All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.joml.Matrix3x2d Maven / Gradle / Ivy

There is a newer version: 1.10.1
Show newest version
/*
 * The MIT License
 *
 * Copyright (c) 2017-2020 JOML
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
package org.joml;

import java.io.Externalizable;
import java.io.IOException;
import java.io.ObjectInput;
import java.io.ObjectOutput;
import java.nio.ByteBuffer;
import java.nio.DoubleBuffer;
import java.text.DecimalFormat;
import java.text.NumberFormat;


/**
 * Contains the definition of a 3x2 matrix of doubles, and associated functions to transform
 * it. The matrix is column-major to match OpenGL's interpretation, and it looks like this:
 * 

* m00 m10 m20
* m01 m11 m21
* * @author Kai Burjack */ public class Matrix3x2d implements Matrix3x2dc, Externalizable { private static final long serialVersionUID = 1L; public double m00, m01; public double m10, m11; public double m20, m21; /** * Create a new {@link Matrix3x2d} and set it to {@link #identity() identity}. */ public Matrix3x2d() { this.m00 = 1.0; this.m11 = 1.0; } /** * Create a new {@link Matrix3x2d} by setting its left 2x2 submatrix to the values of the given {@link Matrix2dc} * and the rest to identity. * * @param mat * the {@link Matrix2dc} */ public Matrix3x2d(Matrix2dc mat) { if (mat instanceof Matrix2d) { MemUtil.INSTANCE.copy((Matrix2d) mat, this); } else { setMatrix2dc(mat); } } /** * Create a new {@link Matrix3x2d} by setting its left 2x2 submatrix to the values of the given {@link Matrix2fc} * and the rest to identity. * * @param mat * the {@link Matrix2fc} */ public Matrix3x2d(Matrix2fc mat) { m00 = mat.m00(); m01 = mat.m01(); m10 = mat.m10(); m11 = mat.m11(); } /** * Create a new {@link Matrix3x2d} and make it a copy of the given matrix. * * @param mat * the {@link Matrix3x2dc} to copy the values from */ public Matrix3x2d(Matrix3x2dc mat) { if (mat instanceof Matrix3x2d) { MemUtil.INSTANCE.copy((Matrix3x2d) mat, this); } else { setMatrix3x2dc(mat); } } /** * Create a new 3x2 matrix using the supplied double values. The order of the parameter is column-major, * so the first two parameters specify the two elements of the first column. * * @param m00 * the value of m00 * @param m01 * the value of m01 * @param m10 * the value of m10 * @param m11 * the value of m11 * @param m20 * the value of m20 * @param m21 * the value of m21 */ public Matrix3x2d(double m00, double m01, double m10, double m11, double m20, double m21) { this.m00 = m00; this.m01 = m01; this.m10 = m10; this.m11 = m11; this.m20 = m20; this.m21 = m21; } /** * Create a new {@link Matrix3x2d} by reading its 6 double components from the given {@link DoubleBuffer} * at the buffer's current position. *

* That DoubleBuffer is expected to hold the values in column-major order. *

* The buffer's position will not be changed by this method. * * @param buffer * the {@link DoubleBuffer} to read the matrix values from */ public Matrix3x2d(DoubleBuffer buffer) { MemUtil.INSTANCE.get(this, buffer.position(), buffer); } public double m00() { return m00; } public double m01() { return m01; } public double m10() { return m10; } public double m11() { return m11; } public double m20() { return m20; } public double m21() { return m21; } /** * Set the value of the matrix element at column 0 and row 0. * * @param m00 * the new value * @return this */ Matrix3x2d _m00(double m00) { this.m00 = m00; return this; } /** * Set the value of the matrix element at column 0 and row 1. * * @param m01 * the new value * @return this */ Matrix3x2d _m01(double m01) { this.m01 = m01; return this; } /** * Set the value of the matrix element at column 1 and row 0. * * @param m10 * the new value * @return this */ Matrix3x2d _m10(double m10) { this.m10 = m10; return this; } /** * Set the value of the matrix element at column 1 and row 1. * * @param m11 * the new value * @return this */ Matrix3x2d _m11(double m11) { this.m11 = m11; return this; } /** * Set the value of the matrix element at column 2 and row 0. * * @param m20 * the new value * @return this */ Matrix3x2d _m20(double m20) { this.m20 = m20; return this; } /** * Set the value of the matrix element at column 2 and row 1. * * @param m21 * the new value * @return this */ Matrix3x2d _m21(double m21) { this.m21 = m21; return this; } /** * Set the elements of this matrix to the ones in m. * * @param m * the matrix to copy the elements from * @return this */ public Matrix3x2d set(Matrix3x2dc m) { if (m instanceof Matrix3x2d) { MemUtil.INSTANCE.copy((Matrix3x2d) m, this); } else { setMatrix3x2dc(m); } return this; } private void setMatrix3x2dc(Matrix3x2dc mat) { m00 = mat.m00(); m01 = mat.m01(); m10 = mat.m10(); m11 = mat.m11(); m20 = mat.m20(); m21 = mat.m21(); } /** * Set the left 2x2 submatrix of this {@link Matrix3x2d} to the given {@link Matrix2dc} and don't change the other elements. * * @param m * the 2x2 matrix * @return this */ public Matrix3x2d set(Matrix2dc m) { if (m instanceof Matrix2d) { MemUtil.INSTANCE.copy((Matrix2d) m, this); } else { setMatrix2dc(m); } return this; } private void setMatrix2dc(Matrix2dc mat) { m00 = mat.m00(); m01 = mat.m01(); m10 = mat.m10(); m11 = mat.m11(); } /** * Set the left 2x2 submatrix of this {@link Matrix3x2d} to the given {@link Matrix2fc} and don't change the other elements. * * @param m * the 2x2 matrix * @return this */ public Matrix3x2d set(Matrix2fc m) { m00 = m.m00(); m01 = m.m01(); m10 = m.m10(); m11 = m.m11(); return this; } /** * Multiply this matrix by the supplied right matrix by assuming a third row in * both matrices of (0, 0, 1). *

* If M is this matrix and R the right matrix, * then the new matrix will be M * R. So when transforming a * vector v with the new matrix by using M * R * v, the * transformation of the right matrix will be applied first! * * @param right * the right operand of the matrix multiplication * @return this */ public Matrix3x2d mul(Matrix3x2dc right) { return mul(right, this); } /** * Multiply this matrix by the supplied right matrix by assuming a third row in * both matrices of (0, 0, 1) and store the result in dest. *

* If M is this matrix and R the right matrix, * then the new matrix will be M * R. So when transforming a * vector v with the new matrix by using M * R * v, the * transformation of the right matrix will be applied first! * * @param right * the right operand of the matrix multiplication * @param dest * will hold the result * @return dest */ public Matrix3x2d mul(Matrix3x2dc right, Matrix3x2d dest) { double nm00 = m00 * right.m00() + m10 * right.m01(); double nm01 = m01 * right.m00() + m11 * right.m01(); double nm10 = m00 * right.m10() + m10 * right.m11(); double nm11 = m01 * right.m10() + m11 * right.m11(); double nm20 = m00 * right.m20() + m10 * right.m21() + m20; double nm21 = m01 * right.m20() + m11 * right.m21() + m21; dest.m00 = nm00; dest.m01 = nm01; dest.m10 = nm10; dest.m11 = nm11; dest.m20 = nm20; dest.m21 = nm21; return dest; } /** * Pre-multiply this matrix by the supplied left matrix and store the result in this. *

* If M is this matrix and L the left matrix, * then the new matrix will be L * M. So when transforming a * vector v with the new matrix by using L * M * v, the * transformation of this matrix will be applied first! * * @param left * the left operand of the matrix multiplication * @return this */ public Matrix3x2d mulLocal(Matrix3x2dc left) { return mulLocal(left, this); } public Matrix3x2d mulLocal(Matrix3x2dc left, Matrix3x2d dest) { double nm00 = left.m00() * m00 + left.m10() * m01; double nm01 = left.m01() * m00 + left.m11() * m01; double nm10 = left.m00() * m10 + left.m10() * m11; double nm11 = left.m01() * m10 + left.m11() * m11; double nm20 = left.m00() * m20 + left.m10() * m21 + left.m20(); double nm21 = left.m01() * m20 + left.m11() * m21 + left.m21(); dest.m00 = nm00; dest.m01 = nm01; dest.m10 = nm10; dest.m11 = nm11; dest.m20 = nm20; dest.m21 = nm21; return dest; } /** * Set the values within this matrix to the supplied double values. The result looks like this: *

* m00, m10, m20
* m01, m11, m21
* * @param m00 * the new value of m00 * @param m01 * the new value of m01 * @param m10 * the new value of m10 * @param m11 * the new value of m11 * @param m20 * the new value of m20 * @param m21 * the new value of m21 * @return this */ public Matrix3x2d set(double m00, double m01, double m10, double m11, double m20, double m21) { this.m00 = m00; this.m01 = m01; this.m10 = m10; this.m11 = m11; this.m20 = m20; this.m21 = m21; return this; } /** * Set the values in this matrix based on the supplied double array. The result looks like this: *

* 0, 2, 4
* 1, 3, 5
* * This method only uses the first 6 values, all others are ignored. * * @param m * the array to read the matrix values from * @return this */ public Matrix3x2d set(double m[]) { MemUtil.INSTANCE.copy(m, 0, this); return this; } /** * Return the determinant of this matrix. * * @return the determinant */ public double determinant() { return m00 * m11 - m01 * m10; } /** * Invert this matrix by assuming a third row in this matrix of (0, 0, 1). * * @return this */ public Matrix3x2d invert() { return invert(this); } /** * Invert the this matrix by assuming a third row in this matrix of (0, 0, 1) * and store the result in dest. * * @param dest * will hold the result * @return dest */ public Matrix3x2d invert(Matrix3x2d dest) { // client must make sure that matrix is invertible double s = 1.0 / (m00 * m11 - m01 * m10); double nm00 = m11 * s; double nm01 = -m01 * s; double nm10 = -m10 * s; double nm11 = m00 * s; double nm20 = (m10 * m21 - m20 * m11) * s; double nm21 = (m20 * m01 - m00 * m21) * s; dest.m00 = nm00; dest.m01 = nm01; dest.m10 = nm10; dest.m11 = nm11; dest.m20 = nm20; dest.m21 = nm21; return dest; } /** * Set this matrix to be a simple translation matrix in a two-dimensional coordinate system. *

* The resulting matrix can be multiplied against another transformation * matrix to obtain an additional translation. *

* In order to apply a translation via to an already existing transformation * matrix, use {@link #translate(double, double) translate()} instead. * * @see #translate(double, double) * * @param x * the units to translate in x * @param y * the units to translate in y * @return this */ public Matrix3x2d translation(double x, double y) { m00 = 1.0; m01 = 0.0; m10 = 0.0; m11 = 1.0; m20 = x; m21 = y; return this; } /** * Set this matrix to be a simple translation matrix in a two-dimensional coordinate system. *

* The resulting matrix can be multiplied against another transformation * matrix to obtain an additional translation. *

* In order to apply a translation via to an already existing transformation * matrix, use {@link #translate(Vector2dc) translate()} instead. * * @see #translate(Vector2dc) * * @param offset * the translation * @return this */ public Matrix3x2d translation(Vector2dc offset) { return translation(offset.x(), offset.y()); } /** * Set only the translation components of this matrix (m20, m21) to the given values (x, y). *

* To build a translation matrix instead, use {@link #translation(double, double)}. * To apply a translation to another matrix, use {@link #translate(double, double)}. * * @see #translation(double, double) * @see #translate(double, double) * * @param x * the offset to translate in x * @param y * the offset to translate in y * @return this */ public Matrix3x2d setTranslation(double x, double y) { m20 = x; m21 = y; return this; } /** * Set only the translation components of this matrix (m20, m21) to the given values (offset.x, offset.y). *

* To build a translation matrix instead, use {@link #translation(Vector2dc)}. * To apply a translation to another matrix, use {@link #translate(Vector2dc)}. * * @see #translation(Vector2dc) * @see #translate(Vector2dc) * * @param offset * the new translation to set * @return this */ public Matrix3x2d setTranslation(Vector2dc offset) { return setTranslation(offset.x(), offset.y()); } /** * Apply a translation to this matrix by translating by the given number of units in x and y and store the result * in dest. *

* If M is this matrix and T the translation * matrix, then the new matrix will be M * T. So when * transforming a vector v with the new matrix by using * M * T * v, the translation will be applied first! *

* In order to set the matrix to a translation transformation without post-multiplying * it, use {@link #translation(double, double)}. * * @see #translation(double, double) * * @param x * the offset to translate in x * @param y * the offset to translate in y * @param dest * will hold the result * @return dest */ public Matrix3x2d translate(double x, double y, Matrix3x2d dest) { double rm20 = x; double rm21 = y; dest.m20 = m00 * rm20 + m10 * rm21 + m20; dest.m21 = m01 * rm20 + m11 * rm21 + m21; dest.m00 = m00; dest.m01 = m01; dest.m10 = m10; dest.m11 = m11; return dest; } /** * Apply a translation to this matrix by translating by the given number of units in x and y. *

* If M is this matrix and T the translation * matrix, then the new matrix will be M * T. So when * transforming a vector v with the new matrix by using * M * T * v, the translation will be applied first! *

* In order to set the matrix to a translation transformation without post-multiplying * it, use {@link #translation(double, double)}. * * @see #translation(double, double) * * @param x * the offset to translate in x * @param y * the offset to translate in y * @return this */ public Matrix3x2d translate(double x, double y) { return translate(x, y, this); } /** * Apply a translation to this matrix by translating by the given number of units in x and y, and * store the result in dest. *

* If M is this matrix and T the translation * matrix, then the new matrix will be M * T. So when * transforming a vector v with the new matrix by using * M * T * v, the translation will be applied first! *

* In order to set the matrix to a translation transformation without post-multiplying * it, use {@link #translation(Vector2dc)}. * * @see #translation(Vector2dc) * * @param offset * the offset to translate * @param dest * will hold the result * @return dest */ public Matrix3x2d translate(Vector2dc offset, Matrix3x2d dest) { return translate(offset.x(), offset.y(), dest); } /** * Apply a translation to this matrix by translating by the given number of units in x and y. *

* If M is this matrix and T the translation * matrix, then the new matrix will be M * T. So when * transforming a vector v with the new matrix by using * M * T * v, the translation will be applied first! *

* In order to set the matrix to a translation transformation without post-multiplying * it, use {@link #translation(Vector2dc)}. * * @see #translation(Vector2dc) * * @param offset * the offset to translate * @return this */ public Matrix3x2d translate(Vector2dc offset) { return translate(offset.x(), offset.y(), this); } /** * Pre-multiply a translation to this matrix by translating by the given number of * units in x and y. *

* If M is this matrix and T the translation * matrix, then the new matrix will be T * M. So when * transforming a vector v with the new matrix by using * T * M * v, the translation will be applied last! *

* In order to set the matrix to a translation transformation without pre-multiplying * it, use {@link #translation(Vector2dc)}. * * @see #translation(Vector2dc) * * @param offset * the number of units in x and y by which to translate * @return this */ public Matrix3x2d translateLocal(Vector2dc offset) { return translateLocal(offset.x(), offset.y()); } /** * Pre-multiply a translation to this matrix by translating by the given number of * units in x and y and store the result in dest. *

* If M is this matrix and T the translation * matrix, then the new matrix will be T * M. So when * transforming a vector v with the new matrix by using * T * M * v, the translation will be applied last! *

* In order to set the matrix to a translation transformation without pre-multiplying * it, use {@link #translation(Vector2dc)}. * * @see #translation(Vector2dc) * * @param offset * the number of units in x and y by which to translate * @param dest * will hold the result * @return dest */ public Matrix3x2d translateLocal(Vector2dc offset, Matrix3x2d dest) { return translateLocal(offset.x(), offset.y(), dest); } /** * Pre-multiply a translation to this matrix by translating by the given number of * units in x and y and store the result in dest. *

* If M is this matrix and T the translation * matrix, then the new matrix will be T * M. So when * transforming a vector v with the new matrix by using * T * M * v, the translation will be applied last! *

* In order to set the matrix to a translation transformation without pre-multiplying * it, use {@link #translation(double, double)}. * * @see #translation(double, double) * * @param x * the offset to translate in x * @param y * the offset to translate in y * @param dest * will hold the result * @return dest */ public Matrix3x2d translateLocal(double x, double y, Matrix3x2d dest) { dest.m00 = m00; dest.m01 = m01; dest.m10 = m10; dest.m11 = m11; dest.m20 = m20 + x; dest.m21 = m21 + y; return dest; } /** * Pre-multiply a translation to this matrix by translating by the given number of * units in x and y. *

* If M is this matrix and T the translation * matrix, then the new matrix will be T * M. So when * transforming a vector v with the new matrix by using * T * M * v, the translation will be applied last! *

* In order to set the matrix to a translation transformation without pre-multiplying * it, use {@link #translation(double, double)}. * * @see #translation(double, double) * * @param x * the offset to translate in x * @param y * the offset to translate in y * @return this */ public Matrix3x2d translateLocal(double x, double y) { return translateLocal(x, y, this); } /** * Return a string representation of this matrix. *

* This method creates a new {@link DecimalFormat} on every invocation with the format string "0.000E0;-". * * @return the string representation */ public String toString() { DecimalFormat formatter = new DecimalFormat(" 0.000E0;-"); String str = toString(formatter); StringBuffer res = new StringBuffer(); int eIndex = Integer.MIN_VALUE; for (int i = 0; i < str.length(); i++) { char c = str.charAt(i); if (c == 'E') { eIndex = i; } else if (c == ' ' && eIndex == i - 1) { // workaround Java 1.4 DecimalFormat bug res.append('+'); continue; } else if (Character.isDigit(c) && eIndex == i - 1) { res.append('+'); } res.append(c); } return res.toString(); } /** * Return a string representation of this matrix by formatting the matrix elements with the given {@link NumberFormat}. * * @param formatter * the {@link NumberFormat} used to format the matrix values with * @return the string representation */ public String toString(NumberFormat formatter) { return Runtime.format(m00, formatter) + " " + Runtime.format(m10, formatter) + " " + Runtime.format(m20, formatter) + "\n" + Runtime.format(m01, formatter) + " " + Runtime.format(m11, formatter) + " " + Runtime.format(m21, formatter) + "\n"; } /** * Get the current values of this matrix and store them into * dest. *

* This is the reverse method of {@link #set(Matrix3x2dc)} and allows to obtain * intermediate calculation results when chaining multiple transformations. * * @see #set(Matrix3x2dc) * * @param dest * the destination matrix * @return dest */ public Matrix3x2d get(Matrix3x2d dest) { return dest.set(this); } /** * Store this matrix in column-major order into the supplied {@link DoubleBuffer} at the current * buffer {@link DoubleBuffer#position() position}. *

* This method will not increment the position of the given DoubleBuffer. *

* In order to specify the offset into the DoubleBuffer at which * the matrix is stored, use {@link #get(int, DoubleBuffer)}, taking * the absolute position as parameter. * * @see #get(int, DoubleBuffer) * * @param buffer * will receive the values of this matrix in column-major order at its current position * @return the passed in buffer */ public DoubleBuffer get(DoubleBuffer buffer) { return get(buffer.position(), buffer); } /** * Store this matrix in column-major order into the supplied {@link DoubleBuffer} starting at the specified * absolute buffer position/index. *

* This method will not increment the position of the given DoubleBuffer. * * @param index * the absolute position into the DoubleBuffer * @param buffer * will receive the values of this matrix in column-major order * @return the passed in buffer */ public DoubleBuffer get(int index, DoubleBuffer buffer) { MemUtil.INSTANCE.put(this, index, buffer); return buffer; } /** * Store this matrix in column-major order into the supplied {@link ByteBuffer} at the current * buffer {@link ByteBuffer#position() position}. *

* This method will not increment the position of the given ByteBuffer. *

* In order to specify the offset into the ByteBuffer at which * the matrix is stored, use {@link #get(int, ByteBuffer)}, taking * the absolute position as parameter. * * @see #get(int, ByteBuffer) * * @param buffer * will receive the values of this matrix in column-major order at its current position * @return the passed in buffer */ public ByteBuffer get(ByteBuffer buffer) { return get(buffer.position(), buffer); } /** * Store this matrix in column-major order into the supplied {@link ByteBuffer} starting at the specified * absolute buffer position/index. *

* This method will not increment the position of the given ByteBuffer. * * @param index * the absolute position into the ByteBuffer * @param buffer * will receive the values of this matrix in column-major order * @return the passed in buffer */ public ByteBuffer get(int index, ByteBuffer buffer) { MemUtil.INSTANCE.put(this, index, buffer); return buffer; } /** * Store this matrix as an equivalent 4x4 matrix in column-major order into the supplied {@link DoubleBuffer} at the current * buffer {@link DoubleBuffer#position() position}. *

* This method will not increment the position of the given DoubleBuffer. *

* In order to specify the offset into the DoubleBuffer at which * the matrix is stored, use {@link #get3x3(int, DoubleBuffer)}, taking * the absolute position as parameter. * * @see #get3x3(int, DoubleBuffer) * * @param buffer * will receive the values of this matrix in column-major order at its current position * @return the passed in buffer */ public DoubleBuffer get3x3(DoubleBuffer buffer) { MemUtil.INSTANCE.put3x3(this, 0, buffer); return buffer; } /** * Store this matrix as an equivalent 3x3 matrix in column-major order into the supplied {@link DoubleBuffer} starting at the specified * absolute buffer position/index. *

* This method will not increment the position of the given DoubleBuffer. * * @param index * the absolute position into the DoubleBuffer * @param buffer * will receive the values of this matrix in column-major order * @return the passed in buffer */ public DoubleBuffer get3x3(int index, DoubleBuffer buffer) { MemUtil.INSTANCE.put3x3(this, index, buffer); return buffer; } /** * Store this matrix as an equivalent 3x3 matrix in column-major order into the supplied {@link ByteBuffer} at the current * buffer {@link ByteBuffer#position() position}. *

* This method will not increment the position of the given ByteBuffer. *

* In order to specify the offset into the ByteBuffer at which * the matrix is stored, use {@link #get3x3(int, ByteBuffer)}, taking * the absolute position as parameter. * * @see #get3x3(int, ByteBuffer) * * @param buffer * will receive the values of this matrix in column-major order at its current position * @return the passed in buffer */ public ByteBuffer get3x3(ByteBuffer buffer) { MemUtil.INSTANCE.put3x3(this, 0, buffer); return buffer; } /** * Store this matrix as an equivalent 3x3 matrix in column-major order into the supplied {@link ByteBuffer} starting at the specified * absolute buffer position/index. *

* This method will not increment the position of the given ByteBuffer. * * @param index * the absolute position into the ByteBuffer * @param buffer * will receive the values of this matrix in column-major order * @return the passed in buffer */ public ByteBuffer get3x3(int index, ByteBuffer buffer) { MemUtil.INSTANCE.put3x3(this, index, buffer); return buffer; } /** * Store this matrix as an equivalent 4x4 matrix in column-major order into the supplied {@link DoubleBuffer} at the current * buffer {@link DoubleBuffer#position() position}. *

* This method will not increment the position of the given DoubleBuffer. *

* In order to specify the offset into the DoubleBuffer at which * the matrix is stored, use {@link #get4x4(int, DoubleBuffer)}, taking * the absolute position as parameter. * * @see #get4x4(int, DoubleBuffer) * * @param buffer * will receive the values of this matrix in column-major order at its current position * @return the passed in buffer */ public DoubleBuffer get4x4(DoubleBuffer buffer) { MemUtil.INSTANCE.put4x4(this, 0, buffer); return buffer; } /** * Store this matrix as an equivalent 4x4 matrix in column-major order into the supplied {@link DoubleBuffer} starting at the specified * absolute buffer position/index. *

* This method will not increment the position of the given DoubleBuffer. * * @param index * the absolute position into the DoubleBuffer * @param buffer * will receive the values of this matrix in column-major order * @return the passed in buffer */ public DoubleBuffer get4x4(int index, DoubleBuffer buffer) { MemUtil.INSTANCE.put4x4(this, index, buffer); return buffer; } /** * Store this matrix as an equivalent 4x4 matrix in column-major order into the supplied {@link ByteBuffer} at the current * buffer {@link ByteBuffer#position() position}. *

* This method will not increment the position of the given ByteBuffer. *

* In order to specify the offset into the ByteBuffer at which * the matrix is stored, use {@link #get4x4(int, ByteBuffer)}, taking * the absolute position as parameter. * * @see #get4x4(int, ByteBuffer) * * @param buffer * will receive the values of this matrix in column-major order at its current position * @return the passed in buffer */ public ByteBuffer get4x4(ByteBuffer buffer) { MemUtil.INSTANCE.put4x4(this, 0, buffer); return buffer; } /** * Store this matrix as an equivalent 4x4 matrix in column-major order into the supplied {@link ByteBuffer} starting at the specified * absolute buffer position/index. *

* This method will not increment the position of the given ByteBuffer. * * @param index * the absolute position into the ByteBuffer * @param buffer * will receive the values of this matrix in column-major order * @return the passed in buffer */ public ByteBuffer get4x4(int index, ByteBuffer buffer) { MemUtil.INSTANCE.put4x4(this, index, buffer); return buffer; } public Matrix3x2dc getToAddress(long address) { if (Options.NO_UNSAFE) throw new UnsupportedOperationException("Not supported when using joml.nounsafe"); MemUtil.MemUtilUnsafe.put(this, address); return this; } /** * Store this matrix into the supplied double array in column-major order at the given offset. * * @param arr * the array to write the matrix values into * @param offset * the offset into the array * @return the passed in array */ public double[] get(double[] arr, int offset) { MemUtil.INSTANCE.copy(this, arr, offset); return arr; } /** * Store this matrix into the supplied double array in column-major order. *

* In order to specify an explicit offset into the array, use the method {@link #get(double[], int)}. * * @see #get(double[], int) * * @param arr * the array to write the matrix values into * @return the passed in array */ public double[] get(double[] arr) { return get(arr, 0); } /** * Store this matrix as an equivalent 3x3 matrix in column-major order into the supplied float array at the given offset. * * @param arr * the array to write the matrix values into * @param offset * the offset into the array * @return the passed in array */ public double[] get3x3(double[] arr, int offset) { MemUtil.INSTANCE.copy3x3(this, arr, offset); return arr; } /** * Store this matrix as an equivalent 3x3 matrix in column-major order into the supplied float array. *

* In order to specify an explicit offset into the array, use the method {@link #get3x3(double[], int)}. * * @see #get3x3(double[], int) * * @param arr * the array to write the matrix values into * @return the passed in array */ public double[] get3x3(double[] arr) { return get3x3(arr, 0); } /** * Store this matrix as an equivalent 4x4 matrix in column-major order into the supplied float array at the given offset. * * @param arr * the array to write the matrix values into * @param offset * the offset into the array * @return the passed in array */ public double[] get4x4(double[] arr, int offset) { MemUtil.INSTANCE.copy4x4(this, arr, offset); return arr; } /** * Store this matrix as an equivalent 4x4 matrix in column-major order into the supplied float array. *

* In order to specify an explicit offset into the array, use the method {@link #get4x4(double[], int)}. * * @see #get4x4(double[], int) * * @param arr * the array to write the matrix values into * @return the passed in array */ public double[] get4x4(double[] arr) { return get4x4(arr, 0); } /** * Set the values of this matrix by reading 6 double values from the given {@link DoubleBuffer} in column-major order, * starting at its current position. *

* The DoubleBuffer is expected to contain the values in column-major order. *

* The position of the DoubleBuffer will not be changed by this method. * * @param buffer * the DoubleBuffer to read the matrix values from in column-major order * @return this */ public Matrix3x2d set(DoubleBuffer buffer) { int pos = buffer.position(); MemUtil.INSTANCE.get(this, pos, buffer); return this; } /** * Set the values of this matrix by reading 6 double values from the given {@link ByteBuffer} in column-major order, * starting at its current position. *

* The ByteBuffer is expected to contain the values in column-major order. *

* The position of the ByteBuffer will not be changed by this method. * * @param buffer * the ByteBuffer to read the matrix values from in column-major order * @return this */ public Matrix3x2d set(ByteBuffer buffer) { int pos = buffer.position(); MemUtil.INSTANCE.get(this, pos, buffer); return this; } /** * Set the values of this matrix by reading 6 double values from off-heap memory in column-major order, * starting at the given address. *

* This method will throw an {@link UnsupportedOperationException} when JOML is used with `-Djoml.nounsafe`. *

* This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process. * * @param address * the off-heap memory address to read the matrix values from in column-major order * @return this */ public Matrix3x2d setFromAddress(long address) { if (Options.NO_UNSAFE) throw new UnsupportedOperationException("Not supported when using joml.nounsafe"); MemUtil.MemUtilUnsafe.get(this, address); return this; } /** * Set all values within this matrix to zero. * * @return this */ public Matrix3x2d zero() { MemUtil.INSTANCE.zero(this); return this; } /** * Set this matrix to the identity. * * @return this */ public Matrix3x2d identity() { MemUtil.INSTANCE.identity(this); return this; } /** * Apply scaling to this matrix by scaling the unit axes by the given x and y and store the result in dest. *

* If M is this matrix and S the scaling matrix, * then the new matrix will be M * S. So when transforming a * vector v with the new matrix by using M * S * v, the scaling will be applied first! * * @param x * the factor of the x component * @param y * the factor of the y component * @param dest * will hold the result * @return dest */ public Matrix3x2d scale(double x, double y, Matrix3x2d dest) { dest.m00 = m00 * x; dest.m01 = m01 * x; dest.m10 = m10 * y; dest.m11 = m11 * y; dest.m20 = m20; dest.m21 = m21; return dest; } /** * Apply scaling to this matrix by scaling the base axes by the given x and y factors. *

* If M is this matrix and S the scaling matrix, * then the new matrix will be M * S. So when transforming a * vector v with the new matrix by using M * S * v, the scaling will be applied first! * * @param x * the factor of the x component * @param y * the factor of the y component * @return this */ public Matrix3x2d scale(double x, double y) { return scale(x, y, this); } /** * Apply scaling to this matrix by scaling the base axes by the given xy factors. *

* If M is this matrix and S the scaling matrix, * then the new matrix will be M * S. So when transforming a * vector v with the new matrix by using M * S * v, the scaling will be applied first! * * @param xy * the factors of the x and y component, respectively * @return this */ public Matrix3x2d scale(Vector2dc xy) { return scale(xy.x(), xy.y(), this); } /** * Apply scaling to this matrix by scaling the base axes by the given xy factors * and store the result in dest. *

* If M is this matrix and S the scaling matrix, * then the new matrix will be M * S. So when transforming a * vector v with the new matrix by using M * S * v, the scaling will be applied first! * * @param xy * the factors of the x and y component, respectively * @param dest * will hold the result * @return dest */ public Matrix3x2d scale(Vector2dc xy, Matrix3x2d dest) { return scale(xy.x(), xy.y(), dest); } /** * Apply scaling to this matrix by scaling the base axes by the given xy factors. *

* If M is this matrix and S the scaling matrix, * then the new matrix will be M * S. So when transforming a * vector v with the new matrix by using M * S * v, the scaling will be applied first! * * @param xy * the factors of the x and y component, respectively * @return this */ public Matrix3x2d scale(Vector2fc xy) { return scale(xy.x(), xy.y(), this); } /** * Apply scaling to this matrix by scaling the base axes by the given xy factors * and store the result in dest. *

* If M is this matrix and S the scaling matrix, * then the new matrix will be M * S. So when transforming a * vector v with the new matrix by using M * S * v, the scaling will be applied first! * * @param xy * the factors of the x and y component, respectively * @param dest * will hold the result * @return dest */ public Matrix3x2d scale(Vector2fc xy, Matrix3x2d dest) { return scale(xy.x(), xy.y(), dest); } /** * Apply scaling to this matrix by uniformly scaling the two base axes by the given xy factor * and store the result in dest. *

* If M is this matrix and S the scaling matrix, * then the new matrix will be M * S. So when transforming a * vector v with the new matrix by using M * S * v, the scaling will be applied first! * * @see #scale(double, double, Matrix3x2d) * * @param xy * the factor for the two components * @param dest * will hold the result * @return dest */ public Matrix3x2d scale(double xy, Matrix3x2d dest) { return scale(xy, xy, dest); } /** * Apply scaling to this matrix by uniformly scaling the two base axes by the given xyz factor. *

* If M is this matrix and S the scaling matrix, * then the new matrix will be M * S. So when transforming a * vector v with the new matrix by using M * S * v, the scaling will be applied first! * * @see #scale(double, double) * * @param xy * the factor for the two components * @return this */ public Matrix3x2d scale(double xy) { return scale(xy, xy); } public Matrix3x2d scaleLocal(double x, double y, Matrix3x2d dest) { dest.m00 = x * m00; dest.m01 = y * m01; dest.m10 = x * m10; dest.m11 = y * m11; dest.m20 = x * m20; dest.m21 = y * m21; return dest; } /** * Pre-multiply scaling to this matrix by scaling the base axes by the given x and y factors. *

* If M is this matrix and S the scaling matrix, * then the new matrix will be S * M. So when transforming a * vector v with the new matrix by using S * M * v, the * scaling will be applied last! * * @param x * the factor of the x component * @param y * the factor of the y component * @return this */ public Matrix3x2d scaleLocal(double x, double y) { return scaleLocal(x, y, this); } public Matrix3x2d scaleLocal(double xy, Matrix3x2d dest) { return scaleLocal(xy, xy, dest); } /** * Pre-multiply scaling to this matrix by scaling the base axes by the given xy factor. *

* If M is this matrix and S the scaling matrix, * then the new matrix will be S * M. So when transforming a * vector v with the new matrix by using S * M * v, the * scaling will be applied last! * * @param xy * the factor of the x and y component * @return this */ public Matrix3x2d scaleLocal(double xy) { return scaleLocal(xy, xy, this); } /** * Apply scaling to this matrix by scaling the base axes by the given sx and * sy factors while using (ox, oy) as the scaling origin, and store the result in dest. *

* If M is this matrix and S the scaling matrix, * then the new matrix will be M * S. So when transforming a * vector v with the new matrix by using M * S * v * , the scaling will be applied first! *

* This method is equivalent to calling: translate(ox, oy, dest).scale(sx, sy).translate(-ox, -oy) * * @param sx * the scaling factor of the x component * @param sy * the scaling factor of the y component * @param ox * the x coordinate of the scaling origin * @param oy * the y coordinate of the scaling origin * @param dest * will hold the result * @return dest */ public Matrix3x2d scaleAround(double sx, double sy, double ox, double oy, Matrix3x2d dest) { double nm20 = m00 * ox + m10 * oy + m20; double nm21 = m01 * ox + m11 * oy + m21; dest.m00 = m00 * sx; dest.m01 = m01 * sx; dest.m10 = m10 * sy; dest.m11 = m11 * sy; dest.m20 = -m00 * ox - m10 * oy + nm20; dest.m21 = -m01 * ox - m11 * oy + nm21; return dest; } /** * Apply scaling to this matrix by scaling the base axes by the given sx and * sy factors while using (ox, oy) as the scaling origin. *

* If M is this matrix and S the scaling matrix, * then the new matrix will be M * S. So when transforming a * vector v with the new matrix by using M * S * v, the * scaling will be applied first! *

* This method is equivalent to calling: translate(ox, oy).scale(sx, sy).translate(-ox, -oy) * * @param sx * the scaling factor of the x component * @param sy * the scaling factor of the y component * @param ox * the x coordinate of the scaling origin * @param oy * the y coordinate of the scaling origin * @return this */ public Matrix3x2d scaleAround(double sx, double sy, double ox, double oy) { return scaleAround(sx, sy, ox, oy, this); } /** * Apply scaling to this matrix by scaling the base axes by the given factor * while using (ox, oy) as the scaling origin, * and store the result in dest. *

* If M is this matrix and S the scaling matrix, * then the new matrix will be M * S. So when transforming a * vector v with the new matrix by using M * S * v, the * scaling will be applied first! *

* This method is equivalent to calling: translate(ox, oy, dest).scale(factor).translate(-ox, -oy) * * @param factor * the scaling factor for all three axes * @param ox * the x coordinate of the scaling origin * @param oy * the y coordinate of the scaling origin * @param dest * will hold the result * @return this */ public Matrix3x2d scaleAround(double factor, double ox, double oy, Matrix3x2d dest) { return scaleAround(factor, factor, ox, oy, this); } /** * Apply scaling to this matrix by scaling the base axes by the given factor * while using (ox, oy) as the scaling origin. *

* If M is this matrix and S the scaling matrix, * then the new matrix will be M * S. So when transforming a * vector v with the new matrix by using M * S * v, the * scaling will be applied first! *

* This method is equivalent to calling: translate(ox, oy).scale(factor).translate(-ox, -oy) * * @param factor * the scaling factor for all axes * @param ox * the x coordinate of the scaling origin * @param oy * the y coordinate of the scaling origin * @return this */ public Matrix3x2d scaleAround(double factor, double ox, double oy) { return scaleAround(factor, factor, ox, oy, this); } public Matrix3x2d scaleAroundLocal(double sx, double sy, double ox, double oy, Matrix3x2d dest) { dest.m00 = sx * m00; dest.m01 = sy * m01; dest.m10 = sx * m10; dest.m11 = sy * m11; dest.m20 = sx * m20 - sx * ox + ox; dest.m21 = sy * m21 - sy * oy + oy; return dest; } public Matrix3x2d scaleAroundLocal(double factor, double ox, double oy, Matrix3x2d dest) { return scaleAroundLocal(factor, factor, ox, oy, dest); } /** * Pre-multiply scaling to this matrix by scaling the base axes by the given sx and * sy factors while using (ox, oy) as the scaling origin. *

* If M is this matrix and S the scaling matrix, * then the new matrix will be S * M. So when transforming a * vector v with the new matrix by using S * M * v, the * scaling will be applied last! *

* This method is equivalent to calling: new Matrix3x2d().translate(ox, oy).scale(sx, sy).translate(-ox, -oy).mul(this, this) * * @param sx * the scaling factor of the x component * @param sy * the scaling factor of the y component * @param sz * the scaling factor of the z component * @param ox * the x coordinate of the scaling origin * @param oy * the y coordinate of the scaling origin * @param oz * the z coordinate of the scaling origin * @return this */ public Matrix3x2d scaleAroundLocal(double sx, double sy, double sz, double ox, double oy, double oz) { return scaleAroundLocal(sx, sy, ox, oy, this); } /** * Pre-multiply scaling to this matrix by scaling the base axes by the given factor * while using (ox, oy) as the scaling origin. *

* If M is this matrix and S the scaling matrix, * then the new matrix will be S * M. So when transforming a * vector v with the new matrix by using S * M * v, the * scaling will be applied last! *

* This method is equivalent to calling: new Matrix3x2d().translate(ox, oy).scale(factor).translate(-ox, -oy).mul(this, this) * * @param factor * the scaling factor for all three axes * @param ox * the x coordinate of the scaling origin * @param oy * the y coordinate of the scaling origin * @return this */ public Matrix3x2d scaleAroundLocal(double factor, double ox, double oy) { return scaleAroundLocal(factor, factor, ox, oy, this); } /** * Set this matrix to be a simple scale matrix, which scales the two base axes uniformly by the given factor. *

* The resulting matrix can be multiplied against another transformation * matrix to obtain an additional scaling. *

* In order to post-multiply a scaling transformation directly to a matrix, use {@link #scale(double) scale()} instead. * * @see #scale(double) * * @param factor * the scale factor in x and y * @return this */ public Matrix3x2d scaling(double factor) { return scaling(factor, factor); } /** * Set this matrix to be a simple scale matrix. * * @param x * the scale in x * @param y * the scale in y * @return this */ public Matrix3x2d scaling(double x, double y) { m00 = x; m01 = 0.0; m10 = 0.0; m11 = y; m20 = 0.0; m21 = 0.0; return this; } /** * Set this matrix to a rotation matrix which rotates the given radians. *

* The resulting matrix can be multiplied against another transformation * matrix to obtain an additional rotation. *

* In order to apply the rotation transformation to an existing transformation, * use {@link #rotate(double) rotate()} instead. * * @see #rotate(double) * * @param angle * the angle in radians * @return this */ public Matrix3x2d rotation(double angle) { double cos = Math.cos(angle); double sin = Math.sin(angle); m00 = cos; m10 = -sin; m20 = 0.0; m01 = sin; m11 = cos; m21 = 0.0; return this; } /** * Transform/multiply the given vector by this matrix by assuming a third row in this matrix of (0, 0, 1) * and store the result in that vector. * * @see Vector3d#mul(Matrix3x2dc) * * @param v * the vector to transform and to hold the final result * @return v */ public Vector3d transform(Vector3d v) { return v.mul(this); } /** * Transform/multiply the given vector by this matrix by assuming a third row in this matrix of (0, 0, 1) * and store the result in dest. * * @see Vector3d#mul(Matrix3x2dc, Vector3d) * * @param v * the vector to transform * @param dest * will contain the result * @return dest */ public Vector3d transform(Vector3dc v, Vector3d dest) { return v.mul(this, dest); } /** * Transform/multiply the given vector (x, y, z) by this matrix and store the result in dest. * * @param x * the x component of the vector to transform * @param y * the y component of the vector to transform * @param z * the z component of the vector to transform * @param dest * will contain the result * @return dest */ public Vector3d transform(double x, double y, double z, Vector3d dest) { return dest.set(m00 * x + m10 * y + m20 * z, m01 * x + m11 * y + m21 * z, z); } /** * Transform/multiply the given 2D-vector, as if it was a 3D-vector with z=1, by * this matrix and store the result in that vector. *

* The given 2D-vector is treated as a 3D-vector with its z-component being 1.0, so it * will represent a position/location in 2D-space rather than a direction. *

* In order to store the result in another vector, use {@link #transformPosition(Vector2dc, Vector2d)}. * * @see #transformPosition(Vector2dc, Vector2d) * @see #transform(Vector3d) * * @param v * the vector to transform and to hold the final result * @return v */ public Vector2d transformPosition(Vector2d v) { v.set(m00 * v.x + m10 * v.y + m20, m01 * v.x + m11 * v.y + m21); return v; } /** * Transform/multiply the given 2D-vector, as if it was a 3D-vector with z=1, by * this matrix and store the result in dest. *

* The given 2D-vector is treated as a 3D-vector with its z-component being 1.0, so it * will represent a position/location in 2D-space rather than a direction. *

* In order to store the result in the same vector, use {@link #transformPosition(Vector2d)}. * * @see #transformPosition(Vector2d) * @see #transform(Vector3dc, Vector3d) * * @param v * the vector to transform * @param dest * will hold the result * @return dest */ public Vector2d transformPosition(Vector2dc v, Vector2d dest) { dest.set(m00 * v.x() + m10 * v.y() + m20, m01 * v.x() + m11 * v.y() + m21); return dest; } /** * Transform/multiply the given 2D-vector (x, y), as if it was a 3D-vector with z=1, by * this matrix and store the result in dest. *

* The given 2D-vector is treated as a 3D-vector with its z-component being 1.0, so it * will represent a position/location in 2D-space rather than a direction. *

* In order to store the result in the same vector, use {@link #transformPosition(Vector2d)}. * * @see #transformPosition(Vector2d) * @see #transform(Vector3dc, Vector3d) * * @param x * the x component of the vector to transform * @param y * the y component of the vector to transform * @param dest * will hold the result * @return dest */ public Vector2d transformPosition(double x, double y, Vector2d dest) { return dest.set(m00 * x + m10 * y + m20, m01 * x + m11 * y + m21); } /** * Transform/multiply the given 2D-vector, as if it was a 3D-vector with z=0, by * this matrix and store the result in that vector. *

* The given 2D-vector is treated as a 3D-vector with its z-component being 0.0, so it * will represent a direction in 2D-space rather than a position. This method will therefore * not take the translation part of the matrix into account. *

* In order to store the result in another vector, use {@link #transformDirection(Vector2dc, Vector2d)}. * * @see #transformDirection(Vector2dc, Vector2d) * * @param v * the vector to transform and to hold the final result * @return v */ public Vector2d transformDirection(Vector2d v) { v.set(m00 * v.x + m10 * v.y, m01 * v.x + m11 * v.y); return v; } /** * Transform/multiply the given 2D-vector, as if it was a 3D-vector with z=0, by * this matrix and store the result in dest. *

* The given 2D-vector is treated as a 3D-vector with its z-component being 0.0, so it * will represent a direction in 2D-space rather than a position. This method will therefore * not take the translation part of the matrix into account. *

* In order to store the result in the same vector, use {@link #transformDirection(Vector2d)}. * * @see #transformDirection(Vector2d) * * @param v * the vector to transform and to hold the final result * @param dest * will hold the result * @return dest */ public Vector2d transformDirection(Vector2dc v, Vector2d dest) { dest.set(m00 * v.x() + m10 * v.y(), m01 * v.x() + m11 * v.y()); return dest; } /** * Transform/multiply the given 2D-vector (x, y), as if it was a 3D-vector with z=0, by * this matrix and store the result in dest. *

* The given 2D-vector is treated as a 3D-vector with its z-component being 0.0, so it * will represent a direction in 2D-space rather than a position. This method will therefore * not take the translation part of the matrix into account. *

* In order to store the result in the same vector, use {@link #transformDirection(Vector2d)}. * * @see #transformDirection(Vector2d) * * @param x * the x component of the vector to transform * @param y * the y component of the vector to transform * @param dest * will hold the result * @return dest */ public Vector2d transformDirection(double x, double y, Vector2d dest) { return dest.set(m00 * x + m10 * y, m01 * x + m11 * y); } public void writeExternal(ObjectOutput out) throws IOException { out.writeDouble(m00); out.writeDouble(m01); out.writeDouble(m10); out.writeDouble(m11); out.writeDouble(m20); out.writeDouble(m21); } public void readExternal(ObjectInput in) throws IOException { m00 = in.readDouble(); m01 = in.readDouble(); m10 = in.readDouble(); m11 = in.readDouble(); m20 = in.readDouble(); m21 = in.readDouble(); } /** * Apply a rotation transformation to this matrix by rotating the given amount of radians. *

* If M is this matrix and R the rotation matrix, * then the new matrix will be M * R. So when transforming a * vector v with the new matrix by using M * R * v * , the rotation will be applied first! * * @param ang * the angle in radians * @return this */ public Matrix3x2d rotate(double ang) { return rotate(ang, this); } /** * Apply a rotation transformation to this matrix by rotating the given amount of radians and store the result in dest. *

* If M is this matrix and R the rotation matrix, * then the new matrix will be M * R. So when transforming a * vector v with the new matrix by using M * R * v, the rotation will be applied first! * * @param ang * the angle in radians * @param dest * will hold the result * @return dest */ public Matrix3x2d rotate(double ang, Matrix3x2d dest) { double cos = Math.cos(ang); double sin = Math.sin(ang); double rm00 = cos; double rm01 = sin; double rm10 = -sin; double rm11 = cos; double nm00 = m00 * rm00 + m10 * rm01; double nm01 = m01 * rm00 + m11 * rm01; dest.m10 = m00 * rm10 + m10 * rm11; dest.m11 = m01 * rm10 + m11 * rm11; dest.m00 = nm00; dest.m01 = nm01; dest.m20 = m20; dest.m21 = m21; return dest; } /** * Pre-multiply a rotation to this matrix by rotating the given amount of radians and store the result in dest. *

* If M is this matrix and R the rotation matrix, * then the new matrix will be R * M. So when transforming a * vector v with the new matrix by using R * M * v, the * rotation will be applied last! *

* In order to set the matrix to a rotation matrix without pre-multiplying the rotation * transformation, use {@link #rotation(double) rotation()}. *

* Reference: http://en.wikipedia.org * * @see #rotation(double) * * @param ang * the angle in radians to rotate * @param dest * will hold the result * @return dest */ public Matrix3x2d rotateLocal(double ang, Matrix3x2d dest) { double sin = Math.sin(ang); double cos = Math.cosFromSin(sin, ang); double nm00 = cos * m00 - sin * m01; double nm01 = sin * m00 + cos * m01; double nm10 = cos * m10 - sin * m11; double nm11 = sin * m10 + cos * m11; double nm20 = cos * m20 - sin * m21; double nm21 = sin * m20 + cos * m21; dest.m00 = nm00; dest.m01 = nm01; dest.m10 = nm10; dest.m11 = nm11; dest.m20 = nm20; dest.m21 = nm21; return dest; } /** * Pre-multiply a rotation to this matrix by rotating the given amount of radians. *

* If M is this matrix and R the rotation matrix, * then the new matrix will be R * M. So when transforming a * vector v with the new matrix by using R * M * v, the * rotation will be applied last! *

* In order to set the matrix to a rotation matrix without pre-multiplying the rotation * transformation, use {@link #rotation(double) rotation()}. *

* Reference: http://en.wikipedia.org * * @see #rotation(double) * * @param ang * the angle in radians to rotate * @return this */ public Matrix3x2d rotateLocal(double ang) { return rotateLocal(ang, this); } /** * Apply a rotation transformation to this matrix by rotating the given amount of radians about * the specified rotation center (x, y). *

* This method is equivalent to calling: translate(x, y).rotate(ang).translate(-x, -y) *

* If M is this matrix and R the rotation matrix, * then the new matrix will be M * R. So when transforming a * vector v with the new matrix by using M * R * v, the rotation will be applied first! * * @see #translate(double, double) * @see #rotate(double) * * @param ang * the angle in radians * @param x * the x component of the rotation center * @param y * the y component of the rotation center * @return this */ public Matrix3x2d rotateAbout(double ang, double x, double y) { return rotateAbout(ang, x, y, this); } /** * Apply a rotation transformation to this matrix by rotating the given amount of radians about * the specified rotation center (x, y) and store the result in dest. *

* This method is equivalent to calling: translate(x, y, dest).rotate(ang).translate(-x, -y) *

* If M is this matrix and R the rotation matrix, * then the new matrix will be M * R. So when transforming a * vector v with the new matrix by using M * R * v, the rotation will be applied first! * * @see #translate(double, double, Matrix3x2d) * @see #rotate(double, Matrix3x2d) * * @param ang * the angle in radians * @param x * the x component of the rotation center * @param y * the y component of the rotation center * @param dest * will hold the result * @return dest */ public Matrix3x2d rotateAbout(double ang, double x, double y, Matrix3x2d dest) { double tm20 = m00 * x + m10 * y + m20; double tm21 = m01 * x + m11 * y + m21; double cos = Math.cos(ang); double sin = Math.sin(ang); double nm00 = m00 * cos + m10 * sin; double nm01 = m01 * cos + m11 * sin; dest.m10 = m00 * -sin + m10 * cos; dest.m11 = m01 * -sin + m11 * cos; dest.m00 = nm00; dest.m01 = nm01; dest.m20 = dest.m00 * -x + dest.m10 * -y + tm20; dest.m21 = dest.m01 * -x + dest.m11 * -y + tm21; return dest; } /** * Apply a rotation transformation to this matrix that rotates the given normalized fromDir direction vector * to point along the normalized toDir, and store the result in dest. *

* If M is this matrix and R the rotation matrix, * then the new matrix will be M * R. So when transforming a * vector v with the new matrix by using M * R * v, the rotation will be applied first! * * @param fromDir * the normalized direction which should be rotate to point along toDir * @param toDir * the normalized destination direction * @param dest * will hold the result * @return dest */ public Matrix3x2d rotateTo(Vector2dc fromDir, Vector2dc toDir, Matrix3x2d dest) { double dot = fromDir.x() * toDir.x() + fromDir.y() * toDir.y(); double det = fromDir.x() * toDir.y() - fromDir.y() * toDir.x(); double rm00 = dot; double rm01 = det; double rm10 = -det; double rm11 = dot; double nm00 = m00 * rm00 + m10 * rm01; double nm01 = m01 * rm00 + m11 * rm01; dest.m10 = m00 * rm10 + m10 * rm11; dest.m11 = m01 * rm10 + m11 * rm11; dest.m00 = nm00; dest.m01 = nm01; dest.m20 = m20; dest.m21 = m21; return dest; } /** * Apply a rotation transformation to this matrix that rotates the given normalized fromDir direction vector * to point along the normalized toDir. *

* If M is this matrix and R the rotation matrix, * then the new matrix will be M * R. So when transforming a * vector v with the new matrix by using M * R * v, the rotation will be applied first! * * @param fromDir * the normalized direction which should be rotate to point along toDir * @param toDir * the normalized destination direction * @return this */ public Matrix3x2d rotateTo(Vector2dc fromDir, Vector2dc toDir) { return rotateTo(fromDir, toDir, this); } /** * Apply a "view" transformation to this matrix that maps the given (left, bottom) and * (right, top) corners to (-1, -1) and (1, 1) respectively and store the result in dest. *

* If M is this matrix and O the orthographic projection matrix, * then the new matrix will be M * O. So when transforming a * vector v with the new matrix by using M * O * v, the * orthographic projection transformation will be applied first! * * @see #setView(double, double, double, double) * * @param left * the distance from the center to the left view edge * @param right * the distance from the center to the right view edge * @param bottom * the distance from the center to the bottom view edge * @param top * the distance from the center to the top view edge * @param dest * will hold the result * @return dest */ public Matrix3x2d view(double left, double right, double bottom, double top, Matrix3x2d dest) { double rm00 = 2.0 / (right - left); double rm11 = 2.0 / (top - bottom); double rm20 = (left + right) / (left - right); double rm21 = (bottom + top) / (bottom - top); dest.m20 = m00 * rm20 + m10 * rm21 + m20; dest.m21 = m01 * rm20 + m11 * rm21 + m21; dest.m00 = m00 * rm00; dest.m01 = m01 * rm00; dest.m10 = m10 * rm11; dest.m11 = m11 * rm11; return dest; } /** * Apply a "view" transformation to this matrix that maps the given (left, bottom) and * (right, top) corners to (-1, -1) and (1, 1) respectively. *

* If M is this matrix and O the orthographic projection matrix, * then the new matrix will be M * O. So when transforming a * vector v with the new matrix by using M * O * v, the * orthographic projection transformation will be applied first! * * @see #setView(double, double, double, double) * * @param left * the distance from the center to the left view edge * @param right * the distance from the center to the right view edge * @param bottom * the distance from the center to the bottom view edge * @param top * the distance from the center to the top view edge * @return this */ public Matrix3x2d view(double left, double right, double bottom, double top) { return view(left, right, bottom, top, this); } /** * Set this matrix to define a "view" transformation that maps the given (left, bottom) and * (right, top) corners to (-1, -1) and (1, 1) respectively. * * @see #view(double, double, double, double) * * @param left * the distance from the center to the left view edge * @param right * the distance from the center to the right view edge * @param bottom * the distance from the center to the bottom view edge * @param top * the distance from the center to the top view edge * @return this */ public Matrix3x2d setView(double left, double right, double bottom, double top) { m00 = 2.0 / (right - left); m01 = 0.0; m10 = 0.0; m11 = 2.0 / (top - bottom); m20 = (left + right) / (left - right); m21 = (bottom + top) / (bottom - top); return this; } /** * Obtain the position that gets transformed to the origin by this matrix. * This can be used to get the position of the "camera" from a given view transformation matrix. *

* This method is equivalent to the following code: *

     * Matrix3x2d inv = new Matrix3x2d(this).invert();
     * inv.transform(origin.set(0, 0));
     * 
* * @param origin * will hold the position transformed to the origin * @return origin */ public Vector2d origin(Vector2d origin) { double s = 1.0 / (m00 * m11 - m01 * m10); origin.x = (m10 * m21 - m20 * m11) * s; origin.y = (m20 * m01 - m00 * m21) * s; return origin; } /** * Obtain the extents of the view transformation of this matrix and store it in area. * This can be used to determine which region of the screen (i.e. the NDC space) is covered by the view. * * @param area * will hold the view area as [minX, minY, maxX, maxY] * @return area */ public double[] viewArea(double[] area) { double s = 1.0 / (m00 * m11 - m01 * m10); double rm00 = m11 * s; double rm01 = -m01 * s; double rm10 = -m10 * s; double rm11 = m00 * s; double rm20 = (m10 * m21 - m20 * m11) * s; double rm21 = (m20 * m01 - m00 * m21) * s; double nxnyX = -rm00 - rm10; double nxnyY = -rm01 - rm11; double pxnyX = rm00 - rm10; double pxnyY = rm01 - rm11; double nxpyX = -rm00 + rm10; double nxpyY = -rm01 + rm11; double pxpyX = rm00 + rm10; double pxpyY = rm01 + rm11; double minX = nxnyX; minX = minX < nxpyX ? minX : nxpyX; minX = minX < pxnyX ? minX : pxnyX; minX = minX < pxpyX ? minX : pxpyX; double minY = nxnyY; minY = minY < nxpyY ? minY : nxpyY; minY = minY < pxnyY ? minY : pxnyY; minY = minY < pxpyY ? minY : pxpyY; double maxX = nxnyX; maxX = maxX > nxpyX ? maxX : nxpyX; maxX = maxX > pxnyX ? maxX : pxnyX; maxX = maxX > pxpyX ? maxX : pxpyX; double maxY = nxnyY; maxY = maxY > nxpyY ? maxY : nxpyY; maxY = maxY > pxnyY ? maxY : pxnyY; maxY = maxY > pxpyY ? maxY : pxpyY; area[0] = minX + rm20; area[1] = minY + rm21; area[2] = maxX + rm20; area[3] = maxY + rm21; return area; } public Vector2d positiveX(Vector2d dir) { double s = m00 * m11 - m01 * m10; s = 1.0 / s; dir.x = m11 * s; dir.y = -m01 * s; return dir.normalize(dir); } public Vector2d normalizedPositiveX(Vector2d dir) { dir.x = m11; dir.y = -m01; return dir; } public Vector2d positiveY(Vector2d dir) { double s = m00 * m11 - m01 * m10; s = 1.0 / s; dir.x = -m10 * s; dir.y = m00 * s; return dir.normalize(dir); } public Vector2d normalizedPositiveY(Vector2d dir) { dir.x = -m10; dir.y = m00; return dir; } /** * Unproject the given window coordinates (winX, winY) by this matrix using the specified viewport. *

* This method first converts the given window coordinates to normalized device coordinates in the range [-1..1] * and then transforms those NDC coordinates by the inverse of this matrix. *

* As a necessary computation step for unprojecting, this method computes the inverse of this matrix. * In order to avoid computing the matrix inverse with every invocation, the inverse of this matrix can be built * once outside using {@link #invert(Matrix3x2d)} and then the method {@link #unprojectInv(double, double, int[], Vector2d) unprojectInv()} can be invoked on it. * * @see #unprojectInv(double, double, int[], Vector2d) * @see #invert(Matrix3x2d) * * @param winX * the x-coordinate in window coordinates (pixels) * @param winY * the y-coordinate in window coordinates (pixels) * @param viewport * the viewport described by [x, y, width, height] * @param dest * will hold the unprojected position * @return dest */ public Vector2d unproject(double winX, double winY, int[] viewport, Vector2d dest) { double s = 1.0 / (m00 * m11 - m01 * m10); double im00 = m11 * s; double im01 = -m01 * s; double im10 = -m10 * s; double im11 = m00 * s; double im20 = (m10 * m21 - m20 * m11) * s; double im21 = (m20 * m01 - m00 * m21) * s; double ndcX = (winX-viewport[0])/viewport[2]*2.0-1.0; double ndcY = (winY-viewport[1])/viewport[3]*2.0-1.0; dest.x = im00 * ndcX + im10 * ndcY + im20; dest.y = im01 * ndcX + im11 * ndcY + im21; return dest; } /** * Unproject the given window coordinates (winX, winY) by this matrix using the specified viewport. *

* This method differs from {@link #unproject(double, double, int[], Vector2d) unproject()} * in that it assumes that this is already the inverse matrix of the original projection matrix. * It exists to avoid recomputing the matrix inverse with every invocation. * * @see #unproject(double, double, int[], Vector2d) * * @param winX * the x-coordinate in window coordinates (pixels) * @param winY * the y-coordinate in window coordinates (pixels) * @param viewport * the viewport described by [x, y, width, height] * @param dest * will hold the unprojected position * @return dest */ public Vector2d unprojectInv(double winX, double winY, int[] viewport, Vector2d dest) { double ndcX = (winX-viewport[0])/viewport[2]*2.0-1.0; double ndcY = (winY-viewport[1])/viewport[3]*2.0-1.0; dest.x = m00 * ndcX + m10 * ndcY + m20; dest.y = m01 * ndcX + m11 * ndcY + m21; return dest; } /** * Compute the extents of the coordinate system before this transformation was applied and store the resulting * corner coordinates in corner and the span vectors in xDir and yDir. *

* That means, given the maximum extents of the coordinate system between [-1..+1] in all dimensions, * this method returns one corner and the length and direction of the two base axis vectors in the coordinate * system before this transformation is applied, which transforms into the corner coordinates [-1, +1]. * * @param corner * will hold one corner of the span * @param xDir * will hold the direction and length of the span along the positive X axis * @param yDir * will hold the direction and length of the span along the positive Y axis * @return this */ public Matrix3x2d span(Vector2d corner, Vector2d xDir, Vector2d yDir) { double s = 1.0 / (m00 * m11 - m01 * m10); double nm00 = m11 * s, nm01 = -m01 * s, nm10 = -m10 * s, nm11 = m00 * s; corner.x = -nm00 - nm10 + (m10 * m21 - m20 * m11) * s; corner.y = -nm01 - nm11 + (m20 * m01 - m00 * m21) * s; xDir.x = 2.0 * nm00; xDir.y = 2.0 * nm01; yDir.x = 2.0 * nm10; yDir.y = 2.0 * nm11; return this; } public boolean testPoint(double x, double y) { double nxX = +m00, nxY = +m10, nxW = 1.0f + m20; double pxX = -m00, pxY = -m10, pxW = 1.0f - m20; double nyX = +m01, nyY = +m11, nyW = 1.0f + m21; double pyX = -m01, pyY = -m11, pyW = 1.0f - m21; return nxX * x + nxY * y + nxW >= 0 && pxX * x + pxY * y + pxW >= 0 && nyX * x + nyY * y + nyW >= 0 && pyX * x + pyY * y + pyW >= 0; } public boolean testCircle(double x, double y, double r) { double invl; double nxX = +m00, nxY = +m10, nxW = 1.0f + m20; invl = Math.invsqrt(nxX * nxX + nxY * nxY); nxX *= invl; nxY *= invl; nxW *= invl; double pxX = -m00, pxY = -m10, pxW = 1.0f - m20; invl = Math.invsqrt(pxX * pxX + pxY * pxY); pxX *= invl; pxY *= invl; pxW *= invl; double nyX = +m01, nyY = +m11, nyW = 1.0f + m21; invl = Math.invsqrt(nyX * nyX + nyY * nyY); nyX *= invl; nyY *= invl; nyW *= invl; double pyX = -m01, pyY = -m11, pyW = 1.0f - m21; invl = Math.invsqrt(pyX * pyX + pyY * pyY); pyX *= invl; pyY *= invl; pyW *= invl; return nxX * x + nxY * y + nxW >= -r && pxX * x + pxY * y + pxW >= -r && nyX * x + nyY * y + nyW >= -r && pyX * x + pyY * y + pyW >= -r; } public boolean testAar(double minX, double minY, double maxX, double maxY) { double nxX = +m00, nxY = +m10, nxW = 1.0f + m20; double pxX = -m00, pxY = -m10, pxW = 1.0f - m20; double nyX = +m01, nyY = +m11, nyW = 1.0f + m21; double pyX = -m01, pyY = -m11, pyW = 1.0f - m21; /* * This is an implementation of the "2.4 Basic intersection test" of the mentioned site. * It does not distinguish between partially inside and fully inside, though, so the test with the 'p' vertex is omitted. */ return nxX * (nxX < 0 ? minX : maxX) + nxY * (nxY < 0 ? minY : maxY) >= -nxW && pxX * (pxX < 0 ? minX : maxX) + pxY * (pxY < 0 ? minY : maxY) >= -pxW && nyX * (nyX < 0 ? minX : maxX) + nyY * (nyY < 0 ? minY : maxY) >= -nyW && pyX * (pyX < 0 ? minX : maxX) + pyY * (pyY < 0 ? minY : maxY) >= -pyW; } public int hashCode() { final int prime = 31; int result = 1; long temp; temp = Double.doubleToLongBits(m00); result = prime * result + (int) (temp ^ (temp >>> 32)); temp = Double.doubleToLongBits(m01); result = prime * result + (int) (temp ^ (temp >>> 32)); temp = Double.doubleToLongBits(m10); result = prime * result + (int) (temp ^ (temp >>> 32)); temp = Double.doubleToLongBits(m11); result = prime * result + (int) (temp ^ (temp >>> 32)); temp = Double.doubleToLongBits(m20); result = prime * result + (int) (temp ^ (temp >>> 32)); temp = Double.doubleToLongBits(m21); result = prime * result + (int) (temp ^ (temp >>> 32)); return result; } public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (getClass() != obj.getClass()) return false; Matrix3x2d other = (Matrix3x2d) obj; if (Double.doubleToLongBits(m00) != Double.doubleToLongBits(other.m00)) return false; if (Double.doubleToLongBits(m01) != Double.doubleToLongBits(other.m01)) return false; if (Double.doubleToLongBits(m10) != Double.doubleToLongBits(other.m10)) return false; if (Double.doubleToLongBits(m11) != Double.doubleToLongBits(other.m11)) return false; if (Double.doubleToLongBits(m20) != Double.doubleToLongBits(other.m20)) return false; if (Double.doubleToLongBits(m21) != Double.doubleToLongBits(other.m21)) return false; return true; } public boolean equals(Matrix3x2dc m, double delta) { if (this == m) return true; if (m == null) return false; if (!(m instanceof Matrix3x2d)) return false; if (!Runtime.equals(m00, m.m00(), delta)) return false; if (!Runtime.equals(m01, m.m01(), delta)) return false; if (!Runtime.equals(m10, m.m10(), delta)) return false; if (!Runtime.equals(m11, m.m11(), delta)) return false; if (!Runtime.equals(m20, m.m20(), delta)) return false; if (!Runtime.equals(m21, m.m21(), delta)) return false; return true; } public boolean isFinite() { return Math.isFinite(m00) && Math.isFinite(m01) && Math.isFinite(m10) && Math.isFinite(m11) && Math.isFinite(m20) && Math.isFinite(m21); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy