org.joml.Vector2ic Maven / Gradle / Ivy
/*
* The MIT License
*
* Copyright (c) 2016-2019 JOML
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
package org.joml;
/**
* Interface to a read-only view of a 2-dimensional vector of integers.
*
* @author Kai Burjack
*/
public interface Vector2ic {
/**
* @return the value of the x component
*/
int x();
/**
* @return the value of the y component
*/
int y();
/**
* Store this vector at the given off-heap memory address.
*
* This method will throw an {@link UnsupportedOperationException} when JOML is used with `-Djoml.nounsafe`.
*
* This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process.
*
* @param address
* the off-heap address where to store this vector
* @return this
*/
Vector2ic getToAddress(long address);
/**
* Subtract the supplied vector from this one and store the result in
* dest
.
*
* @param v
* the vector to subtract
* @param dest
* will hold the result
* @return dest
*/
Vector2i sub(Vector2ic v, Vector2i dest);
/**
* Decrement the components of this vector by the given values and store the
* result in dest
.
*
* @param x
* the x component to subtract
* @param y
* the y component to subtract
* @param dest
* will hold the result
* @return dest
*/
Vector2i sub(int x, int y, Vector2i dest);
/**
* Return the length squared of this vector.
*
* @return the length squared
*/
long lengthSquared();
/**
* Return the length of this vector.
*
* @return the length
*/
double length();
/**
* Return the distance between this Vector and v
.
*
* @param v
* the other vector
* @return the distance
*/
double distance(Vector2ic v);
/**
* Return the distance between this
vector and (x, y)
.
*
* @param x
* the x component of the other vector
* @param y
* the y component of the other vector
* @return the euclidean distance
*/
double distance(int x, int y);
/**
* Return the square of the distance between this vector and v
.
*
* @param v
* the other vector
* @return the squared of the distance
*/
long distanceSquared(Vector2ic v);
/**
* Return the square of the distance between this
vector and
* (x, y)
.
*
* @param x
* the x component of the other vector
* @param y
* the y component of the other vector
* @return the square of the distance
*/
long distanceSquared(int x, int y);
/**
* Return the grid distance in between (aka 1-Norm, Minkowski or Manhattan distance)
* (x, y)
.
*
* @param v
* the other vector
* @return the grid distance
*/
long gridDistance(Vector2ic v);
/**
* Return the grid distance in between (aka 1-Norm, Minkowski or Manhattan distance)
* (x, y)
.
*
* @param x
* the x component of the other vector
* @param y
* the y component of the other vector
* @return the grid distance
*/
long gridDistance(int x, int y);
/**
* Add the supplied vector to this one and store the result in
* dest
.
*
* @param v
* the vector to add
* @param dest
* will hold the result
* @return dest
*/
Vector2i add(Vector2ic v, Vector2i dest);
/**
* Increment the components of this vector by the given values and store the
* result in dest
.
*
* @param x
* the x component to add
* @param y
* the y component to add
* @param dest
* will hold the result
* @return dest
*/
Vector2i add(int x, int y, Vector2i dest);
/**
* Multiply all components of this {@link Vector2ic} by the given scalar
* value and store the result in dest
.
*
* @param scalar
* the scalar to multiply this vector by
* @param dest
* will hold the result
* @return dest
*/
Vector2i mul(int scalar, Vector2i dest);
/**
* Multiply the supplied vector by this one and store the result in
* dest
.
*
* @param v
* the vector to multiply
* @param dest
* will hold the result
* @return dest
*/
Vector2i mul(Vector2ic v, Vector2i dest);
/**
* Multiply the components of this vector by the given values and store the
* result in dest
.
*
* @param x
* the x component to multiply
* @param y
* the y component to multiply
* @param dest
* will hold the result
* @return dest
*/
Vector2i mul(int x, int y, Vector2i dest);
/**
* Negate this vector and store the result in dest
.
*
* @param dest
* will hold the result
* @return dest
*/
Vector2i negate(Vector2i dest);
/**
* Set the components of dest
to be the component-wise minimum of this and the other vector.
*
* @param v
* the other vector
* @param dest
* will hold the result
* @return dest
*/
Vector2i min(Vector2ic v, Vector2i dest);
/**
* Set the components of dest
to be the component-wise maximum of this and the other vector.
*
* @param v
* the other vector
* @param dest
* will hold the result
* @return dest
*/
Vector2i max(Vector2ic v, Vector2i dest);
/**
* Determine the component with the biggest absolute value.
*
* @return the component index, within [0..1]
*/
int maxComponent();
/**
* Determine the component with the smallest (towards zero) absolute value.
*
* @return the component index, within [0..1]
*/
int minComponent();
/**
* Get the value of the specified component of this vector.
*
* @param component
* the component, within [0..1]
* @return the value
* @throws IllegalArgumentException if component
is not within [0..1]
*/
int get(int component) throws IllegalArgumentException;
/**
* Compare the vector components of this
vector with the given (x, y)
* and return whether all of them are equal.
*
* @param x
* the x component to compare to
* @param y
* the y component to compare to
* @return true
if all the vector components are equal
*/
boolean equals(int x, int y);
}