nz * nz);
float nnx = nx * invLength;
float nny = ny * invLength;
float nnz = nz * invLength;
/* See: http://mathworld.wolfram.com/Plane.html */
return reflect(nnx, nny, nnz, -nnx * px - nny * py - nnz * pz, dest);
}
/**
* Apply a mirror/reflection transformation to this matrix that reflects about the given plane
* specified via the plane normal and a point on the plane.
*
* If M
is this
matrix and R
the reflection matrix,
* then the new matrix will be M * R
. So when transforming a
* vector v
with the new matrix by using M * R * v
, the
* reflection will be applied first!
*
* @param normal
* the plane normal
* @param point
* a point on the plane
* @return this
*/
public Matrix4x3f reflect(Vector3fc normal, Vector3fc point) {
return reflect(normal.x(), normal.y(), normal.z(), point.x(), point.y(), point.z());
}
/**
* Apply a mirror/reflection transformation to this matrix that reflects about a plane
* specified via the plane orientation and a point on the plane.
*
* This method can be used to build a reflection transformation based on the orientation of a mirror object in the scene.
* It is assumed that the default mirror plane's normal is (0, 0, 1)
. So, if the given {@link Quaternionfc} is
* the identity (does not apply any additional rotation), the reflection plane will be z=0
, offset by the given point
.
*
* If M
is this
matrix and R
the reflection matrix,
* then the new matrix will be M * R
. So when transforming a
* vector v
with the new matrix by using M * R * v
, the
* reflection will be applied first!
*
* @param orientation
* the plane orientation
* @param point
* a point on the plane
* @return this
*/
public Matrix4x3f reflect(Quaternionfc orientation, Vector3fc point) {
return reflect(orientation, point, this);
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#reflect(org.joml.Quaternionfc, org.joml.Vector3fc, org.joml.Matrix4x3f)
*/
public Matrix4x3f reflect(Quaternionfc orientation, Vector3fc point, Matrix4x3f dest) {
double num1 = orientation.x() + orientation.x();
double num2 = orientation.y() + orientation.y();
double num3 = orientation.z() + orientation.z();
float normalX = (float) (orientation.x() * num3 + orientation.w() * num2);
float normalY = (float) (orientation.y() * num3 - orientation.w() * num1);
float normalZ = (float) (1.0 - (orientation.x() * num1 + orientation.y() * num2));
return reflect(normalX, normalY, normalZ, point.x(), point.y(), point.z(), dest);
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#reflect(org.joml.Vector3fc, org.joml.Vector3fc, org.joml.Matrix4x3f)
*/
public Matrix4x3f reflect(Vector3fc normal, Vector3fc point, Matrix4x3f dest) {
return reflect(normal.x(), normal.y(), normal.z(), point.x(), point.y(), point.z(), dest);
}
/**
* Set this matrix to a mirror/reflection transformation that reflects about the given plane
* specified via the equation x*a + y*b + z*c + d = 0
.
*
* The vector (a, b, c)
must be a unit vector.
*
* Reference: msdn.microsoft.com
*
* @param a
* the x factor in the plane equation
* @param b
* the y factor in the plane equation
* @param c
* the z factor in the plane equation
* @param d
* the constant in the plane equation
* @return this
*/
public Matrix4x3f reflection(float a, float b, float c, float d) {
float da = a + a, db = b + b, dc = c + c, dd = d + d;
m00 = 1.0f - da * a;
m01 = -da * b;
m02 = -da * c;
m10 = -db * a;
m11 = 1.0f - db * b;
m12 = -db * c;
m20 = -dc * a;
m21 = -dc * b;
m22 = 1.0f - dc * c;
m30 = -dd * a;
m31 = -dd * b;
m32 = -dd * c;
properties = PROPERTY_ORTHONORMAL;
return this;
}
/**
* Set this matrix to a mirror/reflection transformation that reflects about the given plane
* specified via the plane normal and a point on the plane.
*
* @param nx
* the x-coordinate of the plane normal
* @param ny
* the y-coordinate of the plane normal
* @param nz
* the z-coordinate of the plane normal
* @param px
* the x-coordinate of a point on the plane
* @param py
* the y-coordinate of a point on the plane
* @param pz
* the z-coordinate of a point on the plane
* @return this
*/
public Matrix4x3f reflection(float nx, float ny, float nz, float px, float py, float pz) {
float invLength = 1.0f / (float) Math.sqrt(nx * nx + ny * ny + nz * nz);
float nnx = nx * invLength;
float nny = ny * invLength;
float nnz = nz * invLength;
/* See: http://mathworld.wolfram.com/Plane.html */
return reflection(nnx, nny, nnz, -nnx * px - nny * py - nnz * pz);
}
/**
* Set this matrix to a mirror/reflection transformation that reflects about the given plane
* specified via the plane normal and a point on the plane.
*
* @param normal
* the plane normal
* @param point
* a point on the plane
* @return this
*/
public Matrix4x3f reflection(Vector3fc normal, Vector3fc point) {
return reflection(normal.x(), normal.y(), normal.z(), point.x(), point.y(), point.z());
}
/**
* Set this matrix to a mirror/reflection transformation that reflects about a plane
* specified via the plane orientation and a point on the plane.
*
* This method can be used to build a reflection transformation based on the orientation of a mirror object in the scene.
* It is assumed that the default mirror plane's normal is (0, 0, 1)
. So, if the given {@link Quaternionfc} is
* the identity (does not apply any additional rotation), the reflection plane will be z=0
, offset by the given point
.
*
* @param orientation
* the plane orientation
* @param point
* a point on the plane
* @return this
*/
public Matrix4x3f reflection(Quaternionfc orientation, Vector3fc point) {
double num1 = orientation.x() + orientation.x();
double num2 = orientation.y() + orientation.y();
double num3 = orientation.z() + orientation.z();
float normalX = (float) (orientation.x() * num3 + orientation.w() * num2);
float normalY = (float) (orientation.y() * num3 - orientation.w() * num1);
float normalZ = (float) (1.0 - (orientation.x() * num1 + orientation.y() * num2));
return reflection(normalX, normalY, normalZ, point.x(), point.y(), point.z());
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#getRow(int, org.joml.Vector4f)
*/
public Vector4f getRow(int row, Vector4f dest) throws IndexOutOfBoundsException {
switch (row) {
case 0:
dest.x = m00;
dest.y = m10;
dest.z = m20;
dest.w = m30;
break;
case 1:
dest.x = m01;
dest.y = m11;
dest.z = m21;
dest.w = m31;
break;
case 2:
dest.x = m02;
dest.y = m12;
dest.z = m22;
dest.w = m32;
break;
default:
throw new IndexOutOfBoundsException();
}
return dest;
}
/**
* Set the row at the given row
index, starting with 0
.
*
* @param row
* the row index in [0..2]
* @param src
* the row components to set
* @return this
* @throws IndexOutOfBoundsException if row
is not in [0..2]
*/
public Matrix4x3f setRow(int row, Vector4fc src) throws IndexOutOfBoundsException {
switch (row) {
case 0:
this.m00 = src.x();
this.m10 = src.y();
this.m20 = src.z();
this.m30 = src.w();
break;
case 1:
this.m01 = src.x();
this.m11 = src.y();
this.m21 = src.z();
this.m31 = src.w();
break;
case 2:
this.m02 = src.x();
this.m12 = src.y();
this.m22 = src.z();
this.m32 = src.w();
break;
default:
throw new IndexOutOfBoundsException();
}
properties = 0;
return this;
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#getColumn(int, org.joml.Vector3f)
*/
public Vector3f getColumn(int column, Vector3f dest) throws IndexOutOfBoundsException {
switch (column) {
case 0:
dest.x = m00;
dest.y = m01;
dest.z = m02;
break;
case 1:
dest.x = m10;
dest.y = m11;
dest.z = m12;
break;
case 2:
dest.x = m20;
dest.y = m21;
dest.z = m22;
break;
case 3:
dest.x = m30;
dest.y = m31;
dest.z = m32;
break;
default:
throw new IndexOutOfBoundsException();
}
return dest;
}
/**
* Set the column at the given column
index, starting with 0
.
*
* @param column
* the column index in [0..3]
* @param src
* the column components to set
* @return this
* @throws IndexOutOfBoundsException if column
is not in [0..3]
*/
public Matrix4x3f setColumn(int column, Vector3fc src) throws IndexOutOfBoundsException {
switch (column) {
case 0:
this.m00 = src.x();
this.m01 = src.y();
this.m02 = src.z();
break;
case 1:
this.m10 = src.x();
this.m11 = src.y();
this.m12 = src.z();
break;
case 2:
this.m20 = src.x();
this.m21 = src.y();
this.m22 = src.z();
break;
case 3:
this.m30 = src.x();
this.m31 = src.y();
this.m32 = src.z();
break;
default:
throw new IndexOutOfBoundsException();
}
properties = 0;
return this;
}
/**
* Compute a normal matrix from the left 3x3 submatrix of this
* and store it into the left 3x3 submatrix of this
.
* All other values of this
will be set to {@link #identity() identity}.
*
* The normal matrix of m
is the transpose of the inverse of m
.
*
* Please note that, if this
is an orthogonal matrix or a matrix whose columns are orthogonal vectors,
* then this method need not be invoked, since in that case this
itself is its normal matrix.
* In that case, use {@link #set3x3(Matrix4x3fc)} to set a given Matrix4x3f to only the left 3x3 submatrix
* of this matrix.
*
* @see #set3x3(Matrix4x3fc)
*
* @return this
*/
public Matrix4x3f normal() {
return normal(this);
}
/**
* Compute a normal matrix from the left 3x3 submatrix of this
* and store it into the left 3x3 submatrix of dest
.
* All other values of dest
will be set to {@link #identity() identity}.
*
* The normal matrix of m
is the transpose of the inverse of m
.
*
* Please note that, if this
is an orthogonal matrix or a matrix whose columns are orthogonal vectors,
* then this method need not be invoked, since in that case this
itself is its normal matrix.
* In that case, use {@link #set3x3(Matrix4x3fc)} to set a given Matrix4x3f to only the left 3x3 submatrix
* of this matrix.
*
* @see #set3x3(Matrix4x3fc)
*
* @param dest
* will hold the result
* @return dest
*/
public Matrix4x3f normal(Matrix4x3f dest) {
if ((properties & PROPERTY_IDENTITY) != 0)
return dest.identity();
else if ((properties & PROPERTY_ORTHONORMAL) != 0)
return normalOrthonormal(dest);
return normalGeneric(dest);
}
private Matrix4x3f normalOrthonormal(Matrix4x3f dest) {
if (dest != this)
dest.set(this);
dest.properties = PROPERTY_ORTHONORMAL;
return dest;
}
private Matrix4x3f normalGeneric(Matrix4x3f dest) {
float m00m11 = m00 * m11;
float m01m10 = m01 * m10;
float m02m10 = m02 * m10;
float m00m12 = m00 * m12;
float m01m12 = m01 * m12;
float m02m11 = m02 * m11;
float det = (m00m11 - m01m10) * m22 + (m02m10 - m00m12) * m21 + (m01m12 - m02m11) * m20;
float s = 1.0f / det;
/* Invert and transpose in one go */
float nm00 = (m11 * m22 - m21 * m12) * s;
float nm01 = (m20 * m12 - m10 * m22) * s;
float nm02 = (m10 * m21 - m20 * m11) * s;
float nm10 = (m21 * m02 - m01 * m22) * s;
float nm11 = (m00 * m22 - m20 * m02) * s;
float nm12 = (m20 * m01 - m00 * m21) * s;
float nm20 = (m01m12 - m02m11) * s;
float nm21 = (m02m10 - m00m12) * s;
float nm22 = (m00m11 - m01m10) * s;
dest.m00 = nm00;
dest.m01 = nm01;
dest.m02 = nm02;
dest.m10 = nm10;
dest.m11 = nm11;
dest.m12 = nm12;
dest.m20 = nm20;
dest.m21 = nm21;
dest.m22 = nm22;
dest.m30 = 0.0f;
dest.m31 = 0.0f;
dest.m32 = 0.0f;
dest.properties = properties & ~PROPERTY_TRANSLATION;
return dest;
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#normal(org.joml.Matrix3f)
*/
public Matrix3f normal(Matrix3f dest) {
if ((properties & PROPERTY_ORTHONORMAL) != 0)
return normalOrthonormal(dest);
return normalGeneric(dest);
}
private Matrix3f normalOrthonormal(Matrix3f dest) {
dest.set(this);
return dest;
}
private Matrix3f normalGeneric(Matrix3f dest) {
float m00m11 = m00 * m11;
float m01m10 = m01 * m10;
float m02m10 = m02 * m10;
float m00m12 = m00 * m12;
float m01m12 = m01 * m12;
float m02m11 = m02 * m11;
float det = (m00m11 - m01m10) * m22 + (m02m10 - m00m12) * m21 + (m01m12 - m02m11) * m20;
float s = 1.0f / det;
/* Invert and transpose in one go */
dest.m00((m11 * m22 - m21 * m12) * s);
dest.m01((m20 * m12 - m10 * m22) * s);
dest.m02((m10 * m21 - m20 * m11) * s);
dest.m10((m21 * m02 - m01 * m22) * s);
dest.m11((m00 * m22 - m20 * m02) * s);
dest.m12((m20 * m01 - m00 * m21) * s);
dest.m20((m01m12 - m02m11) * s);
dest.m21((m02m10 - m00m12) * s);
dest.m22((m00m11 - m01m10) * s);
return dest;
}
/**
* Compute the cofactor matrix of the left 3x3 submatrix of this
.
*
* The cofactor matrix can be used instead of {@link #normal()} to transform normals
* when the orientation of the normals with respect to the surface should be preserved.
*
* @return this
*/
public Matrix4x3f cofactor3x3() {
return cofactor3x3(this);
}
/**
* Compute the cofactor matrix of the left 3x3 submatrix of this
* and store it into dest
.
*
* The cofactor matrix can be used instead of {@link #normal(Matrix3f)} to transform normals
* when the orientation of the normals with respect to the surface should be preserved.
*
* @param dest
* will hold the result
* @return dest
*/
public Matrix3f cofactor3x3(Matrix3f dest) {
dest.m00 = m11 * m22 - m21 * m12;
dest.m01 = m20 * m12 - m10 * m22;
dest.m02 = m10 * m21 - m20 * m11;
dest.m10 = m21 * m02 - m01 * m22;
dest.m11 = m00 * m22 - m20 * m02;
dest.m12 = m20 * m01 - m00 * m21;
dest.m20 = m01 * m12 - m02 * m11;
dest.m21 = m02 * m10 - m00 * m12;
dest.m22 = m00 * m11 - m01 * m10;
return dest;
}
/**
* Compute the cofactor matrix of the left 3x3 submatrix of this
* and store it into dest
.
* All other values of dest
will be set to {@link #identity() identity}.
*
* The cofactor matrix can be used instead of {@link #normal(Matrix4x3f)} to transform normals
* when the orientation of the normals with respect to the surface should be preserved.
*
* @param dest
* will hold the result
* @return dest
*/
public Matrix4x3f cofactor3x3(Matrix4x3f dest) {
float nm00 = m11 * m22 - m21 * m12;
float nm01 = m20 * m12 - m10 * m22;
float nm02 = m10 * m21 - m20 * m11;
float nm10 = m21 * m02 - m01 * m22;
float nm11 = m00 * m22 - m20 * m02;
float nm12 = m20 * m01 - m00 * m21;
float nm20 = m01 * m12 - m11 * m02;
float nm21 = m02 * m10 - m12 * m00;
float nm22 = m00 * m11 - m10 * m01;
dest.m00 = nm00;
dest.m01 = nm01;
dest.m02 = nm02;
dest.m10 = nm10;
dest.m11 = nm11;
dest.m12 = nm12;
dest.m20 = nm20;
dest.m21 = nm21;
dest.m22 = nm22;
dest.m30 = 0.0f;
dest.m31 = 0.0f;
dest.m32 = 0.0f;
dest.properties = properties & ~PROPERTY_TRANSLATION;
return dest;
}
/**
* Normalize the left 3x3 submatrix of this matrix.
*
* The resulting matrix will map unit vectors to unit vectors, though a pair of orthogonal input unit
* vectors need not be mapped to a pair of orthogonal output vectors if the original matrix was not orthogonal itself
* (i.e. had skewing).
*
* @return this
*/
public Matrix4x3f normalize3x3() {
return normalize3x3(this);
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#normalize3x3(org.joml.Matrix4x3f)
*/
public Matrix4x3f normalize3x3(Matrix4x3f dest) {
float invXlen = (float) (1.0 / Math.sqrt(m00 * m00 + m01 * m01 + m02 * m02));
float invYlen = (float) (1.0 / Math.sqrt(m10 * m10 + m11 * m11 + m12 * m12));
float invZlen = (float) (1.0 / Math.sqrt(m20 * m20 + m21 * m21 + m22 * m22));
dest.m00 = m00 * invXlen; dest.m01 = m01 * invXlen; dest.m02 = m02 * invXlen;
dest.m10 = m10 * invYlen; dest.m11 = m11 * invYlen; dest.m12 = m12 * invYlen;
dest.m20 = m20 * invZlen; dest.m21 = m21 * invZlen; dest.m22 = m22 * invZlen;
dest.properties = properties;
return dest;
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#normalize3x3(org.joml.Matrix3f)
*/
public Matrix3f normalize3x3(Matrix3f dest) {
float invXlen = (float) (1.0 / Math.sqrt(m00 * m00 + m01 * m01 + m02 * m02));
float invYlen = (float) (1.0 / Math.sqrt(m10 * m10 + m11 * m11 + m12 * m12));
float invZlen = (float) (1.0 / Math.sqrt(m20 * m20 + m21 * m21 + m22 * m22));
dest.m00(m00 * invXlen); dest.m01(m01 * invXlen); dest.m02(m02 * invXlen);
dest.m10(m10 * invYlen); dest.m11(m11 * invYlen); dest.m12(m12 * invYlen);
dest.m20(m20 * invZlen); dest.m21(m21 * invZlen); dest.m22(m22 * invZlen);
return dest;
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#frustumPlane(int, org.joml.Planef)
*/
public Planef frustumPlane(int which, Planef plane) {
switch (which) {
case PLANE_NX:
plane.set(m00, m10, m20, 1.0f + m30).normalize(plane);
break;
case PLANE_PX:
plane.set(-m00, -m10, -m20, 1.0f - m30).normalize(plane);
break;
case PLANE_NY:
plane.set(m01, m11, m21, 1.0f + m31).normalize(plane);
break;
case PLANE_PY:
plane.set(-m01, -m11, -m21, 1.0f - m31).normalize(plane);
break;
case PLANE_NZ:
plane.set(m02, m12, m22, 1.0f + m32).normalize(plane);
break;
case PLANE_PZ:
plane.set(-m02, -m12, -m22, 1.0f - m32).normalize(plane);
break;
default:
throw new IllegalArgumentException("which"); //$NON-NLS-1$
}
return plane;
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#positiveZ(org.joml.Vector3f)
*/
public Vector3f positiveZ(Vector3f dir) {
dir.x = m10 * m21 - m11 * m20;
dir.y = m20 * m01 - m21 * m00;
dir.z = m00 * m11 - m01 * m10;
return dir.normalize(dir);
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#normalizedPositiveZ(org.joml.Vector3f)
*/
public Vector3f normalizedPositiveZ(Vector3f dir) {
dir.x = m02;
dir.y = m12;
dir.z = m22;
return dir;
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#positiveX(org.joml.Vector3f)
*/
public Vector3f positiveX(Vector3f dir) {
dir.x = m11 * m22 - m12 * m21;
dir.y = m02 * m21 - m01 * m22;
dir.z = m01 * m12 - m02 * m11;
return dir.normalize(dir);
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#normalizedPositiveX(org.joml.Vector3f)
*/
public Vector3f normalizedPositiveX(Vector3f dir) {
dir.x = m00;
dir.y = m10;
dir.z = m20;
return dir;
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#positiveY(org.joml.Vector3f)
*/
public Vector3f positiveY(Vector3f dir) {
dir.x = m12 * m20 - m10 * m22;
dir.y = m00 * m22 - m02 * m20;
dir.z = m02 * m10 - m00 * m12;
return dir.normalize(dir);
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#normalizedPositiveY(org.joml.Vector3f)
*/
public Vector3f normalizedPositiveY(Vector3f dir) {
dir.x = m01;
dir.y = m11;
dir.z = m21;
return dir;
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#origin(org.joml.Vector3f)
*/
public Vector3f origin(Vector3f origin) {
float a = m00 * m11 - m01 * m10;
float b = m00 * m12 - m02 * m10;
float d = m01 * m12 - m02 * m11;
float g = m20 * m31 - m21 * m30;
float h = m20 * m32 - m22 * m30;
float j = m21 * m32 - m22 * m31;
origin.x = -m10 * j + m11 * h - m12 * g;
origin.y = m00 * j - m01 * h + m02 * g;
origin.z = -m30 * d + m31 * b - m32 * a;
return origin;
}
/**
* Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equation
* x*a + y*b + z*c + d = 0
as if casting a shadow from a given light position/direction light
.
*
* If light.w
is 0.0
the light is being treated as a directional light; if it is 1.0
it is a point light.
*
* If M
is this
matrix and S
the shadow matrix,
* then the new matrix will be M * S
. So when transforming a
* vector v
with the new matrix by using M * S * v
, the
* reflection will be applied first!
*
* Reference: ftp.sgi.com
*
* @param light
* the light's vector
* @param a
* the x factor in the plane equation
* @param b
* the y factor in the plane equation
* @param c
* the z factor in the plane equation
* @param d
* the constant in the plane equation
* @return this
*/
public Matrix4x3f shadow(Vector4fc light, float a, float b, float c, float d) {
return shadow(light.x(), light.y(), light.z(), light.w(), a, b, c, d, this);
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#shadow(org.joml.Vector4fc, float, float, float, float, org.joml.Matrix4x3f)
*/
public Matrix4x3f shadow(Vector4fc light, float a, float b, float c, float d, Matrix4x3f dest) {
return shadow(light.x(), light.y(), light.z(), light.w(), a, b, c, d, dest);
}
/**
* Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equation
* x*a + y*b + z*c + d = 0
as if casting a shadow from a given light position/direction (lightX, lightY, lightZ, lightW)
.
*
* If lightW
is 0.0
the light is being treated as a directional light; if it is 1.0
it is a point light.
*
* If M
is this
matrix and S
the shadow matrix,
* then the new matrix will be M * S
. So when transforming a
* vector v
with the new matrix by using M * S * v
, the
* reflection will be applied first!
*
* Reference: ftp.sgi.com
*
* @param lightX
* the x-component of the light's vector
* @param lightY
* the y-component of the light's vector
* @param lightZ
* the z-component of the light's vector
* @param lightW
* the w-component of the light's vector
* @param a
* the x factor in the plane equation
* @param b
* the y factor in the plane equation
* @param c
* the z factor in the plane equation
* @param d
* the constant in the plane equation
* @return this
*/
public Matrix4x3f shadow(float lightX, float lightY, float lightZ, float lightW, float a, float b, float c, float d) {
return shadow(lightX, lightY, lightZ, lightW, a, b, c, d, this);
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#shadow(float, float, float, float, float, float, float, float, org.joml.Matrix4x3f)
*/
public Matrix4x3f shadow(float lightX, float lightY, float lightZ, float lightW, float a, float b, float c, float d, Matrix4x3f dest) {
// normalize plane
float invPlaneLen = (float) (1.0 / Math.sqrt(a*a + b*b + c*c));
float an = a * invPlaneLen;
float bn = b * invPlaneLen;
float cn = c * invPlaneLen;
float dn = d * invPlaneLen;
float dot = an * lightX + bn * lightY + cn * lightZ + dn * lightW;
// compute right matrix elements
float rm00 = dot - an * lightX;
float rm01 = -an * lightY;
float rm02 = -an * lightZ;
float rm03 = -an * lightW;
float rm10 = -bn * lightX;
float rm11 = dot - bn * lightY;
float rm12 = -bn * lightZ;
float rm13 = -bn * lightW;
float rm20 = -cn * lightX;
float rm21 = -cn * lightY;
float rm22 = dot - cn * lightZ;
float rm23 = -cn * lightW;
float rm30 = -dn * lightX;
float rm31 = -dn * lightY;
float rm32 = -dn * lightZ;
float rm33 = dot - dn * lightW;
// matrix multiplication
float nm00 = m00 * rm00 + m10 * rm01 + m20 * rm02 + m30 * rm03;
float nm01 = m01 * rm00 + m11 * rm01 + m21 * rm02 + m31 * rm03;
float nm02 = m02 * rm00 + m12 * rm01 + m22 * rm02 + m32 * rm03;
float nm10 = m00 * rm10 + m10 * rm11 + m20 * rm12 + m30 * rm13;
float nm11 = m01 * rm10 + m11 * rm11 + m21 * rm12 + m31 * rm13;
float nm12 = m02 * rm10 + m12 * rm11 + m22 * rm12 + m32 * rm13;
float nm20 = m00 * rm20 + m10 * rm21 + m20 * rm22 + m30 * rm23;
float nm21 = m01 * rm20 + m11 * rm21 + m21 * rm22 + m31 * rm23;
float nm22 = m02 * rm20 + m12 * rm21 + m22 * rm22 + m32 * rm23;
dest.m30 = m00 * rm30 + m10 * rm31 + m20 * rm32 + m30 * rm33;
dest.m31 = m01 * rm30 + m11 * rm31 + m21 * rm32 + m31 * rm33;
dest.m32 = m02 * rm30 + m12 * rm31 + m22 * rm32 + m32 * rm33;
dest.m00 = nm00;
dest.m01 = nm01;
dest.m02 = nm02;
dest.m10 = nm10;
dest.m11 = nm11;
dest.m12 = nm12;
dest.m20 = nm20;
dest.m21 = nm21;
dest.m22 = nm22;
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL);
return dest;
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#shadow(org.joml.Vector4fc, org.joml.Matrix4x3fc, org.joml.Matrix4x3f)
*/
public Matrix4x3f shadow(Vector4fc light, Matrix4x3fc planeTransform, Matrix4x3f dest) {
// compute plane equation by transforming (y = 0)
float a = planeTransform.m10();
float b = planeTransform.m11();
float c = planeTransform.m12();
float d = -a * planeTransform.m30() - b * planeTransform.m31() - c * planeTransform.m32();
return shadow(light.x(), light.y(), light.z(), light.w(), a, b, c, d, dest);
}
/**
* Apply a projection transformation to this matrix that projects onto the plane with the general plane equation
* y = 0
as if casting a shadow from a given light position/direction light
.
*
* Before the shadow projection is applied, the plane is transformed via the specified planeTransformation
.
*
* If light.w
is 0.0
the light is being treated as a directional light; if it is 1.0
it is a point light.
*
* If M
is this
matrix and S
the shadow matrix,
* then the new matrix will be M * S
. So when transforming a
* vector v
with the new matrix by using M * S * v
, the
* reflection will be applied first!
*
* @param light
* the light's vector
* @param planeTransform
* the transformation to transform the implied plane y = 0
before applying the projection
* @return this
*/
public Matrix4x3f shadow(Vector4fc light, Matrix4x3fc planeTransform) {
return shadow(light, planeTransform, this);
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#shadow(float, float, float, float, org.joml.Matrix4x3fc, org.joml.Matrix4x3f)
*/
public Matrix4x3f shadow(float lightX, float lightY, float lightZ, float lightW, Matrix4x3fc planeTransform, Matrix4x3f dest) {
// compute plane equation by transforming (y = 0)
float a = planeTransform.m10();
float b = planeTransform.m11();
float c = planeTransform.m12();
float d = -a * planeTransform.m30() - b * planeTransform.m31() - c * planeTransform.m32();
return shadow(lightX, lightY, lightZ, lightW, a, b, c, d, dest);
}
/**
* Apply a projection transformation to this matrix that projects onto the plane with the general plane equation
* y = 0
as if casting a shadow from a given light position/direction (lightX, lightY, lightZ, lightW)
.
*
* Before the shadow projection is applied, the plane is transformed via the specified planeTransformation
.
*
* If lightW
is 0.0
the light is being treated as a directional light; if it is 1.0
it is a point light.
*
* If M
is this
matrix and S
the shadow matrix,
* then the new matrix will be M * S
. So when transforming a
* vector v
with the new matrix by using M * S * v
, the
* reflection will be applied first!
*
* @param lightX
* the x-component of the light vector
* @param lightY
* the y-component of the light vector
* @param lightZ
* the z-component of the light vector
* @param lightW
* the w-component of the light vector
* @param planeTransform
* the transformation to transform the implied plane y = 0
before applying the projection
* @return this
*/
public Matrix4x3f shadow(float lightX, float lightY, float lightZ, float lightW, Matrix4x3f planeTransform) {
return shadow(lightX, lightY, lightZ, lightW, planeTransform, this);
}
/**
* Set this matrix to a cylindrical billboard transformation that rotates the local +Z axis of a given object with position objPos
towards
* a target position at targetPos
while constraining a cylindrical rotation around the given up
vector.
*
* This method can be used to create the complete model transformation for a given object, including the translation of the object to
* its position objPos
.
*
* @param objPos
* the position of the object to rotate towards targetPos
* @param targetPos
* the position of the target (for example the camera) towards which to rotate the object
* @param up
* the rotation axis (must be {@link Vector3f#normalize() normalized})
* @return this
*/
public Matrix4x3f billboardCylindrical(Vector3fc objPos, Vector3fc targetPos, Vector3fc up) {
float dirX = targetPos.x() - objPos.x();
float dirY = targetPos.y() - objPos.y();
float dirZ = targetPos.z() - objPos.z();
// left = up x dir
float leftX = up.y() * dirZ - up.z() * dirY;
float leftY = up.z() * dirX - up.x() * dirZ;
float leftZ = up.x() * dirY - up.y() * dirX;
// normalize left
float invLeftLen = 1.0f / (float) Math.sqrt(leftX * leftX + leftY * leftY + leftZ * leftZ);
leftX *= invLeftLen;
leftY *= invLeftLen;
leftZ *= invLeftLen;
// recompute dir by constraining rotation around 'up'
// dir = left x up
dirX = leftY * up.z() - leftZ * up.y();
dirY = leftZ * up.x() - leftX * up.z();
dirZ = leftX * up.y() - leftY * up.x();
// normalize dir
float invDirLen = 1.0f / (float) Math.sqrt(dirX * dirX + dirY * dirY + dirZ * dirZ);
dirX *= invDirLen;
dirY *= invDirLen;
dirZ *= invDirLen;
// set matrix elements
m00 = leftX;
m01 = leftY;
m02 = leftZ;
m10 = up.x();
m11 = up.y();
m12 = up.z();
m20 = dirX;
m21 = dirY;
m22 = dirZ;
m30 = objPos.x();
m31 = objPos.y();
m32 = objPos.z();
properties = PROPERTY_ORTHONORMAL;
return this;
}
/**
* Set this matrix to a spherical billboard transformation that rotates the local +Z axis of a given object with position objPos
towards
* a target position at targetPos
.
*
* This method can be used to create the complete model transformation for a given object, including the translation of the object to
* its position objPos
.
*
* If preserving an up vector is not necessary when rotating the +Z axis, then a shortest arc rotation can be obtained
* using {@link #billboardSpherical(Vector3fc, Vector3fc)}.
*
* @see #billboardSpherical(Vector3fc, Vector3fc)
*
* @param objPos
* the position of the object to rotate towards targetPos
* @param targetPos
* the position of the target (for example the camera) towards which to rotate the object
* @param up
* the up axis used to orient the object
* @return this
*/
public Matrix4x3f billboardSpherical(Vector3fc objPos, Vector3fc targetPos, Vector3fc up) {
float dirX = targetPos.x() - objPos.x();
float dirY = targetPos.y() - objPos.y();
float dirZ = targetPos.z() - objPos.z();
// normalize dir
float invDirLen = 1.0f / (float) Math.sqrt(dirX * dirX + dirY * dirY + dirZ * dirZ);
dirX *= invDirLen;
dirY *= invDirLen;
dirZ *= invDirLen;
// left = up x dir
float leftX = up.y() * dirZ - up.z() * dirY;
float leftY = up.z() * dirX - up.x() * dirZ;
float leftZ = up.x() * dirY - up.y() * dirX;
// normalize left
float invLeftLen = 1.0f / (float) Math.sqrt(leftX * leftX + leftY * leftY + leftZ * leftZ);
leftX *= invLeftLen;
leftY *= invLeftLen;
leftZ *= invLeftLen;
// up = dir x left
float upX = dirY * leftZ - dirZ * leftY;
float upY = dirZ * leftX - dirX * leftZ;
float upZ = dirX * leftY - dirY * leftX;
// set matrix elements
m00 = leftX;
m01 = leftY;
m02 = leftZ;
m10 = upX;
m11 = upY;
m12 = upZ;
m20 = dirX;
m21 = dirY;
m22 = dirZ;
m30 = objPos.x();
m31 = objPos.y();
m32 = objPos.z();
properties = PROPERTY_ORTHONORMAL;
return this;
}
/**
* Set this matrix to a spherical billboard transformation that rotates the local +Z axis of a given object with position objPos
towards
* a target position at targetPos
using a shortest arc rotation by not preserving any up vector of the object.
*
* This method can be used to create the complete model transformation for a given object, including the translation of the object to
* its position objPos
.
*
* In order to specify an up vector which needs to be maintained when rotating the +Z axis of the object,
* use {@link #billboardSpherical(Vector3fc, Vector3fc, Vector3fc)}.
*
* @see #billboardSpherical(Vector3fc, Vector3fc, Vector3fc)
*
* @param objPos
* the position of the object to rotate towards targetPos
* @param targetPos
* the position of the target (for example the camera) towards which to rotate the object
* @return this
*/
public Matrix4x3f billboardSpherical(Vector3fc objPos, Vector3fc targetPos) {
float toDirX = targetPos.x() - objPos.x();
float toDirY = targetPos.y() - objPos.y();
float toDirZ = targetPos.z() - objPos.z();
float x = -toDirY;
float y = toDirX;
float w = (float) Math.sqrt(toDirX * toDirX + toDirY * toDirY + toDirZ * toDirZ) + toDirZ;
float invNorm = (float) (1.0 / Math.sqrt(x * x + y * y + w * w));
x *= invNorm;
y *= invNorm;
w *= invNorm;
float q00 = (x + x) * x;
float q11 = (y + y) * y;
float q01 = (x + x) * y;
float q03 = (x + x) * w;
float q13 = (y + y) * w;
m00 = 1.0f - q11;
m01 = q01;
m02 = -q13;
m10 = q01;
m11 = 1.0f - q00;
m12 = q03;
m20 = q13;
m21 = -q03;
m22 = 1.0f - q11 - q00;
m30 = objPos.x();
m31 = objPos.y();
m32 = objPos.z();
properties = PROPERTY_ORTHONORMAL;
return this;
}
public int hashCode() {
final int prime = 31;
int result = 1;
result = prime * result + Float.floatToIntBits(m00);
result = prime * result + Float.floatToIntBits(m01);
result = prime * result + Float.floatToIntBits(m02);
result = prime * result + Float.floatToIntBits(m10);
result = prime * result + Float.floatToIntBits(m11);
result = prime * result + Float.floatToIntBits(m12);
result = prime * result + Float.floatToIntBits(m20);
result = prime * result + Float.floatToIntBits(m21);
result = prime * result + Float.floatToIntBits(m22);
result = prime * result + Float.floatToIntBits(m30);
result = prime * result + Float.floatToIntBits(m31);
result = prime * result + Float.floatToIntBits(m32);
return result;
}
public boolean equals(Object obj) {
if (this == obj)
return true;
if (obj == null)
return false;
if (!(obj instanceof Matrix4x3f))
return false;
Matrix4x3f other = (Matrix4x3f) obj;
if (Float.floatToIntBits(m00) != Float.floatToIntBits(other.m00))
return false;
if (Float.floatToIntBits(m01) != Float.floatToIntBits(other.m01))
return false;
if (Float.floatToIntBits(m02) != Float.floatToIntBits(other.m02))
return false;
if (Float.floatToIntBits(m10) != Float.floatToIntBits(other.m10))
return false;
if (Float.floatToIntBits(m11) != Float.floatToIntBits(other.m11))
return false;
if (Float.floatToIntBits(m12) != Float.floatToIntBits(other.m12))
return false;
if (Float.floatToIntBits(m20) != Float.floatToIntBits(other.m20))
return false;
if (Float.floatToIntBits(m21) != Float.floatToIntBits(other.m21))
return false;
if (Float.floatToIntBits(m22) != Float.floatToIntBits(other.m22))
return false;
if (Float.floatToIntBits(m30) != Float.floatToIntBits(other.m30))
return false;
if (Float.floatToIntBits(m31) != Float.floatToIntBits(other.m31))
return false;
if (Float.floatToIntBits(m32) != Float.floatToIntBits(other.m32))
return false;
return true;
}
public boolean equals(Matrix4x3fc m, float delta) {
if (this == m)
return true;
if (m == null)
return false;
if (!(m instanceof Matrix4x3f))
return false;
if (!Runtime.equals(m00, m.m00(), delta))
return false;
if (!Runtime.equals(m01, m.m01(), delta))
return false;
if (!Runtime.equals(m02, m.m02(), delta))
return false;
if (!Runtime.equals(m10, m.m10(), delta))
return false;
if (!Runtime.equals(m11, m.m11(), delta))
return false;
if (!Runtime.equals(m12, m.m12(), delta))
return false;
if (!Runtime.equals(m20, m.m20(), delta))
return false;
if (!Runtime.equals(m21, m.m21(), delta))
return false;
if (!Runtime.equals(m22, m.m22(), delta))
return false;
if (!Runtime.equals(m30, m.m30(), delta))
return false;
if (!Runtime.equals(m31, m.m31(), delta))
return false;
if (!Runtime.equals(m32, m.m32(), delta))
return false;
return true;
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#pick(float, float, float, float, int[], org.joml.Matrix4x3f)
*/
public Matrix4x3f pick(float x, float y, float width, float height, int[] viewport, Matrix4x3f dest) {
float sx = viewport[2] / width;
float sy = viewport[3] / height;
float tx = (viewport[2] + 2.0f * (viewport[0] - x)) / width;
float ty = (viewport[3] + 2.0f * (viewport[1] - y)) / height;
dest.m30 = m00 * tx + m10 * ty + m30;
dest.m31 = m01 * tx + m11 * ty + m31;
dest.m32 = m02 * tx + m12 * ty + m32;
dest.m00 = m00 * sx;
dest.m01 = m01 * sx;
dest.m02 = m02 * sx;
dest.m10 = m10 * sy;
dest.m11 = m11 * sy;
dest.m12 = m12 * sy;
dest.properties = 0;
return dest;
}
/**
* Apply a picking transformation to this matrix using the given window coordinates (x, y)
as the pick center
* and the given (width, height)
as the size of the picking region in window coordinates.
*
* @param x
* the x coordinate of the picking region center in window coordinates
* @param y
* the y coordinate of the picking region center in window coordinates
* @param width
* the width of the picking region in window coordinates
* @param height
* the height of the picking region in window coordinates
* @param viewport
* the viewport described by [x, y, width, height]
* @return this
*/
public Matrix4x3f pick(float x, float y, float width, float height, int[] viewport) {
return pick(x, y, width, height, viewport, this);
}
/**
* Exchange the values of this
matrix with the given other
matrix.
*
* @param other
* the other matrix to exchange the values with
* @return this
*/
public Matrix4x3f swap(Matrix4x3f other) {
MemUtil.INSTANCE.swap(this, other);
int props = properties;
this.properties = other.properties;
other.properties = props;
return this;
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#arcball(float, float, float, float, float, float, org.joml.Matrix4x3f)
*/
public Matrix4x3f arcball(float radius, float centerX, float centerY, float centerZ, float angleX, float angleY, Matrix4x3f dest) {
float m30 = m20 * -radius + this.m30;
float m31 = m21 * -radius + this.m31;
float m32 = m22 * -radius + this.m32;
float sin = (float) Math.sin(angleX);
float cos = (float) Math.cosFromSin(sin, angleX);
float nm10 = m10 * cos + m20 * sin;
float nm11 = m11 * cos + m21 * sin;
float nm12 = m12 * cos + m22 * sin;
float m20 = this.m20 * cos - m10 * sin;
float m21 = this.m21 * cos - m11 * sin;
float m22 = this.m22 * cos - m12 * sin;
sin = (float) Math.sin(angleY);
cos = (float) Math.cosFromSin(sin, angleY);
float nm00 = m00 * cos - m20 * sin;
float nm01 = m01 * cos - m21 * sin;
float nm02 = m02 * cos - m22 * sin;
float nm20 = m00 * sin + m20 * cos;
float nm21 = m01 * sin + m21 * cos;
float nm22 = m02 * sin + m22 * cos;
dest.m30 = -nm00 * centerX - nm10 * centerY - nm20 * centerZ + m30;
dest.m31 = -nm01 * centerX - nm11 * centerY - nm21 * centerZ + m31;
dest.m32 = -nm02 * centerX - nm12 * centerY - nm22 * centerZ + m32;
dest.m20 = nm20;
dest.m21 = nm21;
dest.m22 = nm22;
dest.m10 = nm10;
dest.m11 = nm11;
dest.m12 = nm12;
dest.m00 = nm00;
dest.m01 = nm01;
dest.m02 = nm02;
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
return dest;
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#arcball(float, org.joml.Vector3fc, float, float, org.joml.Matrix4x3f)
*/
public Matrix4x3f arcball(float radius, Vector3fc center, float angleX, float angleY, Matrix4x3f dest) {
return arcball(radius, center.x(), center.y(), center.z(), angleX, angleY, dest);
}
/**
* Apply an arcball view transformation to this matrix with the given radius
and center (centerX, centerY, centerZ)
* position of the arcball and the specified X and Y rotation angles.
*
* This method is equivalent to calling: translate(0, 0, -radius).rotateX(angleX).rotateY(angleY).translate(-centerX, -centerY, -centerZ)
*
* @param radius
* the arcball radius
* @param centerX
* the x coordinate of the center position of the arcball
* @param centerY
* the y coordinate of the center position of the arcball
* @param centerZ
* the z coordinate of the center position of the arcball
* @param angleX
* the rotation angle around the X axis in radians
* @param angleY
* the rotation angle around the Y axis in radians
* @return this
*/
public Matrix4x3f arcball(float radius, float centerX, float centerY, float centerZ, float angleX, float angleY) {
return arcball(radius, centerX, centerY, centerZ, angleX, angleY, this);
}
/**
* Apply an arcball view transformation to this matrix with the given radius
and center
* position of the arcball and the specified X and Y rotation angles.
*
* This method is equivalent to calling: translate(0, 0, -radius).rotateX(angleX).rotateY(angleY).translate(-center.x, -center.y, -center.z)
*
* @param radius
* the arcball radius
* @param center
* the center position of the arcball
* @param angleX
* the rotation angle around the X axis in radians
* @param angleY
* the rotation angle around the Y axis in radians
* @return this
*/
public Matrix4x3f arcball(float radius, Vector3fc center, float angleX, float angleY) {
return arcball(radius, center.x(), center.y(), center.z(), angleX, angleY, this);
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#transformAab(float, float, float, float, float, float, org.joml.Vector3f, org.joml.Vector3f)
*/
public Matrix4x3f transformAab(float minX, float minY, float minZ, float maxX, float maxY, float maxZ, Vector3f outMin, Vector3f outMax) {
float xax = m00 * minX, xay = m01 * minX, xaz = m02 * minX;
float xbx = m00 * maxX, xby = m01 * maxX, xbz = m02 * maxX;
float yax = m10 * minY, yay = m11 * minY, yaz = m12 * minY;
float ybx = m10 * maxY, yby = m11 * maxY, ybz = m12 * maxY;
float zax = m20 * minZ, zay = m21 * minZ, zaz = m22 * minZ;
float zbx = m20 * maxZ, zby = m21 * maxZ, zbz = m22 * maxZ;
float xminx, xminy, xminz, yminx, yminy, yminz, zminx, zminy, zminz;
float xmaxx, xmaxy, xmaxz, ymaxx, ymaxy, ymaxz, zmaxx, zmaxy, zmaxz;
if (xax < xbx) {
xminx = xax;
xmaxx = xbx;
} else {
xminx = xbx;
xmaxx = xax;
}
if (xay < xby) {
xminy = xay;
xmaxy = xby;
} else {
xminy = xby;
xmaxy = xay;
}
if (xaz < xbz) {
xminz = xaz;
xmaxz = xbz;
} else {
xminz = xbz;
xmaxz = xaz;
}
if (yax < ybx) {
yminx = yax;
ymaxx = ybx;
} else {
yminx = ybx;
ymaxx = yax;
}
if (yay < yby) {
yminy = yay;
ymaxy = yby;
} else {
yminy = yby;
ymaxy = yay;
}
if (yaz < ybz) {
yminz = yaz;
ymaxz = ybz;
} else {
yminz = ybz;
ymaxz = yaz;
}
if (zax < zbx) {
zminx = zax;
zmaxx = zbx;
} else {
zminx = zbx;
zmaxx = zax;
}
if (zay < zby) {
zminy = zay;
zmaxy = zby;
} else {
zminy = zby;
zmaxy = zay;
}
if (zaz < zbz) {
zminz = zaz;
zmaxz = zbz;
} else {
zminz = zbz;
zmaxz = zaz;
}
outMin.x = xminx + yminx + zminx + m30;
outMin.y = xminy + yminy + zminy + m31;
outMin.z = xminz + yminz + zminz + m32;
outMax.x = xmaxx + ymaxx + zmaxx + m30;
outMax.y = xmaxy + ymaxy + zmaxy + m31;
outMax.z = xmaxz + ymaxz + zmaxz + m32;
return this;
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#transformAab(org.joml.Vector3fc, org.joml.Vector3fc, org.joml.Vector3f, org.joml.Vector3f)
*/
public Matrix4x3f transformAab(Vector3fc min, Vector3fc max, Vector3f outMin, Vector3f outMax) {
return transformAab(min.x(), min.y(), min.z(), max.x(), max.y(), max.z(), outMin, outMax);
}
/**
* Linearly interpolate this
and other
using the given interpolation factor t
* and store the result in this
.
*
* If t
is 0.0
then the result is this
. If the interpolation factor is 1.0
* then the result is other
.
*
* @param other
* the other matrix
* @param t
* the interpolation factor between 0.0 and 1.0
* @return this
*/
public Matrix4x3f lerp(Matrix4x3fc other, float t) {
return lerp(other, t, this);
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#lerp(org.joml.Matrix4x3fc, float, org.joml.Matrix4x3f)
*/
public Matrix4x3f lerp(Matrix4x3fc other, float t, Matrix4x3f dest) {
dest.m00 = m00 + (other.m00() - m00) * t;
dest.m01 = m01 + (other.m01() - m01) * t;
dest.m02 = m02 + (other.m02() - m02) * t;
dest.m10 = m10 + (other.m10() - m10) * t;
dest.m11 = m11 + (other.m11() - m11) * t;
dest.m12 = m12 + (other.m12() - m12) * t;
dest.m20 = m20 + (other.m20() - m20) * t;
dest.m21 = m21 + (other.m21() - m21) * t;
dest.m22 = m22 + (other.m22() - m22) * t;
dest.m30 = m30 + (other.m30() - m30) * t;
dest.m31 = m31 + (other.m31() - m31) * t;
dest.m32 = m32 + (other.m32() - m32) * t;
dest.properties = properties & other.properties();
return dest;
}
/**
* Apply a model transformation to this matrix for a right-handed coordinate system,
* that aligns the local +Z
axis with dir
* and store the result in dest
.
*
* If M
is this
matrix and L
the lookat matrix,
* then the new matrix will be M * L
. So when transforming a
* vector v
with the new matrix by using M * L * v
,
* the lookat transformation will be applied first!
*
* In order to set the matrix to a rotation transformation without post-multiplying it,
* use {@link #rotationTowards(Vector3fc, Vector3fc) rotationTowards()}.
*
* This method is equivalent to calling: mul(new Matrix4x3f().lookAt(new Vector3f(), new Vector3f(dir).negate(), up).invert(), dest)
*
* @see #rotateTowards(float, float, float, float, float, float, Matrix4x3f)
* @see #rotationTowards(Vector3fc, Vector3fc)
*
* @param dir
* the direction to rotate towards
* @param up
* the up vector
* @param dest
* will hold the result
* @return dest
*/
public Matrix4x3f rotateTowards(Vector3fc dir, Vector3fc up, Matrix4x3f dest) {
return rotateTowards(dir.x(), dir.y(), dir.z(), up.x(), up.y(), up.z(), dest);
}
/**
* Apply a model transformation to this matrix for a right-handed coordinate system,
* that aligns the local +Z
axis with dir
.
*
* If M
is this
matrix and L
the lookat matrix,
* then the new matrix will be M * L
. So when transforming a
* vector v
with the new matrix by using M * L * v
,
* the lookat transformation will be applied first!
*
* In order to set the matrix to a rotation transformation without post-multiplying it,
* use {@link #rotationTowards(Vector3fc, Vector3fc) rotationTowards()}.
*
* This method is equivalent to calling: mul(new Matrix4x3f().lookAt(new Vector3f(), new Vector3f(dir).negate(), up).invert())
*
* @see #rotateTowards(float, float, float, float, float, float)
* @see #rotationTowards(Vector3fc, Vector3fc)
*
* @param dir
* the direction to orient towards
* @param up
* the up vector
* @return this
*/
public Matrix4x3f rotateTowards(Vector3fc dir, Vector3fc up) {
return rotateTowards(dir.x(), dir.y(), dir.z(), up.x(), up.y(), up.z(), this);
}
/**
* Apply a model transformation to this matrix for a right-handed coordinate system,
* that aligns the local +Z
axis with (dirX, dirY, dirZ)
.
*
* If M
is this
matrix and L
the lookat matrix,
* then the new matrix will be M * L
. So when transforming a
* vector v
with the new matrix by using M * L * v
,
* the lookat transformation will be applied first!
*
* In order to set the matrix to a rotation transformation without post-multiplying it,
* use {@link #rotationTowards(float, float, float, float, float, float) rotationTowards()}.
*
* This method is equivalent to calling: mul(new Matrix4x3f().lookAt(0, 0, 0, -dirX, -dirY, -dirZ, upX, upY, upZ).invert())
*
* @see #rotateTowards(Vector3fc, Vector3fc)
* @see #rotationTowards(float, float, float, float, float, float)
*
* @param dirX
* the x-coordinate of the direction to rotate towards
* @param dirY
* the y-coordinate of the direction to rotate towards
* @param dirZ
* the z-coordinate of the direction to rotate towards
* @param upX
* the x-coordinate of the up vector
* @param upY
* the y-coordinate of the up vector
* @param upZ
* the z-coordinate of the up vector
* @return this
*/
public Matrix4x3f rotateTowards(float dirX, float dirY, float dirZ, float upX, float upY, float upZ) {
return rotateTowards(dirX, dirY, dirZ, upX, upY, upZ, this);
}
/**
* Apply a model transformation to this matrix for a right-handed coordinate system,
* that aligns the local +Z
axis with (dirX, dirY, dirZ)
* and store the result in dest
.
*
* If M
is this
matrix and L
the lookat matrix,
* then the new matrix will be M * L
. So when transforming a
* vector v
with the new matrix by using M * L * v
,
* the lookat transformation will be applied first!
*
* In order to set the matrix to a rotation transformation without post-multiplying it,
* use {@link #rotationTowards(float, float, float, float, float, float) rotationTowards()}.
*
* This method is equivalent to calling: mul(new Matrix4x3f().lookAt(0, 0, 0, -dirX, -dirY, -dirZ, upX, upY, upZ).invert(), dest)
*
* @see #rotateTowards(Vector3fc, Vector3fc)
* @see #rotationTowards(float, float, float, float, float, float)
*
* @param dirX
* the x-coordinate of the direction to rotate towards
* @param dirY
* the y-coordinate of the direction to rotate towards
* @param dirZ
* the z-coordinate of the direction to rotate towards
* @param upX
* the x-coordinate of the up vector
* @param upY
* the y-coordinate of the up vector
* @param upZ
* the z-coordinate of the up vector
* @param dest
* will hold the result
* @return dest
*/
public Matrix4x3f rotateTowards(float dirX, float dirY, float dirZ, float upX, float upY, float upZ, Matrix4x3f dest) {
// Normalize direction
float invDirLength = 1.0f / (float) Math.sqrt(dirX * dirX + dirY * dirY + dirZ * dirZ);
float ndirX = dirX * invDirLength;
float ndirY = dirY * invDirLength;
float ndirZ = dirZ * invDirLength;
// left = up x direction
float leftX, leftY, leftZ;
leftX = upY * ndirZ - upZ * ndirY;
leftY = upZ * ndirX - upX * ndirZ;
leftZ = upX * ndirY - upY * ndirX;
// normalize left
float invLeftLength = 1.0f / (float) Math.sqrt(leftX * leftX + leftY * leftY + leftZ * leftZ);
leftX *= invLeftLength;
leftY *= invLeftLength;
leftZ *= invLeftLength;
// up = direction x left
float upnX = ndirY * leftZ - ndirZ * leftY;
float upnY = ndirZ * leftX - ndirX * leftZ;
float upnZ = ndirX * leftY - ndirY * leftX;
float rm00 = leftX;
float rm01 = leftY;
float rm02 = leftZ;
float rm10 = upnX;
float rm11 = upnY;
float rm12 = upnZ;
float rm20 = ndirX;
float rm21 = ndirY;
float rm22 = ndirZ;
dest.m30 = m30;
dest.m31 = m31;
dest.m32 = m32;
float nm00 = m00 * rm00 + m10 * rm01 + m20 * rm02;
float nm01 = m01 * rm00 + m11 * rm01 + m21 * rm02;
float nm02 = m02 * rm00 + m12 * rm01 + m22 * rm02;
float nm10 = m00 * rm10 + m10 * rm11 + m20 * rm12;
float nm11 = m01 * rm10 + m11 * rm11 + m21 * rm12;
float nm12 = m02 * rm10 + m12 * rm11 + m22 * rm12;
dest.m20 = m00 * rm20 + m10 * rm21 + m20 * rm22;
dest.m21 = m01 * rm20 + m11 * rm21 + m21 * rm22;
dest.m22 = m02 * rm20 + m12 * rm21 + m22 * rm22;
dest.m00 = nm00;
dest.m01 = nm01;
dest.m02 = nm02;
dest.m10 = nm10;
dest.m11 = nm11;
dest.m12 = nm12;
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
return dest;
}
/**
* Set this matrix to a model transformation for a right-handed coordinate system,
* that aligns the local -z
axis with dir
.
*
* In order to apply the rotation transformation to a previous existing transformation,
* use {@link #rotateTowards(float, float, float, float, float, float) rotateTowards}.
*
* This method is equivalent to calling: setLookAt(new Vector3f(), new Vector3f(dir).negate(), up).invert()
*
* @see #rotationTowards(Vector3fc, Vector3fc)
* @see #rotateTowards(float, float, float, float, float, float)
*
* @param dir
* the direction to orient the local -z axis towards
* @param up
* the up vector
* @return this
*/
public Matrix4x3f rotationTowards(Vector3fc dir, Vector3fc up) {
return rotationTowards(dir.x(), dir.y(), dir.z(), up.x(), up.y(), up.z());
}
/**
* Set this matrix to a model transformation for a right-handed coordinate system,
* that aligns the local -z
axis with (dirX, dirY, dirZ)
.
*
* In order to apply the rotation transformation to a previous existing transformation,
* use {@link #rotateTowards(float, float, float, float, float, float) rotateTowards}.
*
* This method is equivalent to calling: setLookAt(0, 0, 0, -dirX, -dirY, -dirZ, upX, upY, upZ).invert()
*
* @see #rotateTowards(Vector3fc, Vector3fc)
* @see #rotationTowards(float, float, float, float, float, float)
*
* @param dirX
* the x-coordinate of the direction to rotate towards
* @param dirY
* the y-coordinate of the direction to rotate towards
* @param dirZ
* the z-coordinate of the direction to rotate towards
* @param upX
* the x-coordinate of the up vector
* @param upY
* the y-coordinate of the up vector
* @param upZ
* the z-coordinate of the up vector
* @return this
*/
public Matrix4x3f rotationTowards(float dirX, float dirY, float dirZ, float upX, float upY, float upZ) {
// Normalize direction
float invDirLength = 1.0f / (float) Math.sqrt(dirX * dirX + dirY * dirY + dirZ * dirZ);
float ndirX = dirX * invDirLength;
float ndirY = dirY * invDirLength;
float ndirZ = dirZ * invDirLength;
// left = up x direction
float leftX, leftY, leftZ;
leftX = upY * ndirZ - upZ * ndirY;
leftY = upZ * ndirX - upX * ndirZ;
leftZ = upX * ndirY - upY * ndirX;
// normalize left
float invLeftLength = 1.0f / (float) Math.sqrt(leftX * leftX + leftY * leftY + leftZ * leftZ);
leftX *= invLeftLength;
leftY *= invLeftLength;
leftZ *= invLeftLength;
// up = direction x left
float upnX = ndirY * leftZ - ndirZ * leftY;
float upnY = ndirZ * leftX - ndirX * leftZ;
float upnZ = ndirX * leftY - ndirY * leftX;
this.m00 = leftX;
this.m01 = leftY;
this.m02 = leftZ;
this.m10 = upnX;
this.m11 = upnY;
this.m12 = upnZ;
this.m20 = ndirX;
this.m21 = ndirY;
this.m22 = ndirZ;
this.m30 = 0.0f;
this.m31 = 0.0f;
this.m32 = 0.0f;
properties = PROPERTY_ORTHONORMAL;
return this;
}
/**
* Set this matrix to a model transformation for a right-handed coordinate system,
* that translates to the given pos
and aligns the local -z
* axis with dir
.
*
* This method is equivalent to calling: translation(pos).rotateTowards(dir, up)
*
* @see #translation(Vector3fc)
* @see #rotateTowards(Vector3fc, Vector3fc)
*
* @param pos
* the position to translate to
* @param dir
* the direction to rotate towards
* @param up
* the up vector
* @return this
*/
public Matrix4x3f translationRotateTowards(Vector3fc pos, Vector3fc dir, Vector3fc up) {
return translationRotateTowards(pos.x(), pos.y(), pos.z(), dir.x(), dir.y(), dir.z(), up.x(), up.y(), up.z());
}
/**
* Set this matrix to a model transformation for a right-handed coordinate system,
* that translates to the given (posX, posY, posZ)
and aligns the local -z
* axis with (dirX, dirY, dirZ)
.
*
* This method is equivalent to calling: translation(posX, posY, posZ).rotateTowards(dirX, dirY, dirZ, upX, upY, upZ)
*
* @see #translation(float, float, float)
* @see #rotateTowards(float, float, float, float, float, float)
*
* @param posX
* the x-coordinate of the position to translate to
* @param posY
* the y-coordinate of the position to translate to
* @param posZ
* the z-coordinate of the position to translate to
* @param dirX
* the x-coordinate of the direction to rotate towards
* @param dirY
* the y-coordinate of the direction to rotate towards
* @param dirZ
* the z-coordinate of the direction to rotate towards
* @param upX
* the x-coordinate of the up vector
* @param upY
* the y-coordinate of the up vector
* @param upZ
* the z-coordinate of the up vector
* @return this
*/
public Matrix4x3f translationRotateTowards(float posX, float posY, float posZ, float dirX, float dirY, float dirZ, float upX, float upY, float upZ) {
// Normalize direction
float invDirLength = 1.0f / (float) Math.sqrt(dirX * dirX + dirY * dirY + dirZ * dirZ);
float ndirX = dirX * invDirLength;
float ndirY = dirY * invDirLength;
float ndirZ = dirZ * invDirLength;
// left = up x direction
float leftX, leftY, leftZ;
leftX = upY * ndirZ - upZ * ndirY;
leftY = upZ * ndirX - upX * ndirZ;
leftZ = upX * ndirY - upY * ndirX;
// normalize left
float invLeftLength = 1.0f / (float) Math.sqrt(leftX * leftX + leftY * leftY + leftZ * leftZ);
leftX *= invLeftLength;
leftY *= invLeftLength;
leftZ *= invLeftLength;
// up = direction x left
float upnX = ndirY * leftZ - ndirZ * leftY;
float upnY = ndirZ * leftX - ndirX * leftZ;
float upnZ = ndirX * leftY - ndirY * leftX;
this.m00 = leftX;
this.m01 = leftY;
this.m02 = leftZ;
this.m10 = upnX;
this.m11 = upnY;
this.m12 = upnZ;
this.m20 = ndirX;
this.m21 = ndirY;
this.m22 = ndirZ;
this.m30 = posX;
this.m31 = posY;
this.m32 = posZ;
properties = PROPERTY_ORTHONORMAL;
return this;
}
/* (non-Javadoc)
* @see org.joml.Matrix4x3fc#getEulerAnglesZYX(org.joml.Vector3f)
*/
public Vector3f getEulerAnglesZYX(Vector3f dest) {
dest.x = (float) Math.atan2(m12, m22);
dest.y = (float) Math.atan2(-m02, (float) Math.sqrt(m12 * m12 + m22 * m22));
dest.z = (float) Math.atan2(m01, m00);
return dest;
}
/**
* Apply an oblique projection transformation to this matrix with the given values for a
and
* b
.
*
* If M
is this
matrix and O
the oblique transformation matrix,
* then the new matrix will be M * O
. So when transforming a
* vector v
with the new matrix by using M * O * v
, the
* oblique transformation will be applied first!
*
* The oblique transformation is defined as:
*
* x' = x + a*z
* y' = y + a*z
* z' = z
*
* or in matrix form:
*
* 1 0 a 0
* 0 1 b 0
* 0 0 1 0
*
*
* @param a
* the value for the z factor that applies to x
* @param b
* the value for the z factor that applies to y
* @return this
*/
public Matrix4x3f obliqueZ(float a, float b) {
this.m20 = m00 * a + m10 * b + m20;
this.m21 = m01 * a + m11 * b + m21;
this.m22 = m02 * a + m12 * b + m22;
this.properties = 0;
return this;
}
/**
* Apply an oblique projection transformation to this matrix with the given values for a
and
* b
and store the result in dest
.
*
* If M
is this
matrix and O
the oblique transformation matrix,
* then the new matrix will be M * O
. So when transforming a
* vector v
with the new matrix by using M * O * v
, the
* oblique transformation will be applied first!
*
* The oblique transformation is defined as:
*
* x' = x + a*z
* y' = y + a*z
* z' = z
*
* or in matrix form:
*
* 1 0 a 0
* 0 1 b 0
* 0 0 1 0
*
*
* @param a
* the value for the z factor that applies to x
* @param b
* the value for the z factor that applies to y
* @param dest
* will hold the result
* @return dest
*/
public Matrix4x3f obliqueZ(float a, float b, Matrix4x3f dest) {
dest.m00 = m00;
dest.m01 = m01;
dest.m02 = m02;
dest.m10 = m10;
dest.m11 = m11;
dest.m12 = m12;
dest.m20 = m00 * a + m10 * b + m20;
dest.m21 = m01 * a + m11 * b + m21;
dest.m22 = m02 * a + m12 * b + m22;
dest.m30 = m30;
dest.m31 = m31;
dest.m32 = m32;
dest.properties = 0;
return dest;
}
}