All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.joml.Vector2fc Maven / Gradle / Ivy

There is a newer version: 1.10.1
Show newest version
/*
 * The MIT License
 *
 * Copyright (c) 2016-2019 JOML
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
package org.joml;

import java.nio.ByteBuffer;
import java.nio.FloatBuffer;
import java.util.*;

/**
 * Interface to a read-only view of a 2-dimensional vector of single-precision floats.
 * 
 * @author Kai Burjack
 */
public interface Vector2fc {

    /**
     * @return the value of the x component
     */
    float x();

    /**
     * @return the value of the y component
     */
    float y();

    /**
     * Store this vector into the supplied {@link ByteBuffer} at the current
     * buffer {@link ByteBuffer#position() position}.
     * 

* This method will not increment the position of the given ByteBuffer. *

* In order to specify the offset into the ByteBuffer at which * the vector is stored, use {@link #get(int, ByteBuffer)}, taking * the absolute position as parameter. * * @param buffer * will receive the values of this vector in x, y order * @return the passed in buffer * @see #get(int, ByteBuffer) */ ByteBuffer get(ByteBuffer buffer); /** * Store this vector into the supplied {@link ByteBuffer} starting at the specified * absolute buffer position/index. *

* This method will not increment the position of the given ByteBuffer. * * @param index * the absolute position into the ByteBuffer * @param buffer * will receive the values of this vector in x, y order * @return the passed in buffer */ ByteBuffer get(int index, ByteBuffer buffer); /** * Store this vector into the supplied {@link FloatBuffer} at the current * buffer {@link FloatBuffer#position() position}. *

* This method will not increment the position of the given FloatBuffer. *

* In order to specify the offset into the FloatBuffer at which * the vector is stored, use {@link #get(int, FloatBuffer)}, taking * the absolute position as parameter. * * @param buffer * will receive the values of this vector in x, y order * @return the passed in buffer * @see #get(int, FloatBuffer) */ FloatBuffer get(FloatBuffer buffer); /** * Store this vector into the supplied {@link FloatBuffer} starting at the specified * absolute buffer position/index. *

* This method will not increment the position of the given FloatBuffer. * * @param index * the absolute position into the FloatBuffer * @param buffer * will receive the values of this vector in x, y order * @return the passed in buffer */ FloatBuffer get(int index, FloatBuffer buffer); /** * Subtract v from this vector and store the result in dest. * * @param v * the vector to subtract * @param dest * will hold the result * @return dest */ Vector2f sub(Vector2fc v, Vector2f dest); /** * Subtract (x, y) from this vector and store the result in dest. * * @param x * the x component to subtract * @param y * the y component to subtract * @param dest * will hold the result * @return dest */ Vector2f sub(float x, float y, Vector2f dest); /** * Return the dot product of this vector and v. * * @param v * the other vector * @return the dot product */ float dot(Vector2fc v); /** * Return the angle between this vector and the supplied vector. * * @param v * the other vector * @return the angle, in radians */ float angle(Vector2fc v); /** * Return the length squared of this vector. * * @return the length squared */ float lengthSquared(); /** * Return the length of this vector. * * @return the length */ float length(); /** * Return the distance between this and v. * * @param v * the other vector * @return the distance */ float distance(Vector2fc v); /** * Return the distance squared between this and v. * * @param v * the other vector * @return the distance squared */ float distanceSquared(Vector2fc v); /** * Return the distance between this vector and (x, y). * * @param x * the x component of the other vector * @param y * the y component of the other vector * @return the euclidean distance */ float distance(float x, float y); /** * Return the distance squared between this vector and (x, y). * * @param x * the x component of the other vector * @param y * the y component of the other vector * @return the euclidean distance squared */ float distanceSquared(float x, float y); /** * Normalize this vector and store the result in dest. * * @param dest * will hold the result * @return dest */ Vector2f normalize(Vector2f dest); /** * Scale this vector to have the given length and store the result in dest. * * @param length * the desired length * @param dest * will hold the result * @return dest */ Vector2f normalize(float length, Vector2f dest); /** * Add the supplied vector to this one and store the result in * dest. * * @param v * the vector to add * @param dest * will hold the result * @return dest */ Vector2f add(Vector2fc v, Vector2f dest); /** * Increment the components of this vector by the given values and store the result in dest. * * @param x * the x component to add * @param y * the y component to add * @param dest * will hold the result * @return dest */ Vector2f add(float x, float y, Vector2f dest); /** * Negate this vector and store the result in dest. * * @param dest * will hold the result * @return dest */ Vector2f negate(Vector2f dest); /** * Multiply the components of this vector by the given scalar and store the result in dest. * * @param scalar * the value to multiply this vector's components by * @param dest * will hold the result * @return dest */ Vector2f mul(float scalar, Vector2f dest); /** * Multiply the components of this Vector2f by the given scalar values and store the result in dest. * * @param x * the x component to multiply this vector by * @param y * the y component to multiply this vector by * @param dest * will hold the result * @return dest */ Vector2f mul(float x, float y, Vector2f dest); /** * Multiply this Vector2f component-wise by another Vector2f and store the result in dest. * * @param v * the vector to multiply by * @param dest * will hold the result * @return dest */ Vector2f mul(Vector2fc v, Vector2f dest); /** * Multiply the given matrix with this Vector2f and store the result in dest. * * @param mat * the matrix * @param dest * will hold the result * @return dest */ Vector2f mul(Matrix2fc mat, Vector2f dest); /** * Multiply the given matrix with this Vector2f and store the result in dest. * * @param mat * the matrix * @param dest * will hold the result * @return dest */ Vector2f mul(Matrix2dc mat, Vector2f dest); /** * Multiply the transpose of the given matrix with this Vector3f and store the result in dest. * * @param mat * the matrix * @param dest * will hold the result * @return dest */ Vector2f mulTranspose(Matrix2fc mat, Vector2f dest); /** * Multiply the given 3x2 matrix mat with this and store the * result in dest. *

* This method assumes the z component of this to be 1.0. * * @param mat * the matrix to multiply this vector by * @param dest * will hold the result * @return dest */ Vector2f mulPosition(Matrix3x2fc mat, Vector2f dest); /** * Multiply the given 3x2 matrix mat with this and store the * result in dest. *

* This method assumes the z component of this to be 0.0. * * @param mat * the matrix to multiply this vector by * @param dest * will hold the result * @return dest */ Vector2f mulDirection(Matrix3x2fc mat, Vector2f dest); /** * Linearly interpolate this and other using the given interpolation factor t * and store the result in dest. *

* If t is 0.0 then the result is this. If the interpolation factor is 1.0 * then the result is other. * * @param other * the other vector * @param t * the interpolation factor between 0.0 and 1.0 * @param dest * will hold the result * @return dest */ Vector2f lerp(Vector2fc other, float t, Vector2f dest); /** * Add the component-wise multiplication of a * b to this vector * and store the result in dest. * * @param a * the first multiplicand * @param b * the second multiplicand * @param dest * will hold the result * @return dest */ Vector2f fma(Vector2fc a, Vector2fc b, Vector2f dest); /** * Add the component-wise multiplication of a * b to this vector * and store the result in dest. * * @param a * the first multiplicand * @param b * the second multiplicand * @param dest * will hold the result * @return dest */ Vector2f fma(float a, Vector2fc b, Vector2f dest); /** * Set the components of dest to be the component-wise minimum of this and the other vector. * * @param v * the other vector * @param dest * will hold the result * @return dest */ Vector2f min(Vector2fc v, Vector2f dest); /** * Set the components of dest to be the component-wise maximum of this and the other vector. * * @param v * the other vector * @param dest * will hold the result * @return dest */ Vector2f max(Vector2fc v, Vector2f dest); /** * Determine the component with the biggest absolute value. * * @return the component index, within [0..1] */ int maxComponent(); /** * Determine the component with the smallest (towards zero) absolute value. * * @return the component index, within [0..1] */ int minComponent(); /** * Get the value of the specified component of this vector. * * @param component * the component, within [0..1] * @return the value * @throws IllegalArgumentException if component is not within [0..1] */ float get(int component) throws IllegalArgumentException; /** * Compute for each component of this vector the largest (closest to positive * infinity) {@code float} value that is less than or equal to that * component and is equal to a mathematical integer and store the result in * dest. * * @param dest * will hold the result * @return dest */ Vector2f floor(Vector2f dest); /** * Compute for each component of this vector the smallest (closest to negative * infinity) {@code float} value that is greater than or equal to that * component and is equal to a mathematical integer and store the result in * dest. * * @param dest * will hold the result * @return dest */ Vector2f ceil(Vector2f dest); /** * Compute for each component of this vector the closest float that is equal to * a mathematical integer, with ties rounding to positive infinity and store * the result in dest. * * @param dest * will hold the result * @return dest */ Vector2f round(Vector2f dest); /** * Determine whether all components are finite floating-point values, that * is, they are not {@link Double#isNaN() NaN} and not * {@link Double#isInfinite() infinity}. * * @return {@code true} if all components are finite floating-point values; * {@code false} otherwise */ boolean isFinite(); /** * Compare the vector components of this vector with the given vector using the given delta * and return whether all of them are equal within a maximum difference of delta. *

* Please note that this method is not used by any data structure such as {@link ArrayList} {@link HashSet} or {@link HashMap} * and their operations, such as {@link ArrayList#contains(Object)} or {@link HashSet#remove(Object)}, since those * data structures only use the {@link Object#equals(Object)} and {@link Object#hashCode()} methods. * * @param v * the other vector * @param delta * the allowed maximum difference * @return true whether all of the vector components are equal; false otherwise */ boolean equals(Vector2fc v, float delta); /** * Compare the vector components of this vector with the given (x, y) * and return whether all of them are equal. * * @param x * the x component to compare to * @param y * the y component to compare to * @return true if all the vector components are equal */ boolean equals(float x, float y); }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy