All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.joml.Vector2ic Maven / Gradle / Ivy

There is a newer version: 1.10.1
Show newest version
/*
 * The MIT License
 *
 * Copyright (c) 2016-2019 JOML
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
package org.joml;


/**
 * Interface to a read-only view of a 2-dimensional vector of integers.
 * 
 * @author Kai Burjack
 */
public interface Vector2ic {

    /**
     * @return the value of the x component
     */
    int x();

    /**
     * @return the value of the y component
     */
    int y();


    /**
     * Store this vector at the given off-heap memory address.
     * 

* This method will throw an {@link UnsupportedOperationException} when JOML is used with `-Djoml.nounsafe`. *

* This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process. * * @param address * the off-heap address where to store this vector * @return this */ Vector2ic getToAddress(long address); /** * Subtract the supplied vector from this one and store the result in * dest. * * @param v * the vector to subtract * @param dest * will hold the result * @return dest */ Vector2i sub(Vector2ic v, Vector2i dest); /** * Decrement the components of this vector by the given values and store the * result in dest. * * @param x * the x component to subtract * @param y * the y component to subtract * @param dest * will hold the result * @return dest */ Vector2i sub(int x, int y, Vector2i dest); /** * Return the length squared of this vector. * * @return the length squared */ long lengthSquared(); /** * Return the length of this vector. * * @return the length */ double length(); /** * Return the distance between this Vector and v. * * @param v * the other vector * @return the distance */ double distance(Vector2ic v); /** * Return the distance between this vector and (x, y). * * @param x * the x component of the other vector * @param y * the y component of the other vector * @return the euclidean distance */ double distance(int x, int y); /** * Return the square of the distance between this vector and v. * * @param v * the other vector * @return the squared of the distance */ long distanceSquared(Vector2ic v); /** * Return the square of the distance between this vector and * (x, y). * * @param x * the x component of the other vector * @param y * the y component of the other vector * @return the square of the distance */ long distanceSquared(int x, int y); /** * Return the grid distance in between (aka 1-Norm, Minkowski or Manhattan distance) * (x, y). * * @param v * the other vector * @return the grid distance */ long gridDistance(Vector2ic v); /** * Return the grid distance in between (aka 1-Norm, Minkowski or Manhattan distance) * (x, y). * * @param x * the x component of the other vector * @param y * the y component of the other vector * @return the grid distance */ long gridDistance(int x, int y); /** * Add the supplied vector to this one and store the result in * dest. * * @param v * the vector to add * @param dest * will hold the result * @return dest */ Vector2i add(Vector2ic v, Vector2i dest); /** * Increment the components of this vector by the given values and store the * result in dest. * * @param x * the x component to add * @param y * the y component to add * @param dest * will hold the result * @return dest */ Vector2i add(int x, int y, Vector2i dest); /** * Multiply all components of this {@link Vector2ic} by the given scalar * value and store the result in dest. * * @param scalar * the scalar to multiply this vector by * @param dest * will hold the result * @return dest */ Vector2i mul(int scalar, Vector2i dest); /** * Multiply the supplied vector by this one and store the result in * dest. * * @param v * the vector to multiply * @param dest * will hold the result * @return dest */ Vector2i mul(Vector2ic v, Vector2i dest); /** * Multiply the components of this vector by the given values and store the * result in dest. * * @param x * the x component to multiply * @param y * the y component to multiply * @param dest * will hold the result * @return dest */ Vector2i mul(int x, int y, Vector2i dest); /** * Negate this vector and store the result in dest. * * @param dest * will hold the result * @return dest */ Vector2i negate(Vector2i dest); /** * Set the components of dest to be the component-wise minimum of this and the other vector. * * @param v * the other vector * @param dest * will hold the result * @return dest */ Vector2i min(Vector2ic v, Vector2i dest); /** * Set the components of dest to be the component-wise maximum of this and the other vector. * * @param v * the other vector * @param dest * will hold the result * @return dest */ Vector2i max(Vector2ic v, Vector2i dest); /** * Determine the component with the biggest absolute value. * * @return the component index, within [0..1] */ int maxComponent(); /** * Determine the component with the smallest (towards zero) absolute value. * * @return the component index, within [0..1] */ int minComponent(); /** * Get the value of the specified component of this vector. * * @param component * the component, within [0..1] * @return the value * @throws IllegalArgumentException if component is not within [0..1] */ int get(int component) throws IllegalArgumentException; /** * Compare the vector components of this vector with the given (x, y) * and return whether all of them are equal. * * @param x * the x component to compare to * @param y * the y component to compare to * @return true if all the vector components are equal */ boolean equals(int x, int y); }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy