All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.joml.Matrix4x3f Maven / Gradle / Ivy

There is a newer version: 1.10.1
Show newest version
/*
 * The MIT License
 *
 * Copyright (c) 2015-2020 Richard Greenlees
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
package org.joml;

import java.io.Externalizable;
import java.io.IOException;
import java.io.ObjectInput;
import java.io.ObjectOutput;
import java.nio.ByteBuffer;
import java.nio.FloatBuffer;
import java.text.DecimalFormat;
import java.text.NumberFormat;


/**
 * Contains the definition of an affine 4x3 matrix (4 columns, 3 rows) of floats, and associated functions to transform
 * it. The matrix is column-major to match OpenGL's interpretation, and it looks like this:
 * 

* m00 m10 m20 m30
* m01 m11 m21 m31
* m02 m12 m22 m32
* * @author Richard Greenlees * @author Kai Burjack */ public class Matrix4x3f implements Externalizable, Matrix4x3fc { private static final long serialVersionUID = 1L; float m00, m01, m02; float m10, m11, m12; float m20, m21, m22; float m30, m31, m32; int properties; /** * Create a new {@link Matrix4x3f} and set it to {@link #identity() identity}. */ public Matrix4x3f() { m00 = 1.0f; m11 = 1.0f; m22 = 1.0f; properties = PROPERTY_IDENTITY | PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL; } /** * Create a new {@link Matrix4x3f} by setting its left 3x3 submatrix to the values of the given {@link Matrix3fc} * and the rest to identity. * * @param mat * the {@link Matrix3fc} */ public Matrix4x3f(Matrix3fc mat) { set(mat); } /** * Create a new {@link Matrix4x3f} and make it a copy of the given matrix. * * @param mat * the {@link Matrix4x3fc} to copy the values from */ public Matrix4x3f(Matrix4x3fc mat) { set(mat); } /** * Create a new 4x4 matrix using the supplied float values. * * @param m00 * the value of m00 * @param m01 * the value of m01 * @param m02 * the value of m02 * @param m10 * the value of m10 * @param m11 * the value of m11 * @param m12 * the value of m12 * @param m20 * the value of m20 * @param m21 * the value of m21 * @param m22 * the value of m22 * @param m30 * the value of m30 * @param m31 * the value of m31 * @param m32 * the value of m32 */ public Matrix4x3f(float m00, float m01, float m02, float m10, float m11, float m12, float m20, float m21, float m22, float m30, float m31, float m32) { this.m00 = m00; this.m01 = m01; this.m02 = m02; this.m10 = m10; this.m11 = m11; this.m12 = m12; this.m20 = m20; this.m21 = m21; this.m22 = m22; this.m30 = m30; this.m31 = m31; this.m32 = m32; determineProperties(); } /** * Create a new {@link Matrix4x3f} by reading its 12 float components from the given {@link FloatBuffer} * at the buffer's current position. *

* That FloatBuffer is expected to hold the values in column-major order. *

* The buffer's position will not be changed by this method. * * @param buffer * the {@link FloatBuffer} to read the matrix values from */ public Matrix4x3f(FloatBuffer buffer) { MemUtil.INSTANCE.get(this, buffer.position(), buffer); determineProperties(); } /** * Create a new {@link Matrix4x3f} and initialize its four columns using the supplied vectors. * * @param col0 * the first column * @param col1 * the second column * @param col2 * the third column * @param col3 * the fourth column */ public Matrix4x3f(Vector3fc col0, Vector3fc col1, Vector3fc col2, Vector3fc col3) { set(col0, col1, col2, col3). determineProperties(); } /** * Assume the given properties about this matrix. *

* Use one or multiple of 0, {@link Matrix4x3fc#PROPERTY_IDENTITY}, * {@link Matrix4x3fc#PROPERTY_TRANSLATION}, {@link Matrix4x3fc#PROPERTY_ORTHONORMAL}. * * @param properties * bitset of the properties to assume about this matrix * @return this */ public Matrix4x3f assume(int properties) { this.properties = properties; return this; } /** * Compute and set the matrix properties returned by {@link #properties()} based * on the current matrix element values. * * @return this */ public Matrix4x3f determineProperties() { int properties = 0; if (m00 == 1.0f && m01 == 0.0f && m02 == 0.0f && m10 == 0.0f && m11 == 1.0f && m12 == 0.0f && m20 == 0.0f && m21 == 0.0f && m22 == 1.0f) { properties |= PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL; if (m30 == 0.0f && m31 == 0.0f && m32 == 0.0f) properties |= PROPERTY_IDENTITY; } /* * We do not determine orthogonality, since it would require arbitrary epsilons * and is rather expensive (6 dot products) in the worst case. */ this.properties = properties; return this; } public int properties() { return properties; } public float m00() { return m00; } public float m01() { return m01; } public float m02() { return m02; } public float m10() { return m10; } public float m11() { return m11; } public float m12() { return m12; } public float m20() { return m20; } public float m21() { return m21; } public float m22() { return m22; } public float m30() { return m30; } public float m31() { return m31; } public float m32() { return m32; } /** * Set the value of the matrix element at column 0 and row 0. * * @param m00 * the new value * @return this */ public Matrix4x3f m00(float m00) { this.m00 = m00; properties &= ~PROPERTY_ORTHONORMAL; if (m00 != 1.0f) properties &= ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION); return this; } /** * Set the value of the matrix element at column 0 and row 1. * * @param m01 * the new value * @return this */ public Matrix4x3f m01(float m01) { this.m01 = m01; properties &= ~PROPERTY_ORTHONORMAL; if (m01 != 0.0f) properties &= ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION); return this; } /** * Set the value of the matrix element at column 0 and row 2. * * @param m02 * the new value * @return this */ public Matrix4x3f m02(float m02) { this.m02 = m02; properties &= ~PROPERTY_ORTHONORMAL; if (m02 != 0.0f) properties &= ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION); return this; } /** * Set the value of the matrix element at column 1 and row 0. * * @param m10 * the new value * @return this */ public Matrix4x3f m10(float m10) { this.m10 = m10; properties &= ~PROPERTY_ORTHONORMAL; if (m10 != 0.0f) properties &= ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION); return this; } /** * Set the value of the matrix element at column 1 and row 1. * * @param m11 * the new value * @return this */ public Matrix4x3f m11(float m11) { this.m11 = m11; properties &= ~PROPERTY_ORTHONORMAL; if (m11 != 1.0f) properties &= ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION); return this; } /** * Set the value of the matrix element at column 1 and row 2. * * @param m12 * the new value * @return this */ public Matrix4x3f m12(float m12) { this.m12 = m12; properties &= ~PROPERTY_ORTHONORMAL; if (m12 != 0.0f) properties &= ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION); return this; } /** * Set the value of the matrix element at column 2 and row 0. * * @param m20 * the new value * @return this */ public Matrix4x3f m20(float m20) { this.m20 = m20; properties &= ~PROPERTY_ORTHONORMAL; if (m20 != 0.0f) properties &= ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION); return this; } /** * Set the value of the matrix element at column 2 and row 1. * * @param m21 * the new value * @return this */ public Matrix4x3f m21(float m21) { this.m21 = m21; properties &= ~PROPERTY_ORTHONORMAL; if (m21 != 0.0f) properties &= ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION); return this; } /** * Set the value of the matrix element at column 2 and row 2. * * @param m22 * the new value * @return this */ public Matrix4x3f m22(float m22) { this.m22 = m22; properties &= ~PROPERTY_ORTHONORMAL; if (m22 != 1.0f) properties &= ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION); return this; } /** * Set the value of the matrix element at column 3 and row 0. * * @param m30 * the new value * @return this */ public Matrix4x3f m30(float m30) { this.m30 = m30; if (m30 != 0.0f) properties &= ~PROPERTY_IDENTITY; return this; } /** * Set the value of the matrix element at column 3 and row 1. * * @param m31 * the new value * @return this */ public Matrix4x3f m31(float m31) { this.m31 = m31; if (m31 != 0.0f) properties &= ~PROPERTY_IDENTITY; return this; } /** * Set the value of the matrix element at column 3 and row 2. * * @param m32 * the new value * @return this */ public Matrix4x3f m32(float m32) { this.m32 = m32; if (m32 != 0.0f) properties &= ~PROPERTY_IDENTITY; return this; } Matrix4x3f _properties(int properties) { this.properties = properties; return this; } /** * Set the value of the matrix element at column 0 and row 0 without updating the properties of the matrix. * * @param m00 * the new value * @return this */ Matrix4x3f _m00(float m00) { this.m00 = m00; return this; } /** * Set the value of the matrix element at column 0 and row 1 without updating the properties of the matrix. * * @param m01 * the new value * @return this */ Matrix4x3f _m01(float m01) { this.m01 = m01; return this; } /** * Set the value of the matrix element at column 0 and row 2 without updating the properties of the matrix. * * @param m02 * the new value * @return this */ Matrix4x3f _m02(float m02) { this.m02 = m02; return this; } /** * Set the value of the matrix element at column 1 and row 0 without updating the properties of the matrix. * * @param m10 * the new value * @return this */ Matrix4x3f _m10(float m10) { this.m10 = m10; return this; } /** * Set the value of the matrix element at column 1 and row 1 without updating the properties of the matrix. * * @param m11 * the new value * @return this */ Matrix4x3f _m11(float m11) { this.m11 = m11; return this; } /** * Set the value of the matrix element at column 1 and row 2 without updating the properties of the matrix. * * @param m12 * the new value * @return this */ Matrix4x3f _m12(float m12) { this.m12 = m12; return this; } /** * Set the value of the matrix element at column 2 and row 0 without updating the properties of the matrix. * * @param m20 * the new value * @return this */ Matrix4x3f _m20(float m20) { this.m20 = m20; return this; } /** * Set the value of the matrix element at column 2 and row 1 without updating the properties of the matrix. * * @param m21 * the new value * @return this */ Matrix4x3f _m21(float m21) { this.m21 = m21; return this; } /** * Set the value of the matrix element at column 2 and row 2 without updating the properties of the matrix. * * @param m22 * the new value * @return this */ Matrix4x3f _m22(float m22) { this.m22 = m22; return this; } /** * Set the value of the matrix element at column 3 and row 0 without updating the properties of the matrix. * * @param m30 * the new value * @return this */ Matrix4x3f _m30(float m30) { this.m30 = m30; return this; } /** * Set the value of the matrix element at column 3 and row 1 without updating the properties of the matrix. * * @param m31 * the new value * @return this */ Matrix4x3f _m31(float m31) { this.m31 = m31; return this; } /** * Set the value of the matrix element at column 3 and row 2 without updating the properties of the matrix. * * @param m32 * the new value * @return this */ Matrix4x3f _m32(float m32) { this.m32 = m32; return this; } /** * Reset this matrix to the identity. *

* Please note that if a call to {@link #identity()} is immediately followed by a call to: * {@link #translate(float, float, float) translate}, * {@link #rotate(float, float, float, float) rotate}, * {@link #scale(float, float, float) scale}, * {@link #ortho(float, float, float, float, float, float) ortho}, * {@link #ortho2D(float, float, float, float) ortho2D}, * {@link #lookAt(float, float, float, float, float, float, float, float, float) lookAt}, * {@link #lookAlong(float, float, float, float, float, float) lookAlong}, * or any of their overloads, then the call to {@link #identity()} can be omitted and the subsequent call replaced with: * {@link #translation(float, float, float) translation}, * {@link #rotation(float, float, float, float) rotation}, * {@link #scaling(float, float, float) scaling}, * {@link #setOrtho(float, float, float, float, float, float) setOrtho}, * {@link #setOrtho2D(float, float, float, float) setOrtho2D}, * {@link #setLookAt(float, float, float, float, float, float, float, float, float) setLookAt}, * {@link #setLookAlong(float, float, float, float, float, float) setLookAlong}, * or any of their overloads. * * @return this */ public Matrix4x3f identity() { if ((properties & PROPERTY_IDENTITY) != 0) return this; MemUtil.INSTANCE.identity(this); properties = PROPERTY_IDENTITY | PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL; return this; } /** * Store the values of the given matrix m into this matrix. * * @see #Matrix4x3f(Matrix4x3fc) * @see #get(Matrix4x3f) * * @param m * the matrix to copy the values from * @return this */ public Matrix4x3f set(Matrix4x3fc m) { m00 = m.m00(); m01 = m.m01(); m02 = m.m02(); m10 = m.m10(); m11 = m.m11(); m12 = m.m12(); m20 = m.m20(); m21 = m.m21(); m22 = m.m22(); m30 = m.m30(); m31 = m.m31(); m32 = m.m32(); properties = m.properties(); return this; } /** * Store the values of the upper 4x3 submatrix of m into this matrix. * * @see Matrix4fc#get4x3(Matrix4x3f) * * @param m * the matrix to copy the values from * @return this */ public Matrix4x3f set(Matrix4fc m) { m00 = m.m00(); m01 = m.m01(); m02 = m.m02(); m10 = m.m10(); m11 = m.m11(); m12 = m.m12(); m20 = m.m20(); m21 = m.m21(); m22 = m.m22(); m30 = m.m30(); m31 = m.m31(); m32 = m.m32(); properties = m.properties() & (PROPERTY_IDENTITY | PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL); return this; } public Matrix4f get(Matrix4f dest) { return dest.set4x3(this); } public Matrix4d get(Matrix4d dest) { return dest.set4x3(this); } /** * Set the left 3x3 submatrix of this {@link Matrix4x3f} to the given {@link Matrix3fc} * and the rest to identity. * * @see #Matrix4x3f(Matrix3fc) * * @param mat * the {@link Matrix3fc} * @return this */ public Matrix4x3f set(Matrix3fc mat) { m00 = mat.m00(); m01 = mat.m01(); m02 = mat.m02(); m10 = mat.m10(); m11 = mat.m11(); m12 = mat.m12(); m20 = mat.m20(); m21 = mat.m21(); m22 = mat.m22(); m30 = 0.0f; m31 = 0.0f; m32 = 0.0f; return determineProperties(); } /** * Set this matrix to be equivalent to the rotation specified by the given {@link AxisAngle4f}. * * @param axisAngle * the {@link AxisAngle4f} * @return this */ public Matrix4x3f set(AxisAngle4f axisAngle) { float x = axisAngle.x; float y = axisAngle.y; float z = axisAngle.z; float angle = axisAngle.angle; float n = Math.sqrt(x*x + y*y + z*z); n = 1/n; x *= n; y *= n; z *= n; float s = Math.sin(angle); float c = Math.cosFromSin(s, angle); float omc = 1.0f - c; m00 = (float)(c + x*x*omc); m11 = (float)(c + y*y*omc); m22 = (float)(c + z*z*omc); float tmp1 = x*y*omc; float tmp2 = z*s; m10 = (float)(tmp1 - tmp2); m01 = (float)(tmp1 + tmp2); tmp1 = x*z*omc; tmp2 = y*s; m20 = (float)(tmp1 + tmp2); m02 = (float)(tmp1 - tmp2); tmp1 = y*z*omc; tmp2 = x*s; m21 = (float)(tmp1 - tmp2); m12 = (float)(tmp1 + tmp2); m30 = 0.0f; m31 = 0.0f; m32 = 0.0f; properties = PROPERTY_ORTHONORMAL; return this; } /** * Set this matrix to be equivalent to the rotation specified by the given {@link AxisAngle4d}. * * @param axisAngle * the {@link AxisAngle4d} * @return this */ public Matrix4x3f set(AxisAngle4d axisAngle) { double x = axisAngle.x; double y = axisAngle.y; double z = axisAngle.z; double angle = axisAngle.angle; double n = Math.sqrt(x*x + y*y + z*z); n = 1/n; x *= n; y *= n; z *= n; double s = Math.sin(angle); double c = Math.cosFromSin(s, angle); double omc = 1.0 - c; m00 = (float)(c + x*x*omc); m11 = (float)(c + y*y*omc); m22 = (float)(c + z*z*omc); double tmp1 = x*y*omc; double tmp2 = z*s; m10 = (float)(tmp1 - tmp2); m01 = (float)(tmp1 + tmp2); tmp1 = x*z*omc; tmp2 = y*s; m20 = (float)(tmp1 + tmp2); m02 = (float)(tmp1 - tmp2); tmp1 = y*z*omc; tmp2 = x*s; m21 = (float)(tmp1 - tmp2); m12 = (float)(tmp1 + tmp2); m30 = 0.0f; m31 = 0.0f; m32 = 0.0f; properties = PROPERTY_ORTHONORMAL; return this; } /** * Set this matrix to be equivalent to the rotation - and possibly scaling - specified by the given {@link Quaternionfc}. *

* This method is equivalent to calling: rotation(q) * * @see #rotation(Quaternionfc) * * @param q * the {@link Quaternionfc} * @return this */ public Matrix4x3f set(Quaternionfc q) { return rotation(q); } /** * Set this matrix to be equivalent to the rotation - and possibly scaling - specified by the given {@link Quaterniondc}. *

* This method is equivalent to calling: rotation(q) * * @param q * the {@link Quaterniondc} * @return this */ public Matrix4x3f set(Quaterniondc q) { double w2 = q.w() * q.w(); double x2 = q.x() * q.x(); double y2 = q.y() * q.y(); double z2 = q.z() * q.z(); double zw = q.z() * q.w(); double xy = q.x() * q.y(); double xz = q.x() * q.z(); double yw = q.y() * q.w(); double yz = q.y() * q.z(); double xw = q.x() * q.w(); m00 = (float) (w2 + x2 - z2 - y2); m01 = (float) (xy + zw + zw + xy); m02 = (float) (xz - yw + xz - yw); m10 = (float) (-zw + xy - zw + xy); m11 = (float) (y2 - z2 + w2 - x2); m12 = (float) (yz + yz + xw + xw); m20 = (float) (yw + xz + xz + yw); m21 = (float) (yz + yz - xw - xw); m22 = (float) (z2 - y2 - x2 + w2); properties = PROPERTY_ORTHONORMAL; return this; } /** * Set the four columns of this matrix to the supplied vectors, respectively. * * @param col0 * the first column * @param col1 * the second column * @param col2 * the third column * @param col3 * the fourth column * @return this */ public Matrix4x3f set(Vector3fc col0, Vector3fc col1, Vector3fc col2, Vector3fc col3) { this.m00 = col0.x(); this.m01 = col0.y(); this.m02 = col0.z(); this.m10 = col1.x(); this.m11 = col1.y(); this.m12 = col1.z(); this.m20 = col2.x(); this.m21 = col2.y(); this.m22 = col2.z(); this.m30 = col3.x(); this.m31 = col3.y(); this.m32 = col3.z(); return determineProperties(); } /** * Set the left 3x3 submatrix of this {@link Matrix4x3f} to that of the given {@link Matrix4x3fc} * and don't change the other elements. * * @param mat * the {@link Matrix4x3fc} * @return this */ public Matrix4x3f set3x3(Matrix4x3fc mat) { m00 = mat.m00(); m01 = mat.m01(); m02 = mat.m02(); m10 = mat.m10(); m11 = mat.m11(); m12 = mat.m12(); m20 = mat.m20(); m21 = mat.m21(); m22 = mat.m22(); properties &= mat.properties(); return this; } /** * Multiply this matrix by the supplied right matrix and store the result in this. *

* If M is this matrix and R the right matrix, * then the new matrix will be M * R. So when transforming a * vector v with the new matrix by using M * R * v, the * transformation of the right matrix will be applied first! * * @param right * the right operand of the matrix multiplication * @return this */ public Matrix4x3f mul(Matrix4x3fc right) { return mul(right, this); } public Matrix4x3f mul(Matrix4x3fc right, Matrix4x3f dest) { if ((properties & PROPERTY_IDENTITY) != 0) return dest.set(right); else if ((right.properties() & PROPERTY_IDENTITY) != 0) return dest.set(this); else if ((properties & PROPERTY_TRANSLATION) != 0) return mulTranslation(right, dest); return mulGeneric(right, dest); } private Matrix4x3f mulGeneric(Matrix4x3fc right, Matrix4x3f dest) { float m00 = this.m00, m01 = this.m01, m02 = this.m02; float m10 = this.m10, m11 = this.m11, m12 = this.m12; float m20 = this.m20, m21 = this.m21, m22 = this.m22; float rm00 = right.m00(), rm01 = right.m01(), rm02 = right.m02(); float rm10 = right.m10(), rm11 = right.m11(), rm12 = right.m12(); float rm20 = right.m20(), rm21 = right.m21(), rm22 = right.m22(); float rm30 = right.m30(), rm31 = right.m31(), rm32 = right.m32(); return dest ._m00(Math.fma(m00, rm00, Math.fma(m10, rm01, m20 * rm02))) ._m01(Math.fma(m01, rm00, Math.fma(m11, rm01, m21 * rm02))) ._m02(Math.fma(m02, rm00, Math.fma(m12, rm01, m22 * rm02))) ._m10(Math.fma(m00, rm10, Math.fma(m10, rm11, m20 * rm12))) ._m11(Math.fma(m01, rm10, Math.fma(m11, rm11, m21 * rm12))) ._m12(Math.fma(m02, rm10, Math.fma(m12, rm11, m22 * rm12))) ._m20(Math.fma(m00, rm20, Math.fma(m10, rm21, m20 * rm22))) ._m21(Math.fma(m01, rm20, Math.fma(m11, rm21, m21 * rm22))) ._m22(Math.fma(m02, rm20, Math.fma(m12, rm21, m22 * rm22))) ._m30(Math.fma(m00, rm30, Math.fma(m10, rm31, Math.fma(m20, rm32, m30)))) ._m31(Math.fma(m01, rm30, Math.fma(m11, rm31, Math.fma(m21, rm32, m31)))) ._m32(Math.fma(m02, rm30, Math.fma(m12, rm31, Math.fma(m22, rm32, m32)))) ._properties(properties & right.properties() & PROPERTY_ORTHONORMAL); } public Matrix4x3f mulTranslation(Matrix4x3fc right, Matrix4x3f dest) { return dest ._m00(right.m00()) ._m01(right.m01()) ._m02(right.m02()) ._m10(right.m10()) ._m11(right.m11()) ._m12(right.m12()) ._m20(right.m20()) ._m21(right.m21()) ._m22(right.m22()) ._m30(right.m30() + m30) ._m31(right.m31() + m31) ._m32(right.m32() + m32) ._properties(right.properties() & PROPERTY_ORTHONORMAL); } /** * Multiply this orthographic projection matrix by the supplied view matrix. *

* If M is this matrix and V the view matrix, * then the new matrix will be M * V. So when transforming a * vector v with the new matrix by using M * V * v, the * transformation of the view matrix will be applied first! * * @param view * the matrix which to multiply this with * @return this */ public Matrix4x3f mulOrtho(Matrix4x3fc view) { return mulOrtho(view, this); } public Matrix4x3f mulOrtho(Matrix4x3fc view, Matrix4x3f dest) { float nm00 = m00 * view.m00(); float nm01 = m11 * view.m01(); float nm02 = m22 * view.m02(); float nm10 = m00 * view.m10(); float nm11 = m11 * view.m11(); float nm12 = m22 * view.m12(); float nm20 = m00 * view.m20(); float nm21 = m11 * view.m21(); float nm22 = m22 * view.m22(); float nm30 = m00 * view.m30() + m30; float nm31 = m11 * view.m31() + m31; float nm32 = m22 * view.m32() + m32; dest.m00 = nm00; dest.m01 = nm01; dest.m02 = nm02; dest.m10 = nm10; dest.m11 = nm11; dest.m12 = nm12; dest.m20 = nm20; dest.m21 = nm21; dest.m22 = nm22; dest.m30 = nm30; dest.m31 = nm31; dest.m32 = nm32; dest.properties = (this.properties & view.properties() & PROPERTY_ORTHONORMAL); return dest; } /** * Component-wise add this and other * by first multiplying each component of other by otherFactor and * adding that result to this. *

* The matrix other will not be changed. * * @param other * the other matrix * @param otherFactor * the factor to multiply each of the other matrix's components * @return this */ public Matrix4x3f fma(Matrix4x3fc other, float otherFactor) { return fma(other, otherFactor, this); } public Matrix4x3f fma(Matrix4x3fc other, float otherFactor, Matrix4x3f dest) { dest ._m00(Math.fma(other.m00(), otherFactor, m00)) ._m01(Math.fma(other.m01(), otherFactor, m01)) ._m02(Math.fma(other.m02(), otherFactor, m02)) ._m10(Math.fma(other.m10(), otherFactor, m10)) ._m11(Math.fma(other.m11(), otherFactor, m11)) ._m12(Math.fma(other.m12(), otherFactor, m12)) ._m20(Math.fma(other.m20(), otherFactor, m20)) ._m21(Math.fma(other.m21(), otherFactor, m21)) ._m22(Math.fma(other.m22(), otherFactor, m22)) ._m30(Math.fma(other.m30(), otherFactor, m30)) ._m31(Math.fma(other.m31(), otherFactor, m31)) ._m32(Math.fma(other.m32(), otherFactor, m32)) ._properties(0); return dest; } /** * Component-wise add this and other. * * @param other * the other addend * @return this */ public Matrix4x3f add(Matrix4x3fc other) { return add(other, this); } public Matrix4x3f add(Matrix4x3fc other, Matrix4x3f dest) { dest.m00 = m00 + other.m00(); dest.m01 = m01 + other.m01(); dest.m02 = m02 + other.m02(); dest.m10 = m10 + other.m10(); dest.m11 = m11 + other.m11(); dest.m12 = m12 + other.m12(); dest.m20 = m20 + other.m20(); dest.m21 = m21 + other.m21(); dest.m22 = m22 + other.m22(); dest.m30 = m30 + other.m30(); dest.m31 = m31 + other.m31(); dest.m32 = m32 + other.m32(); dest.properties = 0; return dest; } /** * Component-wise subtract subtrahend from this. * * @param subtrahend * the subtrahend * @return this */ public Matrix4x3f sub(Matrix4x3fc subtrahend) { return sub(subtrahend, this); } public Matrix4x3f sub(Matrix4x3fc subtrahend, Matrix4x3f dest) { dest.m00 = m00 - subtrahend.m00(); dest.m01 = m01 - subtrahend.m01(); dest.m02 = m02 - subtrahend.m02(); dest.m10 = m10 - subtrahend.m10(); dest.m11 = m11 - subtrahend.m11(); dest.m12 = m12 - subtrahend.m12(); dest.m20 = m20 - subtrahend.m20(); dest.m21 = m21 - subtrahend.m21(); dest.m22 = m22 - subtrahend.m22(); dest.m30 = m30 - subtrahend.m30(); dest.m31 = m31 - subtrahend.m31(); dest.m32 = m32 - subtrahend.m32(); dest.properties = 0; return dest; } /** * Component-wise multiply this by other. * * @param other * the other matrix * @return this */ public Matrix4x3f mulComponentWise(Matrix4x3fc other) { return mulComponentWise(other, this); } public Matrix4x3f mulComponentWise(Matrix4x3fc other, Matrix4x3f dest) { dest.m00 = m00 * other.m00(); dest.m01 = m01 * other.m01(); dest.m02 = m02 * other.m02(); dest.m10 = m10 * other.m10(); dest.m11 = m11 * other.m11(); dest.m12 = m12 * other.m12(); dest.m20 = m20 * other.m20(); dest.m21 = m21 * other.m21(); dest.m22 = m22 * other.m22(); dest.m30 = m30 * other.m30(); dest.m31 = m31 * other.m31(); dest.m32 = m32 * other.m32(); dest.properties = 0; return dest; } /** * Set the values within this matrix to the supplied float values. The matrix will look like this:

* * m00, m10, m20, m30
* m01, m11, m21, m31
* m02, m12, m22, m32
* * @param m00 * the new value of m00 * @param m01 * the new value of m01 * @param m02 * the new value of m02 * @param m10 * the new value of m10 * @param m11 * the new value of m11 * @param m12 * the new value of m12 * @param m20 * the new value of m20 * @param m21 * the new value of m21 * @param m22 * the new value of m22 * @param m30 * the new value of m30 * @param m31 * the new value of m31 * @param m32 * the new value of m32 * @return this */ public Matrix4x3f set(float m00, float m01, float m02, float m10, float m11, float m12, float m20, float m21, float m22, float m30, float m31, float m32) { this.m00 = m00; this.m01 = m01; this.m02 = m02; this.m10 = m10; this.m11 = m11; this.m12 = m12; this.m20 = m20; this.m21 = m21; this.m22 = m22; this.m30 = m30; this.m31 = m31; this.m32 = m32; return determineProperties(); } /** * Set the values in the matrix using a float array that contains the matrix elements in column-major order. *

* The results will look like this:

* * 0, 3, 6, 9
* 1, 4, 7, 10
* 2, 5, 8, 11
* * @see #set(float[]) * * @param m * the array to read the matrix values from * @param off * the offset into the array * @return this */ public Matrix4x3f set(float m[], int off) { MemUtil.INSTANCE.copy(m, off, this); return determineProperties(); } /** * Set the values in the matrix using a float array that contains the matrix elements in column-major order. *

* The results will look like this:

* * 0, 3, 6, 9
* 1, 4, 7, 10
* 2, 5, 8, 11
* * @see #set(float[], int) * * @param m * the array to read the matrix values from * @return this */ public Matrix4x3f set(float m[]) { return set(m, 0); } /** * Set the values of this matrix by reading 12 float values from the given {@link FloatBuffer} in column-major order, * starting at its current position. *

* The FloatBuffer is expected to contain the values in column-major order. *

* The position of the FloatBuffer will not be changed by this method. * * @param buffer * the FloatBuffer to read the matrix values from in column-major order * @return this */ public Matrix4x3f set(FloatBuffer buffer) { MemUtil.INSTANCE.get(this, buffer.position(), buffer); return determineProperties(); } /** * Set the values of this matrix by reading 12 float values from the given {@link ByteBuffer} in column-major order, * starting at its current position. *

* The ByteBuffer is expected to contain the values in column-major order. *

* The position of the ByteBuffer will not be changed by this method. * * @param buffer * the ByteBuffer to read the matrix values from in column-major order * @return this */ public Matrix4x3f set(ByteBuffer buffer) { MemUtil.INSTANCE.get(this, buffer.position(), buffer); return determineProperties(); } /** * Set the values of this matrix by reading 12 float values from off-heap memory in column-major order, * starting at the given address. *

* This method will throw an {@link UnsupportedOperationException} when JOML is used with `-Djoml.nounsafe`. *

* This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process. * * @param address * the off-heap memory address to read the matrix values from in column-major order * @return this */ public Matrix4x3f setFromAddress(long address) { if (Options.NO_UNSAFE) throw new UnsupportedOperationException("Not supported when using joml.nounsafe"); MemUtil.MemUtilUnsafe.get(this, address); return determineProperties(); } public float determinant() { return (m00 * m11 - m01 * m10) * m22 + (m02 * m10 - m00 * m12) * m21 + (m01 * m12 - m02 * m11) * m20; } public Matrix4x3f invert(Matrix4x3f dest) { if ((properties & PROPERTY_IDENTITY) != 0) return dest.identity(); else if ((properties & PROPERTY_ORTHONORMAL) != 0) return invertOrthonormal(dest); return invertGeneric(dest); } private Matrix4x3f invertGeneric(Matrix4x3f dest) { float m11m00 = m00 * m11, m10m01 = m01 * m10, m10m02 = m02 * m10; float m12m00 = m00 * m12, m12m01 = m01 * m12, m11m02 = m02 * m11; float s = 1.0f / ((m11m00 - m10m01) * m22 + (m10m02 - m12m00) * m21 + (m12m01 - m11m02) * m20); float m10m22 = m10 * m22, m10m21 = m10 * m21, m11m22 = m11 * m22; float m11m20 = m11 * m20, m12m21 = m12 * m21, m12m20 = m12 * m20; float m20m02 = m20 * m02, m20m01 = m20 * m01, m21m02 = m21 * m02; float m21m00 = m21 * m00, m22m01 = m22 * m01, m22m00 = m22 * m00; float nm00 = (m11m22 - m12m21) * s; float nm01 = (m21m02 - m22m01) * s; float nm02 = (m12m01 - m11m02) * s; float nm10 = (m12m20 - m10m22) * s; float nm11 = (m22m00 - m20m02) * s; float nm12 = (m10m02 - m12m00) * s; float nm20 = (m10m21 - m11m20) * s; float nm21 = (m20m01 - m21m00) * s; float nm22 = (m11m00 - m10m01) * s; float nm30 = (m10m22 * m31 - m10m21 * m32 + m11m20 * m32 - m11m22 * m30 + m12m21 * m30 - m12m20 * m31) * s; float nm31 = (m20m02 * m31 - m20m01 * m32 + m21m00 * m32 - m21m02 * m30 + m22m01 * m30 - m22m00 * m31) * s; float nm32 = (m11m02 * m30 - m12m01 * m30 + m12m00 * m31 - m10m02 * m31 + m10m01 * m32 - m11m00 * m32) * s; dest.m00 = nm00; dest.m01 = nm01; dest.m02 = nm02; dest.m10 = nm10; dest.m11 = nm11; dest.m12 = nm12; dest.m20 = nm20; dest.m21 = nm21; dest.m22 = nm22; dest.m30 = nm30; dest.m31 = nm31; dest.m32 = nm32; dest.properties = 0; return dest; } private Matrix4x3f invertOrthonormal(Matrix4x3f dest) { float nm30 = -(m00 * m30 + m01 * m31 + m02 * m32); float nm31 = -(m10 * m30 + m11 * m31 + m12 * m32); float nm32 = -(m20 * m30 + m21 * m31 + m22 * m32); float m01 = this.m01; float m02 = this.m02; float m12 = this.m12; dest.m00 = m00; dest.m01 = m10; dest.m02 = m20; dest.m10 = m01; dest.m11 = m11; dest.m12 = m21; dest.m20 = m02; dest.m21 = m12; dest.m22 = m22; dest.m30 = nm30; dest.m31 = nm31; dest.m32 = nm32; dest.properties = PROPERTY_ORTHONORMAL; return dest; } public Matrix4f invert(Matrix4f dest) { if ((properties & PROPERTY_IDENTITY) != 0) return dest.identity(); else if ((properties & PROPERTY_ORTHONORMAL) != 0) return invertOrthonormal(dest); return invertGeneric(dest); } private Matrix4f invertGeneric(Matrix4f dest) { float m11m00 = m00 * m11, m10m01 = m01 * m10, m10m02 = m02 * m10; float m12m00 = m00 * m12, m12m01 = m01 * m12, m11m02 = m02 * m11; float s = 1.0f / ((m11m00 - m10m01) * m22 + (m10m02 - m12m00) * m21 + (m12m01 - m11m02) * m20); float m10m22 = m10 * m22, m10m21 = m10 * m21, m11m22 = m11 * m22; float m11m20 = m11 * m20, m12m21 = m12 * m21, m12m20 = m12 * m20; float m20m02 = m20 * m02, m20m01 = m20 * m01, m21m02 = m21 * m02; float m21m00 = m21 * m00, m22m01 = m22 * m01, m22m00 = m22 * m00; float nm00 = (m11m22 - m12m21) * s; float nm01 = (m21m02 - m22m01) * s; float nm02 = (m12m01 - m11m02) * s; float nm10 = (m12m20 - m10m22) * s; float nm11 = (m22m00 - m20m02) * s; float nm12 = (m10m02 - m12m00) * s; float nm20 = (m10m21 - m11m20) * s; float nm21 = (m20m01 - m21m00) * s; float nm22 = (m11m00 - m10m01) * s; float nm30 = (m10m22 * m31 - m10m21 * m32 + m11m20 * m32 - m11m22 * m30 + m12m21 * m30 - m12m20 * m31) * s; float nm31 = (m20m02 * m31 - m20m01 * m32 + m21m00 * m32 - m21m02 * m30 + m22m01 * m30 - m22m00 * m31) * s; float nm32 = (m11m02 * m30 - m12m01 * m30 + m12m00 * m31 - m10m02 * m31 + m10m01 * m32 - m11m00 * m32) * s; dest.m00 = nm00; dest.m01 = nm01; dest.m02 = nm02; dest.m03 = 0.0f; dest.m10 = nm10; dest.m11 = nm11; dest.m12 = nm12; dest.m13 = 0.0f; dest.m20 = nm20; dest.m21 = nm21; dest.m22 = nm22; dest.m23 = 0.0f; dest.m30 = nm30; dest.m31 = nm31; dest.m32 = nm32; dest.m33 = 0.0f; dest.properties = 0; return dest; } private Matrix4f invertOrthonormal(Matrix4f dest) { float nm30 = -(m00 * m30 + m01 * m31 + m02 * m32); float nm31 = -(m10 * m30 + m11 * m31 + m12 * m32); float nm32 = -(m20 * m30 + m21 * m31 + m22 * m32); float m01 = this.m01; float m02 = this.m02; float m12 = this.m12; dest.m00 = m00; dest.m01 = m10; dest.m02 = m20; dest.m03 = 0.0f; dest.m10 = m01; dest.m11 = m11; dest.m12 = m21; dest.m13 = 0.0f; dest.m20 = m02; dest.m21 = m12; dest.m22 = m22; dest.m23 = 0.0f; dest.m30 = nm30; dest.m31 = nm31; dest.m32 = nm32; dest.m33 = 0.0f; dest.properties = PROPERTY_ORTHONORMAL; return dest; } /** * Invert this matrix. * * @return this */ public Matrix4x3f invert() { return invert(this); } public Matrix4x3f invertOrtho(Matrix4x3f dest) { float invM00 = 1.0f / m00; float invM11 = 1.0f / m11; float invM22 = 1.0f / m22; dest.set(invM00, 0, 0, 0, invM11, 0, 0, 0, invM22, -m30 * invM00, -m31 * invM11, -m32 * invM22); dest.properties = 0; return dest; } /** * Invert this orthographic projection matrix. *

* This method can be used to quickly obtain the inverse of an orthographic projection matrix. * * @return this */ public Matrix4x3f invertOrtho() { return invertOrtho(this); } /** * Transpose only the left 3x3 submatrix of this matrix and set the rest of the matrix elements to identity. * * @return this */ public Matrix4x3f transpose3x3() { return transpose3x3(this); } public Matrix4x3f transpose3x3(Matrix4x3f dest) { float nm00 = m00; float nm01 = m10; float nm02 = m20; float nm10 = m01; float nm11 = m11; float nm12 = m21; float nm20 = m02; float nm21 = m12; float nm22 = m22; dest.m00 = nm00; dest.m01 = nm01; dest.m02 = nm02; dest.m10 = nm10; dest.m11 = nm11; dest.m12 = nm12; dest.m20 = nm20; dest.m21 = nm21; dest.m22 = nm22; dest.properties = properties; return dest; } public Matrix3f transpose3x3(Matrix3f dest) { dest.m00(m00); dest.m01(m10); dest.m02(m20); dest.m10(m01); dest.m11(m11); dest.m12(m21); dest.m20(m02); dest.m21(m12); dest.m22(m22); return dest; } /** * Set this matrix to be a simple translation matrix. *

* The resulting matrix can be multiplied against another transformation * matrix to obtain an additional translation. *

* In order to post-multiply a translation transformation directly to a * matrix, use {@link #translate(float, float, float) translate()} instead. * * @see #translate(float, float, float) * * @param x * the offset to translate in x * @param y * the offset to translate in y * @param z * the offset to translate in z * @return this */ public Matrix4x3f translation(float x, float y, float z) { if ((properties & PROPERTY_IDENTITY) == 0) MemUtil.INSTANCE.identity(this); m30 = x; m31 = y; m32 = z; properties = PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL; return this; } /** * Set this matrix to be a simple translation matrix. *

* The resulting matrix can be multiplied against another transformation * matrix to obtain an additional translation. *

* In order to post-multiply a translation transformation directly to a * matrix, use {@link #translate(Vector3fc) translate()} instead. * * @see #translate(float, float, float) * * @param offset * the offsets in x, y and z to translate * @return this */ public Matrix4x3f translation(Vector3fc offset) { return translation(offset.x(), offset.y(), offset.z()); } /** * Set only the translation components (m30, m31, m32) of this matrix to the given values (x, y, z). *

* To build a translation matrix instead, use {@link #translation(float, float, float)}. * To apply a translation, use {@link #translate(float, float, float)}. * * @see #translation(float, float, float) * @see #translate(float, float, float) * * @param x * the offset to translate in x * @param y * the offset to translate in y * @param z * the offset to translate in z * @return this */ public Matrix4x3f setTranslation(float x, float y, float z) { m30 = x; m31 = y; m32 = z; properties &= ~(PROPERTY_IDENTITY); return this; } /** * Set only the translation components (m30, m31, m32) of this matrix to the values (xyz.x, xyz.y, xyz.z). *

* To build a translation matrix instead, use {@link #translation(Vector3fc)}. * To apply a translation, use {@link #translate(Vector3fc)}. * * @see #translation(Vector3fc) * @see #translate(Vector3fc) * * @param xyz * the units to translate in (x, y, z) * @return this */ public Matrix4x3f setTranslation(Vector3fc xyz) { return setTranslation(xyz.x(), xyz.y(), xyz.z()); } public Vector3f getTranslation(Vector3f dest) { dest.x = m30; dest.y = m31; dest.z = m32; return dest; } public Vector3f getScale(Vector3f dest) { dest.x = Math.sqrt(m00 * m00 + m01 * m01 + m02 * m02); dest.y = Math.sqrt(m10 * m10 + m11 * m11 + m12 * m12); dest.z = Math.sqrt(m20 * m20 + m21 * m21 + m22 * m22); return dest; } /** * Return a string representation of this matrix. *

* This method creates a new {@link DecimalFormat} on every invocation with the format string "0.000E0;-". * * @return the string representation */ public String toString() { DecimalFormat formatter = new DecimalFormat(" 0.000E0;-"); String str = toString(formatter); StringBuffer res = new StringBuffer(); int eIndex = Integer.MIN_VALUE; for (int i = 0; i < str.length(); i++) { char c = str.charAt(i); if (c == 'E') { eIndex = i; } else if (c == ' ' && eIndex == i - 1) { // workaround Java 1.4 DecimalFormat bug res.append('+'); continue; } else if (Character.isDigit(c) && eIndex == i - 1) { res.append('+'); } res.append(c); } return res.toString(); } /** * Return a string representation of this matrix by formatting the matrix elements with the given {@link NumberFormat}. * * @param formatter * the {@link NumberFormat} used to format the matrix values with * @return the string representation */ public String toString(NumberFormat formatter) { return Runtime.format(m00, formatter) + " " + Runtime.format(m10, formatter) + " " + Runtime.format(m20, formatter) + " " + Runtime.format(m30, formatter) + "\n" + Runtime.format(m01, formatter) + " " + Runtime.format(m11, formatter) + " " + Runtime.format(m21, formatter) + " " + Runtime.format(m31, formatter) + "\n" + Runtime.format(m02, formatter) + " " + Runtime.format(m12, formatter) + " " + Runtime.format(m22, formatter) + " " + Runtime.format(m32, formatter) + "\n"; } /** * Get the current values of this matrix and store them into * dest. *

* This is the reverse method of {@link #set(Matrix4x3fc)} and allows to obtain * intermediate calculation results when chaining multiple transformations. * * @see #set(Matrix4x3fc) * * @param dest * the destination matrix * @return the passed in destination */ public Matrix4x3f get(Matrix4x3f dest) { return dest.set(this); } /** * Get the current values of this matrix and store them into * dest. *

* This is the reverse method of {@link Matrix4x3d#set(Matrix4x3fc)} and allows to obtain * intermediate calculation results when chaining multiple transformations. * * @see Matrix4x3d#set(Matrix4x3fc) * * @param dest * the destination matrix * @return the passed in destination */ public Matrix4x3d get(Matrix4x3d dest) { return dest.set(this); } public AxisAngle4f getRotation(AxisAngle4f dest) { return dest.set(this); } public AxisAngle4d getRotation(AxisAngle4d dest) { return dest.set(this); } public Quaternionf getUnnormalizedRotation(Quaternionf dest) { return dest.setFromUnnormalized(this); } public Quaternionf getNormalizedRotation(Quaternionf dest) { return dest.setFromNormalized(this); } public Quaterniond getUnnormalizedRotation(Quaterniond dest) { return dest.setFromUnnormalized(this); } public Quaterniond getNormalizedRotation(Quaterniond dest) { return dest.setFromNormalized(this); } public FloatBuffer get(FloatBuffer buffer) { return get(buffer.position(), buffer); } public FloatBuffer get(int index, FloatBuffer buffer) { MemUtil.INSTANCE.put(this, index, buffer); return buffer; } public ByteBuffer get(ByteBuffer buffer) { return get(buffer.position(), buffer); } public ByteBuffer get(int index, ByteBuffer buffer) { MemUtil.INSTANCE.put(this, index, buffer); return buffer; } public Matrix4x3fc getToAddress(long address) { if (Options.NO_UNSAFE) throw new UnsupportedOperationException("Not supported when using joml.nounsafe"); MemUtil.MemUtilUnsafe.put(this, address); return this; } public float[] get(float[] arr, int offset) { MemUtil.INSTANCE.copy(this, arr, offset); return arr; } public float[] get(float[] arr) { return get(arr, 0); } public float[] get4x4(float[] arr, int offset) { MemUtil.INSTANCE.copy4x4(this, arr, offset); return arr; } public float[] get4x4(float[] arr) { return get4x4(arr, 0); } public FloatBuffer get4x4(FloatBuffer buffer) { return get4x4(buffer.position(), buffer); } public FloatBuffer get4x4(int index, FloatBuffer buffer) { MemUtil.INSTANCE.put4x4(this, index, buffer); return buffer; } public ByteBuffer get4x4(ByteBuffer buffer) { return get4x4(buffer.position(), buffer); } public ByteBuffer get4x4(int index, ByteBuffer buffer) { MemUtil.INSTANCE.put4x4(this, index, buffer); return buffer; } public FloatBuffer get3x4(FloatBuffer buffer) { return get3x4(buffer.position(), buffer); } public FloatBuffer get3x4(int index, FloatBuffer buffer) { MemUtil.INSTANCE.put3x4(this, index, buffer); return buffer; } public ByteBuffer get3x4(ByteBuffer buffer) { return get3x4(buffer.position(), buffer); } public ByteBuffer get3x4(int index, ByteBuffer buffer) { MemUtil.INSTANCE.put3x4(this, index, buffer); return buffer; } public FloatBuffer getTransposed(FloatBuffer buffer) { return getTransposed(buffer.position(), buffer); } public FloatBuffer getTransposed(int index, FloatBuffer buffer) { MemUtil.INSTANCE.putTransposed(this, index, buffer); return buffer; } public ByteBuffer getTransposed(ByteBuffer buffer) { return getTransposed(buffer.position(), buffer); } public ByteBuffer getTransposed(int index, ByteBuffer buffer) { MemUtil.INSTANCE.putTransposed(this, index, buffer); return buffer; } public float[] getTransposed(float[] arr, int offset) { arr[offset+0] = m00; arr[offset+1] = m10; arr[offset+2] = m20; arr[offset+3] = m30; arr[offset+4] = m01; arr[offset+5] = m11; arr[offset+6] = m21; arr[offset+7] = m31; arr[offset+8] = m02; arr[offset+9] = m12; arr[offset+10] = m22; arr[offset+11] = m32; return arr; } public float[] getTransposed(float[] arr) { return getTransposed(arr, 0); } /** * Set all the values within this matrix to 0. * * @return this */ public Matrix4x3f zero() { MemUtil.INSTANCE.zero(this); properties = 0; return this; } /** * Set this matrix to be a simple scale matrix, which scales all axes uniformly by the given factor. *

* The resulting matrix can be multiplied against another transformation * matrix to obtain an additional scaling. *

* In order to post-multiply a scaling transformation directly to a * matrix, use {@link #scale(float) scale()} instead. * * @see #scale(float) * * @param factor * the scale factor in x, y and z * @return this */ public Matrix4x3f scaling(float factor) { return scaling(factor, factor, factor); } /** * Set this matrix to be a simple scale matrix. *

* The resulting matrix can be multiplied against another transformation * matrix to obtain an additional scaling. *

* In order to post-multiply a scaling transformation directly to a * matrix, use {@link #scale(float, float, float) scale()} instead. * * @see #scale(float, float, float) * * @param x * the scale in x * @param y * the scale in y * @param z * the scale in z * @return this */ public Matrix4x3f scaling(float x, float y, float z) { if ((properties & PROPERTY_IDENTITY) == 0) MemUtil.INSTANCE.identity(this); m00 = x; m11 = y; m22 = z; boolean one = Math.absEqualsOne(x) && Math.absEqualsOne(y) && Math.absEqualsOne(z); properties = one ? PROPERTY_ORTHONORMAL : 0; return this; } /** * Set this matrix to be a simple scale matrix which scales the base axes by xyz.x, xyz.y and xyz.z respectively. *

* The resulting matrix can be multiplied against another transformation * matrix to obtain an additional scaling. *

* In order to post-multiply a scaling transformation directly to a * matrix use {@link #scale(Vector3fc) scale()} instead. * * @see #scale(Vector3fc) * * @param xyz * the scale in x, y and z respectively * @return this */ public Matrix4x3f scaling(Vector3fc xyz) { return scaling(xyz.x(), xyz.y(), xyz.z()); } /** * Set this matrix to a rotation matrix which rotates the given radians about a given axis. *

* The axis described by the axis vector needs to be a unit vector. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* The resulting matrix can be multiplied against another transformation * matrix to obtain an additional rotation. *

* In order to post-multiply a rotation transformation directly to a * matrix, use {@link #rotate(float, Vector3fc) rotate()} instead. * * @see #rotate(float, Vector3fc) * * @param angle * the angle in radians * @param axis * the axis to rotate about (needs to be {@link Vector3f#normalize() normalized}) * @return this */ public Matrix4x3f rotation(float angle, Vector3fc axis) { return rotation(angle, axis.x(), axis.y(), axis.z()); } /** * Set this matrix to a rotation transformation using the given {@link AxisAngle4f}. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* The resulting matrix can be multiplied against another transformation * matrix to obtain an additional rotation. *

* In order to apply the rotation transformation to an existing transformation, * use {@link #rotate(AxisAngle4f) rotate()} instead. *

* Reference: http://en.wikipedia.org * * @see #rotate(AxisAngle4f) * * @param axisAngle * the {@link AxisAngle4f} (needs to be {@link AxisAngle4f#normalize() normalized}) * @return this */ public Matrix4x3f rotation(AxisAngle4f axisAngle) { return rotation(axisAngle.angle, axisAngle.x, axisAngle.y, axisAngle.z); } /** * Set this matrix to a rotation matrix which rotates the given radians about a given axis. *

* The axis described by the three components needs to be a unit vector. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* The resulting matrix can be multiplied against another transformation * matrix to obtain an additional rotation. *

* In order to apply the rotation transformation to an existing transformation, * use {@link #rotate(float, float, float, float) rotate()} instead. *

* Reference: http://en.wikipedia.org * * @see #rotate(float, float, float, float) * * @param angle * the angle in radians * @param x * the x-component of the rotation axis * @param y * the y-component of the rotation axis * @param z * the z-component of the rotation axis * @return this */ public Matrix4x3f rotation(float angle, float x, float y, float z) { if (y == 0.0f && z == 0.0f && Math.absEqualsOne(x)) return rotationX(x * angle); else if (x == 0.0f && z == 0.0f && Math.absEqualsOne(y)) return rotationY(y * angle); else if (x == 0.0f && y == 0.0f && Math.absEqualsOne(z)) return rotationZ(z * angle); return rotationInternal(angle, x, y, z); } private Matrix4x3f rotationInternal(float angle, float x, float y, float z) { float sin = Math.sin(angle); float cos = Math.cosFromSin(sin, angle); float C = 1.0f - cos; float xy = x * y, xz = x * z, yz = y * z; m00 = cos + x * x * C; m01 = xy * C + z * sin; m02 = xz * C - y * sin; m10 = xy * C - z * sin; m11 = cos + y * y * C; m12 = yz * C + x * sin; m20 = xz * C + y * sin; m21 = yz * C - x * sin; m22 = cos + z * z * C; m30 = 0.0f; m31 = 0.0f; m32 = 0.0f; properties = PROPERTY_ORTHONORMAL; return this; } /** * Set this matrix to a rotation transformation about the X axis. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* Reference: http://en.wikipedia.org * * @param ang * the angle in radians * @return this */ public Matrix4x3f rotationX(float ang) { float sin, cos; sin = Math.sin(ang); cos = Math.cosFromSin(sin, ang); m00 = 1.0f; m01 = 0.0f; m02 = 0.0f; m10 = 0.0f; m11 = cos; m12 = sin; m20 = 0.0f; m21 = -sin; m22 = cos; m30 = 0.0f; m31 = 0.0f; m32 = 0.0f; properties = PROPERTY_ORTHONORMAL; return this; } /** * Set this matrix to a rotation transformation about the Y axis. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* Reference: http://en.wikipedia.org * * @param ang * the angle in radians * @return this */ public Matrix4x3f rotationY(float ang) { float sin, cos; sin = Math.sin(ang); cos = Math.cosFromSin(sin, ang); m00 = cos; m01 = 0.0f; m02 = -sin; m10 = 0.0f; m11 = 1.0f; m12 = 0.0f; m20 = sin; m21 = 0.0f; m22 = cos; m30 = 0.0f; m31 = 0.0f; m32 = 0.0f; properties = PROPERTY_ORTHONORMAL; return this; } /** * Set this matrix to a rotation transformation about the Z axis. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* Reference: http://en.wikipedia.org * * @param ang * the angle in radians * @return this */ public Matrix4x3f rotationZ(float ang) { float sin, cos; sin = Math.sin(ang); cos = Math.cosFromSin(sin, ang); m00 = cos; m01 = sin; m02 = 0.0f; m10 = -sin; m11 = cos; m12 = 0.0f; m20 = 0.0f; m21 = 0.0f; m22 = 1.0f; m30 = 0.0f; m31 = 0.0f; m32 = 0.0f; properties = PROPERTY_ORTHONORMAL; return this; } /** * Set this matrix to a rotation of angleX radians about the X axis, followed by a rotation * of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* This method is equivalent to calling: rotationX(angleX).rotateY(angleY).rotateZ(angleZ) * * @param angleX * the angle to rotate about X * @param angleY * the angle to rotate about Y * @param angleZ * the angle to rotate about Z * @return this */ public Matrix4x3f rotationXYZ(float angleX, float angleY, float angleZ) { float sinX = Math.sin(angleX); float cosX = Math.cosFromSin(sinX, angleX); float sinY = Math.sin(angleY); float cosY = Math.cosFromSin(sinY, angleY); float sinZ = Math.sin(angleZ); float cosZ = Math.cosFromSin(sinZ, angleZ); float m_sinX = -sinX; float m_sinY = -sinY; float m_sinZ = -sinZ; // rotateX float nm11 = cosX; float nm12 = sinX; float nm21 = m_sinX; float nm22 = cosX; // rotateY float nm00 = cosY; float nm01 = nm21 * m_sinY; float nm02 = nm22 * m_sinY; m20 = sinY; m21 = nm21 * cosY; m22 = nm22 * cosY; // rotateZ m00 = nm00 * cosZ; m01 = nm01 * cosZ + nm11 * sinZ; m02 = nm02 * cosZ + nm12 * sinZ; m10 = nm00 * m_sinZ; m11 = nm01 * m_sinZ + nm11 * cosZ; m12 = nm02 * m_sinZ + nm12 * cosZ; // set last column to identity m30 = 0.0f; m31 = 0.0f; m32 = 0.0f; properties = PROPERTY_ORTHONORMAL; return this; } /** * Set this matrix to a rotation of angleZ radians about the Z axis, followed by a rotation * of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* This method is equivalent to calling: rotationZ(angleZ).rotateY(angleY).rotateX(angleX) * * @param angleZ * the angle to rotate about Z * @param angleY * the angle to rotate about Y * @param angleX * the angle to rotate about X * @return this */ public Matrix4x3f rotationZYX(float angleZ, float angleY, float angleX) { float sinX = Math.sin(angleX); float cosX = Math.cosFromSin(sinX, angleX); float sinY = Math.sin(angleY); float cosY = Math.cosFromSin(sinY, angleY); float sinZ = Math.sin(angleZ); float cosZ = Math.cosFromSin(sinZ, angleZ); float m_sinZ = -sinZ; float m_sinY = -sinY; float m_sinX = -sinX; // rotateZ float nm00 = cosZ; float nm01 = sinZ; float nm10 = m_sinZ; float nm11 = cosZ; // rotateY float nm20 = nm00 * sinY; float nm21 = nm01 * sinY; float nm22 = cosY; m00 = nm00 * cosY; m01 = nm01 * cosY; m02 = m_sinY; // rotateX m10 = nm10 * cosX + nm20 * sinX; m11 = nm11 * cosX + nm21 * sinX; m12 = nm22 * sinX; m20 = nm10 * m_sinX + nm20 * cosX; m21 = nm11 * m_sinX + nm21 * cosX; m22 = nm22 * cosX; // set last column to identity m30 = 0.0f; m31 = 0.0f; m32 = 0.0f; properties = PROPERTY_ORTHONORMAL; return this; } /** * Set this matrix to a rotation of angleY radians about the Y axis, followed by a rotation * of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* This method is equivalent to calling: rotationY(angleY).rotateX(angleX).rotateZ(angleZ) * * @param angleY * the angle to rotate about Y * @param angleX * the angle to rotate about X * @param angleZ * the angle to rotate about Z * @return this */ public Matrix4x3f rotationYXZ(float angleY, float angleX, float angleZ) { float sinX = Math.sin(angleX); float cosX = Math.cosFromSin(sinX, angleX); float sinY = Math.sin(angleY); float cosY = Math.cosFromSin(sinY, angleY); float sinZ = Math.sin(angleZ); float cosZ = Math.cosFromSin(sinZ, angleZ); float m_sinY = -sinY; float m_sinX = -sinX; float m_sinZ = -sinZ; // rotateY float nm00 = cosY; float nm02 = m_sinY; float nm20 = sinY; float nm22 = cosY; // rotateX float nm10 = nm20 * sinX; float nm11 = cosX; float nm12 = nm22 * sinX; m20 = nm20 * cosX; m21 = m_sinX; m22 = nm22 * cosX; // rotateZ m00 = nm00 * cosZ + nm10 * sinZ; m01 = nm11 * sinZ; m02 = nm02 * cosZ + nm12 * sinZ; m10 = nm00 * m_sinZ + nm10 * cosZ; m11 = nm11 * cosZ; m12 = nm02 * m_sinZ + nm12 * cosZ; // set last column to identity m30 = 0.0f; m31 = 0.0f; m32 = 0.0f; properties = PROPERTY_ORTHONORMAL; return this; } /** * Set only the left 3x3 submatrix of this matrix to a rotation of angleX radians about the X axis, followed by a rotation * of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. * * @param angleX * the angle to rotate about X * @param angleY * the angle to rotate about Y * @param angleZ * the angle to rotate about Z * @return this */ public Matrix4x3f setRotationXYZ(float angleX, float angleY, float angleZ) { float sinX = Math.sin(angleX); float cosX = Math.cosFromSin(sinX, angleX); float sinY = Math.sin(angleY); float cosY = Math.cosFromSin(sinY, angleY); float sinZ = Math.sin(angleZ); float cosZ = Math.cosFromSin(sinZ, angleZ); float m_sinX = -sinX; float m_sinY = -sinY; float m_sinZ = -sinZ; // rotateX float nm11 = cosX; float nm12 = sinX; float nm21 = m_sinX; float nm22 = cosX; // rotateY float nm00 = cosY; float nm01 = nm21 * m_sinY; float nm02 = nm22 * m_sinY; m20 = sinY; m21 = nm21 * cosY; m22 = nm22 * cosY; // rotateZ m00 = nm00 * cosZ; m01 = nm01 * cosZ + nm11 * sinZ; m02 = nm02 * cosZ + nm12 * sinZ; m10 = nm00 * m_sinZ; m11 = nm01 * m_sinZ + nm11 * cosZ; m12 = nm02 * m_sinZ + nm12 * cosZ; properties &= ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION); return this; } /** * Set only the left 3x3 submatrix of this matrix to a rotation of angleZ radians about the Z axis, followed by a rotation * of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. * * @param angleZ * the angle to rotate about Z * @param angleY * the angle to rotate about Y * @param angleX * the angle to rotate about X * @return this */ public Matrix4x3f setRotationZYX(float angleZ, float angleY, float angleX) { float sinX = Math.sin(angleX); float cosX = Math.cosFromSin(sinX, angleX); float sinY = Math.sin(angleY); float cosY = Math.cosFromSin(sinY, angleY); float sinZ = Math.sin(angleZ); float cosZ = Math.cosFromSin(sinZ, angleZ); float m_sinZ = -sinZ; float m_sinY = -sinY; float m_sinX = -sinX; // rotateZ float nm00 = cosZ; float nm01 = sinZ; float nm10 = m_sinZ; float nm11 = cosZ; // rotateY float nm20 = nm00 * sinY; float nm21 = nm01 * sinY; float nm22 = cosY; m00 = nm00 * cosY; m01 = nm01 * cosY; m02 = m_sinY; // rotateX m10 = nm10 * cosX + nm20 * sinX; m11 = nm11 * cosX + nm21 * sinX; m12 = nm22 * sinX; m20 = nm10 * m_sinX + nm20 * cosX; m21 = nm11 * m_sinX + nm21 * cosX; m22 = nm22 * cosX; properties &= ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION); return this; } /** * Set only the left 3x3 submatrix of this matrix to a rotation of angleY radians about the Y axis, followed by a rotation * of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. * * @param angleY * the angle to rotate about Y * @param angleX * the angle to rotate about X * @param angleZ * the angle to rotate about Z * @return this */ public Matrix4x3f setRotationYXZ(float angleY, float angleX, float angleZ) { float sinX = Math.sin(angleX); float cosX = Math.cosFromSin(sinX, angleX); float sinY = Math.sin(angleY); float cosY = Math.cosFromSin(sinY, angleY); float sinZ = Math.sin(angleZ); float cosZ = Math.cosFromSin(sinZ, angleZ); float m_sinY = -sinY; float m_sinX = -sinX; float m_sinZ = -sinZ; // rotateY float nm00 = cosY; float nm02 = m_sinY; float nm20 = sinY; float nm22 = cosY; // rotateX float nm10 = nm20 * sinX; float nm11 = cosX; float nm12 = nm22 * sinX; m20 = nm20 * cosX; m21 = m_sinX; m22 = nm22 * cosX; // rotateZ m00 = nm00 * cosZ + nm10 * sinZ; m01 = nm11 * sinZ; m02 = nm02 * cosZ + nm12 * sinZ; m10 = nm00 * m_sinZ + nm10 * cosZ; m11 = nm11 * cosZ; m12 = nm02 * m_sinZ + nm12 * cosZ; properties &= ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION); return this; } /** * Set this matrix to the rotation - and possibly scaling - transformation of the given {@link Quaternionfc}. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* The resulting matrix can be multiplied against another transformation * matrix to obtain an additional rotation. *

* In order to apply the rotation transformation to an existing transformation, * use {@link #rotate(Quaternionfc) rotate()} instead. *

* Reference: http://en.wikipedia.org * * @see #rotate(Quaternionfc) * * @param quat * the {@link Quaternionfc} * @return this */ public Matrix4x3f rotation(Quaternionfc quat) { float w2 = quat.w() * quat.w(); float x2 = quat.x() * quat.x(); float y2 = quat.y() * quat.y(); float z2 = quat.z() * quat.z(); float zw = quat.z() * quat.w(), dzw = zw + zw; float xy = quat.x() * quat.y(), dxy = xy + xy; float xz = quat.x() * quat.z(), dxz = xz + xz; float yw = quat.y() * quat.w(), dyw = yw + yw; float yz = quat.y() * quat.z(), dyz = yz + yz; float xw = quat.x() * quat.w(), dxw = xw + xw; _m00(w2 + x2 - z2 - y2); _m01(dxy + dzw); _m02(dxz - dyw); _m10(dxy - dzw); _m11(y2 - z2 + w2 - x2); _m12(dyz + dxw); _m20(dyw + dxz); _m21(dyz - dxw); _m22(z2 - y2 - x2 + w2); _m30(0.0f); _m31(0.0f); _m32(0.0f); properties = PROPERTY_ORTHONORMAL; return this; } /** * Set this matrix to T * R * S, where T is a translation by the given (tx, ty, tz), * R is a rotation transformation specified by the quaternion (qx, qy, qz, qw), and S is a scaling transformation * which scales the three axes x, y and z by (sx, sy, sz). *

* When transforming a vector by the resulting matrix the scaling transformation will be applied first, then the rotation and * at last the translation. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* This method is equivalent to calling: translation(tx, ty, tz).rotate(quat).scale(sx, sy, sz) * * @see #translation(float, float, float) * @see #rotate(Quaternionfc) * @see #scale(float, float, float) * * @param tx * the number of units by which to translate the x-component * @param ty * the number of units by which to translate the y-component * @param tz * the number of units by which to translate the z-component * @param qx * the x-coordinate of the vector part of the quaternion * @param qy * the y-coordinate of the vector part of the quaternion * @param qz * the z-coordinate of the vector part of the quaternion * @param qw * the scalar part of the quaternion * @param sx * the scaling factor for the x-axis * @param sy * the scaling factor for the y-axis * @param sz * the scaling factor for the z-axis * @return this */ public Matrix4x3f translationRotateScale(float tx, float ty, float tz, float qx, float qy, float qz, float qw, float sx, float sy, float sz) { float dqx = qx + qx; float dqy = qy + qy; float dqz = qz + qz; float q00 = dqx * qx; float q11 = dqy * qy; float q22 = dqz * qz; float q01 = dqx * qy; float q02 = dqx * qz; float q03 = dqx * qw; float q12 = dqy * qz; float q13 = dqy * qw; float q23 = dqz * qw; m00 = sx - (q11 + q22) * sx; m01 = (q01 + q23) * sx; m02 = (q02 - q13) * sx; m10 = (q01 - q23) * sy; m11 = sy - (q22 + q00) * sy; m12 = (q12 + q03) * sy; m20 = (q02 + q13) * sz; m21 = (q12 - q03) * sz; m22 = sz - (q11 + q00) * sz; m30 = tx; m31 = ty; m32 = tz; properties = 0; return this; } /** * Set this matrix to T * R * S, where T is the given translation, * R is a rotation transformation specified by the given quaternion, and S is a scaling transformation * which scales the axes by scale. *

* When transforming a vector by the resulting matrix the scaling transformation will be applied first, then the rotation and * at last the translation. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* This method is equivalent to calling: translation(translation).rotate(quat).scale(scale) * * @see #translation(Vector3fc) * @see #rotate(Quaternionfc) * * @param translation * the translation * @param quat * the quaternion representing a rotation * @param scale * the scaling factors * @return this */ public Matrix4x3f translationRotateScale(Vector3fc translation, Quaternionfc quat, Vector3fc scale) { return translationRotateScale(translation.x(), translation.y(), translation.z(), quat.x(), quat.y(), quat.z(), quat.w(), scale.x(), scale.y(), scale.z()); } /** * Set this matrix to T * R * S * M, where T is a translation by the given (tx, ty, tz), * R is a rotation transformation specified by the quaternion (qx, qy, qz, qw), S is a scaling transformation * which scales the three axes x, y and z by (sx, sy, sz). *

* When transforming a vector by the resulting matrix the transformation described by M will be applied first, then the scaling, then rotation and * at last the translation. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* This method is equivalent to calling: translation(tx, ty, tz).rotate(quat).scale(sx, sy, sz).mul(m) * * @see #translation(float, float, float) * @see #rotate(Quaternionfc) * @see #scale(float, float, float) * @see #mul(Matrix4x3fc) * * @param tx * the number of units by which to translate the x-component * @param ty * the number of units by which to translate the y-component * @param tz * the number of units by which to translate the z-component * @param qx * the x-coordinate of the vector part of the quaternion * @param qy * the y-coordinate of the vector part of the quaternion * @param qz * the z-coordinate of the vector part of the quaternion * @param qw * the scalar part of the quaternion * @param sx * the scaling factor for the x-axis * @param sy * the scaling factor for the y-axis * @param sz * the scaling factor for the z-axis * @param m * the matrix to multiply by * @return this */ public Matrix4x3f translationRotateScaleMul(float tx, float ty, float tz, float qx, float qy, float qz, float qw, float sx, float sy, float sz, Matrix4x3f m) { float dqx = qx + qx; float dqy = qy + qy; float dqz = qz + qz; float q00 = dqx * qx; float q11 = dqy * qy; float q22 = dqz * qz; float q01 = dqx * qy; float q02 = dqx * qz; float q03 = dqx * qw; float q12 = dqy * qz; float q13 = dqy * qw; float q23 = dqz * qw; float nm00 = sx - (q11 + q22) * sx; float nm01 = (q01 + q23) * sx; float nm02 = (q02 - q13) * sx; float nm10 = (q01 - q23) * sy; float nm11 = sy - (q22 + q00) * sy; float nm12 = (q12 + q03) * sy; float nm20 = (q02 + q13) * sz; float nm21 = (q12 - q03) * sz; float nm22 = sz - (q11 + q00) * sz; float m00 = nm00 * m.m00 + nm10 * m.m01 + nm20 * m.m02; float m01 = nm01 * m.m00 + nm11 * m.m01 + nm21 * m.m02; m02 = nm02 * m.m00 + nm12 * m.m01 + nm22 * m.m02; this.m00 = m00; this.m01 = m01; float m10 = nm00 * m.m10 + nm10 * m.m11 + nm20 * m.m12; float m11 = nm01 * m.m10 + nm11 * m.m11 + nm21 * m.m12; m12 = nm02 * m.m10 + nm12 * m.m11 + nm22 * m.m12; this.m10 = m10; this.m11 = m11; float m20 = nm00 * m.m20 + nm10 * m.m21 + nm20 * m.m22; float m21 = nm01 * m.m20 + nm11 * m.m21 + nm21 * m.m22; m22 = nm02 * m.m20 + nm12 * m.m21 + nm22 * m.m22; this.m20 = m20; this.m21 = m21; float m30 = nm00 * m.m30 + nm10 * m.m31 + nm20 * m.m32 + tx; float m31 = nm01 * m.m30 + nm11 * m.m31 + nm21 * m.m32 + ty; m32 = nm02 * m.m30 + nm12 * m.m31 + nm22 * m.m32 + tz; this.m30 = m30; this.m31 = m31; properties = 0; return this; } /** * Set this matrix to T * R * S * M, where T is the given translation, * R is a rotation transformation specified by the given quaternion, S is a scaling transformation * which scales the axes by scale. *

* When transforming a vector by the resulting matrix the transformation described by M will be applied first, then the scaling, then rotation and * at last the translation. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* This method is equivalent to calling: translation(translation).rotate(quat).scale(scale).mul(m) * * @see #translation(Vector3fc) * @see #rotate(Quaternionfc) * * @param translation * the translation * @param quat * the quaternion representing a rotation * @param scale * the scaling factors * @param m * the matrix to multiply by * @return this */ public Matrix4x3f translationRotateScaleMul(Vector3fc translation, Quaternionfc quat, Vector3fc scale, Matrix4x3f m) { return translationRotateScaleMul(translation.x(), translation.y(), translation.z(), quat.x(), quat.y(), quat.z(), quat.w(), scale.x(), scale.y(), scale.z(), m); } /** * Set this matrix to T * R, where T is a translation by the given (tx, ty, tz) and * R is a rotation transformation specified by the given quaternion. *

* When transforming a vector by the resulting matrix the rotation transformation will be applied first and then the translation. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* This method is equivalent to calling: translation(tx, ty, tz).rotate(quat) * * @see #translation(float, float, float) * @see #rotate(Quaternionfc) * * @param tx * the number of units by which to translate the x-component * @param ty * the number of units by which to translate the y-component * @param tz * the number of units by which to translate the z-component * @param quat * the quaternion representing a rotation * @return this */ public Matrix4x3f translationRotate(float tx, float ty, float tz, Quaternionfc quat) { float dqx = quat.x() + quat.x(); float dqy = quat.y() + quat.y(); float dqz = quat.z() + quat.z(); float q00 = dqx * quat.x(); float q11 = dqy * quat.y(); float q22 = dqz * quat.z(); float q01 = dqx * quat.y(); float q02 = dqx * quat.z(); float q03 = dqx * quat.w(); float q12 = dqy * quat.z(); float q13 = dqy * quat.w(); float q23 = dqz * quat.w(); m00 = 1.0f - (q11 + q22); m01 = q01 + q23; m02 = q02 - q13; m10 = q01 - q23; m11 = 1.0f - (q22 + q00); m12 = q12 + q03; m20 = q02 + q13; m21 = q12 - q03; m22 = 1.0f - (q11 + q00); m30 = tx; m31 = ty; m32 = tz; properties = PROPERTY_ORTHONORMAL; return this; } /** * Set this matrix to T * R * M, where T is a translation by the given (tx, ty, tz), * R is a rotation - and possibly scaling - transformation specified by the given quaternion and M is the given matrix mat. *

* When transforming a vector by the resulting matrix the transformation described by M will be applied first, then the scaling, then rotation and * at last the translation. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* This method is equivalent to calling: translation(tx, ty, tz).rotate(quat).mul(mat) * * @see #translation(float, float, float) * @see #rotate(Quaternionfc) * @see #mul(Matrix4x3fc) * * @param tx * the number of units by which to translate the x-component * @param ty * the number of units by which to translate the y-component * @param tz * the number of units by which to translate the z-component * @param quat * the quaternion representing a rotation * @param mat * the matrix to multiply with * @return this */ public Matrix4x3f translationRotateMul(float tx, float ty, float tz, Quaternionfc quat, Matrix4x3fc mat) { return translationRotateMul(tx, ty, tz, quat.x(), quat.y(), quat.z(), quat.w(), mat); } /** * Set this matrix to T * R * M, where T is a translation by the given (tx, ty, tz), * R is a rotation - and possibly scaling - transformation specified by the quaternion (qx, qy, qz, qw) and M is the given matrix mat *

* When transforming a vector by the resulting matrix the transformation described by M will be applied first, then the scaling, then rotation and * at last the translation. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* This method is equivalent to calling: translation(tx, ty, tz).rotate(quat).mul(mat) * * @see #translation(float, float, float) * @see #rotate(Quaternionfc) * @see #mul(Matrix4x3fc) * * @param tx * the number of units by which to translate the x-component * @param ty * the number of units by which to translate the y-component * @param tz * the number of units by which to translate the z-component * @param qx * the x-coordinate of the vector part of the quaternion * @param qy * the y-coordinate of the vector part of the quaternion * @param qz * the z-coordinate of the vector part of the quaternion * @param qw * the scalar part of the quaternion * @param mat * the matrix to multiply with * @return this */ public Matrix4x3f translationRotateMul(float tx, float ty, float tz, float qx, float qy, float qz, float qw, Matrix4x3fc mat) { float w2 = qw * qw; float x2 = qx * qx; float y2 = qy * qy; float z2 = qz * qz; float zw = qz * qw; float xy = qx * qy; float xz = qx * qz; float yw = qy * qw; float yz = qy * qz; float xw = qx * qw; float nm00 = w2 + x2 - z2 - y2; float nm01 = xy + zw + zw + xy; float nm02 = xz - yw + xz - yw; float nm10 = -zw + xy - zw + xy; float nm11 = y2 - z2 + w2 - x2; float nm12 = yz + yz + xw + xw; float nm20 = yw + xz + xz + yw; float nm21 = yz + yz - xw - xw; float nm22 = z2 - y2 - x2 + w2; m00 = nm00 * mat.m00() + nm10 * mat.m01() + nm20 * mat.m02(); m01 = nm01 * mat.m00() + nm11 * mat.m01() + nm21 * mat.m02(); m02 = nm02 * mat.m00() + nm12 * mat.m01() + nm22 * mat.m02(); m10 = nm00 * mat.m10() + nm10 * mat.m11() + nm20 * mat.m12(); m11 = nm01 * mat.m10() + nm11 * mat.m11() + nm21 * mat.m12(); m12 = nm02 * mat.m10() + nm12 * mat.m11() + nm22 * mat.m12(); m20 = nm00 * mat.m20() + nm10 * mat.m21() + nm20 * mat.m22(); m21 = nm01 * mat.m20() + nm11 * mat.m21() + nm21 * mat.m22(); m22 = nm02 * mat.m20() + nm12 * mat.m21() + nm22 * mat.m22(); m30 = nm00 * mat.m30() + nm10 * mat.m31() + nm20 * mat.m32() + tx; m31 = nm01 * mat.m30() + nm11 * mat.m31() + nm21 * mat.m32() + ty; m32 = nm02 * mat.m30() + nm12 * mat.m31() + nm22 * mat.m32() + tz; this.properties = 0; return this; } /** * Set the left 3x3 submatrix of this {@link Matrix4x3f} to the given {@link Matrix3fc} and don't change the other elements. * * @param mat * the 3x3 matrix * @return this */ public Matrix4x3f set3x3(Matrix3fc mat) { if (mat instanceof Matrix3f) { MemUtil.INSTANCE.copy3x3((Matrix3f) mat, this); } else { set3x3Matrix3fc(mat); } properties = 0; return this; } private void set3x3Matrix3fc(Matrix3fc mat) { m00 = mat.m00(); m01 = mat.m01(); m02 = mat.m02(); m10 = mat.m10(); m11 = mat.m11(); m12 = mat.m12(); m20 = mat.m20(); m21 = mat.m21(); m22 = mat.m22(); } public Vector4f transform(Vector4f v) { return v.mul(this); } public Vector4f transform(Vector4fc v, Vector4f dest) { return v.mul(this, dest); } public Vector3f transformPosition(Vector3f v) { v.set(m00 * v.x + m10 * v.y + m20 * v.z + m30, m01 * v.x + m11 * v.y + m21 * v.z + m31, m02 * v.x + m12 * v.y + m22 * v.z + m32); return v; } public Vector3f transformPosition(Vector3fc v, Vector3f dest) { dest.set(m00 * v.x() + m10 * v.y() + m20 * v.z() + m30, m01 * v.x() + m11 * v.y() + m21 * v.z() + m31, m02 * v.x() + m12 * v.y() + m22 * v.z() + m32); return dest; } public Vector3f transformDirection(Vector3f v) { v.set(m00 * v.x + m10 * v.y + m20 * v.z, m01 * v.x + m11 * v.y + m21 * v.z, m02 * v.x + m12 * v.y + m22 * v.z); return v; } public Vector3f transformDirection(Vector3fc v, Vector3f dest) { dest.set(m00 * v.x() + m10 * v.y() + m20 * v.z(), m01 * v.x() + m11 * v.y() + m21 * v.z(), m02 * v.x() + m12 * v.y() + m22 * v.z()); return dest; } public Matrix4x3f scale(Vector3fc xyz, Matrix4x3f dest) { return scale(xyz.x(), xyz.y(), xyz.z(), dest); } /** * Apply scaling to this matrix by scaling the base axes by the given xyz.x, * xyz.y and xyz.z factors, respectively. *

* If M is this matrix and S the scaling matrix, * then the new matrix will be M * S. So when transforming a * vector v with the new matrix by using M * S * v, the * scaling will be applied first! * * @param xyz * the factors of the x, y and z component, respectively * @return this */ public Matrix4x3f scale(Vector3fc xyz) { return scale(xyz.x(), xyz.y(), xyz.z(), this); } public Matrix4x3f scale(float xyz, Matrix4x3f dest) { return scale(xyz, xyz, xyz, dest); } /** * Apply scaling to this matrix by uniformly scaling all base axes by the given xyz factor. *

* If M is this matrix and S the scaling matrix, * then the new matrix will be M * S. So when transforming a * vector v with the new matrix by using M * S * v, the * scaling will be applied first! *

* Individual scaling of all three axes can be applied using {@link #scale(float, float, float)}. * * @see #scale(float, float, float) * * @param xyz * the factor for all components * @return this */ public Matrix4x3f scale(float xyz) { return scale(xyz, xyz, xyz); } public Matrix4x3f scaleXY(float x, float y, Matrix4x3f dest) { return scale(x, y, 1.0f, dest); } /** * Apply scaling to this matrix by scaling the X axis by x and the Y axis by y. *

* If M is this matrix and S the scaling matrix, * then the new matrix will be M * S. So when transforming a * vector v with the new matrix by using M * S * v, the * scaling will be applied first! * * @param x * the factor of the x component * @param y * the factor of the y component * @return this */ public Matrix4x3f scaleXY(float x, float y) { return scale(x, y, 1.0f); } public Matrix4x3f scale(float x, float y, float z, Matrix4x3f dest) { if ((properties & PROPERTY_IDENTITY) != 0) return dest.scaling(x, y, z); return scaleGeneric(x, y, z, dest); } private Matrix4x3f scaleGeneric(float x, float y, float z, Matrix4x3f dest) { dest.m00 = m00 * x; dest.m01 = m01 * x; dest.m02 = m02 * x; dest.m10 = m10 * y; dest.m11 = m11 * y; dest.m12 = m12 * y; dest.m20 = m20 * z; dest.m21 = m21 * z; dest.m22 = m22 * z; dest.m30 = m30; dest.m31 = m31; dest.m32 = m32; dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL); return dest; } /** * Apply scaling to this matrix by scaling the base axes by the given x, * y and z factors. *

* If M is this matrix and S the scaling matrix, * then the new matrix will be M * S. So when transforming a * vector v with the new matrix by using M * S * v, the * scaling will be applied first! * * @param x * the factor of the x component * @param y * the factor of the y component * @param z * the factor of the z component * @return this */ public Matrix4x3f scale(float x, float y, float z) { return scale(x, y, z, this); } public Matrix4x3f scaleLocal(float x, float y, float z, Matrix4x3f dest) { if ((properties & PROPERTY_IDENTITY) != 0) return dest.scaling(x, y, z); float nm00 = x * m00; float nm01 = y * m01; float nm02 = z * m02; float nm10 = x * m10; float nm11 = y * m11; float nm12 = z * m12; float nm20 = x * m20; float nm21 = y * m21; float nm22 = z * m22; float nm30 = x * m30; float nm31 = y * m31; float nm32 = z * m32; dest.m00 = nm00; dest.m01 = nm01; dest.m02 = nm02; dest.m10 = nm10; dest.m11 = nm11; dest.m12 = nm12; dest.m20 = nm20; dest.m21 = nm21; dest.m22 = nm22; dest.m30 = nm30; dest.m31 = nm31; dest.m32 = nm32; dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL); return dest; } /** * Pre-multiply scaling to this matrix by scaling the base axes by the given x, * y and z factors. *

* If M is this matrix and S the scaling matrix, * then the new matrix will be S * M. So when transforming a * vector v with the new matrix by using S * M * v, the * scaling will be applied last! * * @param x * the factor of the x component * @param y * the factor of the y component * @param z * the factor of the z component * @return this */ public Matrix4x3f scaleLocal(float x, float y, float z) { return scaleLocal(x, y, z, this); } public Matrix4x3f rotateX(float ang, Matrix4x3f dest) { if ((properties & PROPERTY_IDENTITY) != 0) return dest.rotationX(ang); else if ((properties & PROPERTY_TRANSLATION) != 0) { float x = m30, y = m31, z = m32; return dest.rotationX(ang).setTranslation(x, y, z); } return rotateXInternal(ang, dest); } private Matrix4x3f rotateXInternal(float ang, Matrix4x3f dest) { float sin, cos; sin = Math.sin(ang); cos = Math.cosFromSin(sin, ang); float rm11 = cos; float rm12 = sin; float rm21 = -sin; float rm22 = cos; // add temporaries for dependent values float nm10 = m10 * rm11 + m20 * rm12; float nm11 = m11 * rm11 + m21 * rm12; float nm12 = m12 * rm11 + m22 * rm12; // set non-dependent values directly dest.m20 = m10 * rm21 + m20 * rm22; dest.m21 = m11 * rm21 + m21 * rm22; dest.m22 = m12 * rm21 + m22 * rm22; // set other values dest.m10 = nm10; dest.m11 = nm11; dest.m12 = nm12; dest.m00 = m00; dest.m01 = m01; dest.m02 = m02; dest.m30 = m30; dest.m31 = m31; dest.m32 = m32; dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION); return dest; } /** * Apply rotation about the X axis to this matrix by rotating the given amount of radians. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and R the rotation matrix, * then the new matrix will be M * R. So when transforming a * vector v with the new matrix by using M * R * v, the * rotation will be applied first! *

* Reference: http://en.wikipedia.org * * @param ang * the angle in radians * @return this */ public Matrix4x3f rotateX(float ang) { return rotateX(ang, this); } public Matrix4x3f rotateY(float ang, Matrix4x3f dest) { if ((properties & PROPERTY_IDENTITY) != 0) return dest.rotationY(ang); else if ((properties & PROPERTY_TRANSLATION) != 0) { float x = m30, y = m31, z = m32; return dest.rotationY(ang).setTranslation(x, y, z); } return rotateYInternal(ang, dest); } private Matrix4x3f rotateYInternal(float ang, Matrix4x3f dest) { float cos, sin; sin = Math.sin(ang); cos = Math.cosFromSin(sin, ang); float rm00 = cos; float rm02 = -sin; float rm20 = sin; float rm22 = cos; // add temporaries for dependent values float nm00 = m00 * rm00 + m20 * rm02; float nm01 = m01 * rm00 + m21 * rm02; float nm02 = m02 * rm00 + m22 * rm02; // set non-dependent values directly dest.m20 = m00 * rm20 + m20 * rm22; dest.m21 = m01 * rm20 + m21 * rm22; dest.m22 = m02 * rm20 + m22 * rm22; // set other values dest.m00 = nm00; dest.m01 = nm01; dest.m02 = nm02; dest.m10 = m10; dest.m11 = m11; dest.m12 = m12; dest.m30 = m30; dest.m31 = m31; dest.m32 = m32; dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION); return dest; } /** * Apply rotation about the Y axis to this matrix by rotating the given amount of radians. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and R the rotation matrix, * then the new matrix will be M * R. So when transforming a * vector v with the new matrix by using M * R * v, the * rotation will be applied first! *

* Reference: http://en.wikipedia.org * * @param ang * the angle in radians * @return this */ public Matrix4x3f rotateY(float ang) { return rotateY(ang, this); } public Matrix4x3f rotateZ(float ang, Matrix4x3f dest) { if ((properties & PROPERTY_IDENTITY) != 0) return dest.rotationZ(ang); else if ((properties & PROPERTY_TRANSLATION) != 0) { float x = m30, y = m31, z = m32; return dest.rotationZ(ang).setTranslation(x, y, z); } return rotateZInternal(ang, dest); } private Matrix4x3f rotateZInternal(float ang, Matrix4x3f dest) { float sin, cos; sin = Math.sin(ang); cos = Math.cosFromSin(sin, ang); float rm00 = cos; float rm01 = sin; float rm10 = -sin; float rm11 = cos; // add temporaries for dependent values float nm00 = m00 * rm00 + m10 * rm01; float nm01 = m01 * rm00 + m11 * rm01; float nm02 = m02 * rm00 + m12 * rm01; // set non-dependent values directly dest.m10 = m00 * rm10 + m10 * rm11; dest.m11 = m01 * rm10 + m11 * rm11; dest.m12 = m02 * rm10 + m12 * rm11; // set other values dest.m00 = nm00; dest.m01 = nm01; dest.m02 = nm02; dest.m20 = m20; dest.m21 = m21; dest.m22 = m22; dest.m30 = m30; dest.m31 = m31; dest.m32 = m32; dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION); return dest; } /** * Apply rotation about the Z axis to this matrix by rotating the given amount of radians. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and R the rotation matrix, * then the new matrix will be M * R. So when transforming a * vector v with the new matrix by using M * R * v, the * rotation will be applied first! *

* Reference: http://en.wikipedia.org * * @param ang * the angle in radians * @return this */ public Matrix4x3f rotateZ(float ang) { return rotateZ(ang, this); } /** * Apply rotation of angles.x radians about the X axis, followed by a rotation of angles.y radians about the Y axis and * followed by a rotation of angles.z radians about the Z axis. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and R the rotation matrix, * then the new matrix will be M * R. So when transforming a * vector v with the new matrix by using M * R * v, the * rotation will be applied first! *

* This method is equivalent to calling: rotateX(angles.x).rotateY(angles.y).rotateZ(angles.z) * * @param angles * the Euler angles * @return this */ public Matrix4x3f rotateXYZ(Vector3f angles) { return rotateXYZ(angles.x, angles.y, angles.z); } /** * Apply rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and * followed by a rotation of angleZ radians about the Z axis. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and R the rotation matrix, * then the new matrix will be M * R. So when transforming a * vector v with the new matrix by using M * R * v, the * rotation will be applied first! *

* This method is equivalent to calling: rotateX(angleX).rotateY(angleY).rotateZ(angleZ) * * @param angleX * the angle to rotate about X * @param angleY * the angle to rotate about Y * @param angleZ * the angle to rotate about Z * @return this */ public Matrix4x3f rotateXYZ(float angleX, float angleY, float angleZ) { return rotateXYZ(angleX, angleY, angleZ, this); } public Matrix4x3f rotateXYZ(float angleX, float angleY, float angleZ, Matrix4x3f dest) { if ((properties & PROPERTY_IDENTITY) != 0) return dest.rotationXYZ(angleX, angleY, angleZ); else if ((properties & PROPERTY_TRANSLATION) != 0) { float tx = m30, ty = m31, tz = m32; return dest.rotationXYZ(angleX, angleY, angleZ).setTranslation(tx, ty, tz); } return rotateXYZInternal(angleX, angleY, angleZ, dest); } private Matrix4x3f rotateXYZInternal(float angleX, float angleY, float angleZ, Matrix4x3f dest) { float sinX = Math.sin(angleX); float cosX = Math.cosFromSin(sinX, angleX); float sinY = Math.sin(angleY); float cosY = Math.cosFromSin(sinY, angleY); float sinZ = Math.sin(angleZ); float cosZ = Math.cosFromSin(sinZ, angleZ); float m_sinX = -sinX; float m_sinY = -sinY; float m_sinZ = -sinZ; // rotateX float nm10 = m10 * cosX + m20 * sinX; float nm11 = m11 * cosX + m21 * sinX; float nm12 = m12 * cosX + m22 * sinX; float nm20 = m10 * m_sinX + m20 * cosX; float nm21 = m11 * m_sinX + m21 * cosX; float nm22 = m12 * m_sinX + m22 * cosX; // rotateY float nm00 = m00 * cosY + nm20 * m_sinY; float nm01 = m01 * cosY + nm21 * m_sinY; float nm02 = m02 * cosY + nm22 * m_sinY; dest.m20 = m00 * sinY + nm20 * cosY; dest.m21 = m01 * sinY + nm21 * cosY; dest.m22 = m02 * sinY + nm22 * cosY; // rotateZ dest.m00 = nm00 * cosZ + nm10 * sinZ; dest.m01 = nm01 * cosZ + nm11 * sinZ; dest.m02 = nm02 * cosZ + nm12 * sinZ; dest.m10 = nm00 * m_sinZ + nm10 * cosZ; dest.m11 = nm01 * m_sinZ + nm11 * cosZ; dest.m12 = nm02 * m_sinZ + nm12 * cosZ; // copy last column from 'this' dest.m30 = m30; dest.m31 = m31; dest.m32 = m32; dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION); return dest; } /** * Apply rotation of angles.z radians about the Z axis, followed by a rotation of angles.y radians about the Y axis and * followed by a rotation of angles.x radians about the X axis. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and R the rotation matrix, * then the new matrix will be M * R. So when transforming a * vector v with the new matrix by using M * R * v, the * rotation will be applied first! *

* This method is equivalent to calling: rotateZ(angles.z).rotateY(angles.y).rotateX(angles.x) * * @param angles * the Euler angles * @return this */ public Matrix4x3f rotateZYX(Vector3f angles) { return rotateZYX(angles.z, angles.y, angles.x); } /** * Apply rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and * followed by a rotation of angleX radians about the X axis. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and R the rotation matrix, * then the new matrix will be M * R. So when transforming a * vector v with the new matrix by using M * R * v, the * rotation will be applied first! *

* This method is equivalent to calling: rotateZ(angleZ).rotateY(angleY).rotateX(angleX) * * @param angleZ * the angle to rotate about Z * @param angleY * the angle to rotate about Y * @param angleX * the angle to rotate about X * @return this */ public Matrix4x3f rotateZYX(float angleZ, float angleY, float angleX) { return rotateZYX(angleZ, angleY, angleX, this); } public Matrix4x3f rotateZYX(float angleZ, float angleY, float angleX, Matrix4x3f dest) { if ((properties & PROPERTY_IDENTITY) != 0) return dest.rotationZYX(angleZ, angleY, angleX); else if ((properties & PROPERTY_TRANSLATION) != 0) { float tx = m30, ty = m31, tz = m32; return dest.rotationZYX(angleZ, angleY, angleX).setTranslation(tx, ty, tz); } return rotateZYXInternal(angleZ, angleY, angleX, dest); } private Matrix4x3f rotateZYXInternal(float angleZ, float angleY, float angleX, Matrix4x3f dest) { float sinX = Math.sin(angleX); float cosX = Math.cosFromSin(sinX, angleX); float sinY = Math.sin(angleY); float cosY = Math.cosFromSin(sinY, angleY); float sinZ = Math.sin(angleZ); float cosZ = Math.cosFromSin(sinZ, angleZ); float m_sinZ = -sinZ; float m_sinY = -sinY; float m_sinX = -sinX; // rotateZ float nm00 = m00 * cosZ + m10 * sinZ; float nm01 = m01 * cosZ + m11 * sinZ; float nm02 = m02 * cosZ + m12 * sinZ; float nm10 = m00 * m_sinZ + m10 * cosZ; float nm11 = m01 * m_sinZ + m11 * cosZ; float nm12 = m02 * m_sinZ + m12 * cosZ; // rotateY float nm20 = nm00 * sinY + m20 * cosY; float nm21 = nm01 * sinY + m21 * cosY; float nm22 = nm02 * sinY + m22 * cosY; dest.m00 = nm00 * cosY + m20 * m_sinY; dest.m01 = nm01 * cosY + m21 * m_sinY; dest.m02 = nm02 * cosY + m22 * m_sinY; // rotateX dest.m10 = nm10 * cosX + nm20 * sinX; dest.m11 = nm11 * cosX + nm21 * sinX; dest.m12 = nm12 * cosX + nm22 * sinX; dest.m20 = nm10 * m_sinX + nm20 * cosX; dest.m21 = nm11 * m_sinX + nm21 * cosX; dest.m22 = nm12 * m_sinX + nm22 * cosX; // copy last column from 'this' dest.m30 = m30; dest.m31 = m31; dest.m32 = m32; dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION); return dest; } /** * Apply rotation of angles.y radians about the Y axis, followed by a rotation of angles.x radians about the X axis and * followed by a rotation of angles.z radians about the Z axis. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and R the rotation matrix, * then the new matrix will be M * R. So when transforming a * vector v with the new matrix by using M * R * v, the * rotation will be applied first! *

* This method is equivalent to calling: rotateY(angles.y).rotateX(angles.x).rotateZ(angles.z) * * @param angles * the Euler angles * @return this */ public Matrix4x3f rotateYXZ(Vector3f angles) { return rotateYXZ(angles.y, angles.x, angles.z); } /** * Apply rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and * followed by a rotation of angleZ radians about the Z axis. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and R the rotation matrix, * then the new matrix will be M * R. So when transforming a * vector v with the new matrix by using M * R * v, the * rotation will be applied first! *

* This method is equivalent to calling: rotateY(angleY).rotateX(angleX).rotateZ(angleZ) * * @param angleY * the angle to rotate about Y * @param angleX * the angle to rotate about X * @param angleZ * the angle to rotate about Z * @return this */ public Matrix4x3f rotateYXZ(float angleY, float angleX, float angleZ) { return rotateYXZ(angleY, angleX, angleZ, this); } public Matrix4x3f rotateYXZ(float angleY, float angleX, float angleZ, Matrix4x3f dest) { if ((properties & PROPERTY_IDENTITY) != 0) return dest.rotationYXZ(angleY, angleX, angleZ); else if ((properties & PROPERTY_TRANSLATION) != 0) { float tx = m30, ty = m31, tz = m32; return dest.rotationYXZ(angleY, angleX, angleZ).setTranslation(tx, ty, tz); } return rotateYXZInternal(angleY, angleX, angleZ, dest); } private Matrix4x3f rotateYXZInternal(float angleY, float angleX, float angleZ, Matrix4x3f dest) { float sinX = Math.sin(angleX); float cosX = Math.cosFromSin(sinX, angleX); float sinY = Math.sin(angleY); float cosY = Math.cosFromSin(sinY, angleY); float sinZ = Math.sin(angleZ); float cosZ = Math.cosFromSin(sinZ, angleZ); float m_sinY = -sinY; float m_sinX = -sinX; float m_sinZ = -sinZ; // rotateY float nm20 = m00 * sinY + m20 * cosY; float nm21 = m01 * sinY + m21 * cosY; float nm22 = m02 * sinY + m22 * cosY; float nm00 = m00 * cosY + m20 * m_sinY; float nm01 = m01 * cosY + m21 * m_sinY; float nm02 = m02 * cosY + m22 * m_sinY; // rotateX float nm10 = m10 * cosX + nm20 * sinX; float nm11 = m11 * cosX + nm21 * sinX; float nm12 = m12 * cosX + nm22 * sinX; dest.m20 = m10 * m_sinX + nm20 * cosX; dest.m21 = m11 * m_sinX + nm21 * cosX; dest.m22 = m12 * m_sinX + nm22 * cosX; // rotateZ dest.m00 = nm00 * cosZ + nm10 * sinZ; dest.m01 = nm01 * cosZ + nm11 * sinZ; dest.m02 = nm02 * cosZ + nm12 * sinZ; dest.m10 = nm00 * m_sinZ + nm10 * cosZ; dest.m11 = nm01 * m_sinZ + nm11 * cosZ; dest.m12 = nm02 * m_sinZ + nm12 * cosZ; // copy last column from 'this' dest.m30 = m30; dest.m31 = m31; dest.m32 = m32; dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION); return dest; } /** * Apply rotation to this matrix by rotating the given amount of radians * about the specified (x, y, z) axis and store the result in dest. *

* The axis described by the three components needs to be a unit vector. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and R the rotation matrix, * then the new matrix will be M * R. So when transforming a * vector v with the new matrix by using M * R * v, the * rotation will be applied first! *

* In order to set the matrix to a rotation matrix without post-multiplying the rotation * transformation, use {@link #rotation(float, float, float, float) rotation()}. *

* Reference: http://en.wikipedia.org * * @see #rotation(float, float, float, float) * * @param ang * the angle in radians * @param x * the x component of the axis * @param y * the y component of the axis * @param z * the z component of the axis * @param dest * will hold the result * @return dest */ public Matrix4x3f rotate(float ang, float x, float y, float z, Matrix4x3f dest) { if ((properties & PROPERTY_IDENTITY) != 0) return dest.rotation(ang, x, y, z); else if ((properties & PROPERTY_TRANSLATION) != 0) return rotateTranslation(ang, x, y, z, dest); return rotateGeneric(ang, x, y, z, dest); } private Matrix4x3f rotateGeneric(float ang, float x, float y, float z, Matrix4x3f dest) { if (y == 0.0f && z == 0.0f && Math.absEqualsOne(x)) return rotateX(x * ang, dest); else if (x == 0.0f && z == 0.0f && Math.absEqualsOne(y)) return rotateY(y * ang, dest); else if (x == 0.0f && y == 0.0f && Math.absEqualsOne(z)) return rotateZ(z * ang, dest); return rotateGenericInternal(ang, x, y, z, dest); } private Matrix4x3f rotateGenericInternal(float ang, float x, float y, float z, Matrix4x3f dest) { float s = Math.sin(ang); float c = Math.cosFromSin(s, ang); float C = 1.0f - c; float xx = x * x, xy = x * y, xz = x * z; float yy = y * y, yz = y * z; float zz = z * z; float rm00 = xx * C + c; float rm01 = xy * C + z * s; float rm02 = xz * C - y * s; float rm10 = xy * C - z * s; float rm11 = yy * C + c; float rm12 = yz * C + x * s; float rm20 = xz * C + y * s; float rm21 = yz * C - x * s; float rm22 = zz * C + c; float nm00 = m00 * rm00 + m10 * rm01 + m20 * rm02; float nm01 = m01 * rm00 + m11 * rm01 + m21 * rm02; float nm02 = m02 * rm00 + m12 * rm01 + m22 * rm02; float nm10 = m00 * rm10 + m10 * rm11 + m20 * rm12; float nm11 = m01 * rm10 + m11 * rm11 + m21 * rm12; float nm12 = m02 * rm10 + m12 * rm11 + m22 * rm12; dest.m20 = m00 * rm20 + m10 * rm21 + m20 * rm22; dest.m21 = m01 * rm20 + m11 * rm21 + m21 * rm22; dest.m22 = m02 * rm20 + m12 * rm21 + m22 * rm22; dest.m00 = nm00; dest.m01 = nm01; dest.m02 = nm02; dest.m10 = nm10; dest.m11 = nm11; dest.m12 = nm12; dest.m30 = m30; dest.m31 = m31; dest.m32 = m32; dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION); return dest; } /** * Apply rotation to this matrix by rotating the given amount of radians * about the specified (x, y, z) axis. *

* The axis described by the three components needs to be a unit vector. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and R the rotation matrix, * then the new matrix will be M * R. So when transforming a * vector v with the new matrix by using M * R * v, the * rotation will be applied first! *

* In order to set the matrix to a rotation matrix without post-multiplying the rotation * transformation, use {@link #rotation(float, float, float, float) rotation()}. *

* Reference: http://en.wikipedia.org * * @see #rotation(float, float, float, float) * * @param ang * the angle in radians * @param x * the x component of the axis * @param y * the y component of the axis * @param z * the z component of the axis * @return this */ public Matrix4x3f rotate(float ang, float x, float y, float z) { return rotate(ang, x, y, z, this); } /** * Apply rotation to this matrix, which is assumed to only contain a translation, by rotating the given amount of radians * about the specified (x, y, z) axis and store the result in dest. *

* This method assumes this to only contain a translation. *

* The axis described by the three components needs to be a unit vector. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and R the rotation matrix, * then the new matrix will be M * R. So when transforming a * vector v with the new matrix by using M * R * v, the * rotation will be applied first! *

* In order to set the matrix to a rotation matrix without post-multiplying the rotation * transformation, use {@link #rotation(float, float, float, float) rotation()}. *

* Reference: http://en.wikipedia.org * * @see #rotation(float, float, float, float) * * @param ang * the angle in radians * @param x * the x component of the axis * @param y * the y component of the axis * @param z * the z component of the axis * @param dest * will hold the result * @return dest */ public Matrix4x3f rotateTranslation(float ang, float x, float y, float z, Matrix4x3f dest) { float tx = m30, ty = m31, tz = m32; if (y == 0.0f && z == 0.0f && Math.absEqualsOne(x)) return dest.rotationX(x * ang).setTranslation(tx, ty, tz); else if (x == 0.0f && z == 0.0f && Math.absEqualsOne(y)) return dest.rotationY(y * ang).setTranslation(tx, ty, tz); else if (x == 0.0f && y == 0.0f && Math.absEqualsOne(z)) return dest.rotationZ(z * ang).setTranslation(tx, ty, tz); return rotateTranslationInternal(ang, x, y, z, dest); } private Matrix4x3f rotateTranslationInternal(float ang, float x, float y, float z, Matrix4x3f dest) { float s = Math.sin(ang); float c = Math.cosFromSin(s, ang); float C = 1.0f - c; float xx = x * x, xy = x * y, xz = x * z; float yy = y * y, yz = y * z; float zz = z * z; float rm00 = xx * C + c; float rm01 = xy * C + z * s; float rm02 = xz * C - y * s; float rm10 = xy * C - z * s; float rm11 = yy * C + c; float rm12 = yz * C + x * s; float rm20 = xz * C + y * s; float rm21 = yz * C - x * s; float rm22 = zz * C + c; float nm00 = rm00; float nm01 = rm01; float nm02 = rm02; float nm10 = rm10; float nm11 = rm11; float nm12 = rm12; // set non-dependent values directly dest.m20 = rm20; dest.m21 = rm21; dest.m22 = rm22; // set other values dest.m00 = nm00; dest.m01 = nm01; dest.m02 = nm02; dest.m10 = nm10; dest.m11 = nm11; dest.m12 = nm12; dest.m30 = m30; dest.m31 = m31; dest.m32 = m32; dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION); return dest; } /** * Apply the rotation transformation of the given {@link Quaternionfc} to this matrix while using (ox, oy, oz) as the rotation origin. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and Q the rotation matrix obtained from the given quaternion, * then the new matrix will be M * Q. So when transforming a * vector v with the new matrix by using M * Q * v, * the quaternion rotation will be applied first! *

* This method is equivalent to calling: translate(ox, oy, oz).rotate(quat).translate(-ox, -oy, -oz) *

* Reference: http://en.wikipedia.org * * @param quat * the {@link Quaternionfc} * @param ox * the x coordinate of the rotation origin * @param oy * the y coordinate of the rotation origin * @param oz * the z coordinate of the rotation origin * @return this */ public Matrix4x3f rotateAround(Quaternionfc quat, float ox, float oy, float oz) { return rotateAround(quat, ox, oy, oz, this); } private Matrix4x3f rotateAroundAffine(Quaternionfc quat, float ox, float oy, float oz, Matrix4x3f dest) { float w2 = quat.w() * quat.w(), x2 = quat.x() * quat.x(); float y2 = quat.y() * quat.y(), z2 = quat.z() * quat.z(); float zw = quat.z() * quat.w(), dzw = zw + zw, xy = quat.x() * quat.y(), dxy = xy + xy; float xz = quat.x() * quat.z(), dxz = xz + xz, yw = quat.y() * quat.w(), dyw = yw + yw; float yz = quat.y() * quat.z(), dyz = yz + yz, xw = quat.x() * quat.w(), dxw = xw + xw; float rm00 = w2 + x2 - z2 - y2; float rm01 = dxy + dzw; float rm02 = dxz - dyw; float rm10 = dxy - dzw; float rm11 = y2 - z2 + w2 - x2; float rm12 = dyz + dxw; float rm20 = dyw + dxz; float rm21 = dyz - dxw; float rm22 = z2 - y2 - x2 + w2; float tm30 = m00 * ox + m10 * oy + m20 * oz + m30; float tm31 = m01 * ox + m11 * oy + m21 * oz + m31; float tm32 = m02 * ox + m12 * oy + m22 * oz + m32; float nm00 = m00 * rm00 + m10 * rm01 + m20 * rm02; float nm01 = m01 * rm00 + m11 * rm01 + m21 * rm02; float nm02 = m02 * rm00 + m12 * rm01 + m22 * rm02; float nm10 = m00 * rm10 + m10 * rm11 + m20 * rm12; float nm11 = m01 * rm10 + m11 * rm11 + m21 * rm12; float nm12 = m02 * rm10 + m12 * rm11 + m22 * rm12; dest ._m20(m00 * rm20 + m10 * rm21 + m20 * rm22) ._m21(m01 * rm20 + m11 * rm21 + m21 * rm22) ._m22(m02 * rm20 + m12 * rm21 + m22 * rm22) ._m00(nm00) ._m01(nm01) ._m02(nm02) ._m10(nm10) ._m11(nm11) ._m12(nm12) ._m30(-nm00 * ox - nm10 * oy - m20 * oz + tm30) ._m31(-nm01 * ox - nm11 * oy - m21 * oz + tm31) ._m32(-nm02 * ox - nm12 * oy - m22 * oz + tm32) ._properties(properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION)); return dest; } public Matrix4x3f rotateAround(Quaternionfc quat, float ox, float oy, float oz, Matrix4x3f dest) { if ((properties & PROPERTY_IDENTITY) != 0) return rotationAround(quat, ox, oy, oz); return rotateAroundAffine(quat, ox, oy, oz, dest); } /** * Set this matrix to a transformation composed of a rotation of the specified {@link Quaternionfc} while using (ox, oy, oz) as the rotation origin. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* This method is equivalent to calling: translation(ox, oy, oz).rotate(quat).translate(-ox, -oy, -oz) *

* Reference: http://en.wikipedia.org * * @param quat * the {@link Quaternionfc} * @param ox * the x coordinate of the rotation origin * @param oy * the y coordinate of the rotation origin * @param oz * the z coordinate of the rotation origin * @return this */ public Matrix4x3f rotationAround(Quaternionfc quat, float ox, float oy, float oz) { float w2 = quat.w() * quat.w(), x2 = quat.x() * quat.x(); float y2 = quat.y() * quat.y(), z2 = quat.z() * quat.z(); float zw = quat.z() * quat.w(), dzw = zw + zw, xy = quat.x() * quat.y(), dxy = xy + xy; float xz = quat.x() * quat.z(), dxz = xz + xz, yw = quat.y() * quat.w(), dyw = yw + yw; float yz = quat.y() * quat.z(), dyz = yz + yz, xw = quat.x() * quat.w(), dxw = xw + xw; this._m20(dyw + dxz); this._m21(dyz - dxw); this._m22(z2 - y2 - x2 + w2); this._m00(w2 + x2 - z2 - y2); this._m01(dxy + dzw); this._m02(dxz - dyw); this._m10(dxy - dzw); this._m11(y2 - z2 + w2 - x2); this._m12(dyz + dxw); this._m30(-m00 * ox - m10 * oy - m20 * oz + ox); this._m31(-m01 * ox - m11 * oy - m21 * oz + oy); this._m32(-m02 * ox - m12 * oy - m22 * oz + oz); this.properties = PROPERTY_ORTHONORMAL; return this; } /** * Pre-multiply a rotation to this matrix by rotating the given amount of radians * about the specified (x, y, z) axis and store the result in dest. *

* The axis described by the three components needs to be a unit vector. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and R the rotation matrix, * then the new matrix will be R * M. So when transforming a * vector v with the new matrix by using R * M * v, the * rotation will be applied last! *

* In order to set the matrix to a rotation matrix without pre-multiplying the rotation * transformation, use {@link #rotation(float, float, float, float) rotation()}. *

* Reference: http://en.wikipedia.org * * @see #rotation(float, float, float, float) * * @param ang * the angle in radians * @param x * the x component of the axis * @param y * the y component of the axis * @param z * the z component of the axis * @param dest * will hold the result * @return dest */ public Matrix4x3f rotateLocal(float ang, float x, float y, float z, Matrix4x3f dest) { if (y == 0.0f && z == 0.0f && Math.absEqualsOne(x)) return rotateLocalX(x * ang, dest); else if (x == 0.0f && z == 0.0f && Math.absEqualsOne(y)) return rotateLocalY(y * ang, dest); else if (x == 0.0f && y == 0.0f && Math.absEqualsOne(z)) return rotateLocalZ(z * ang, dest); return rotateLocalInternal(ang, x, y, z, dest); } private Matrix4x3f rotateLocalInternal(float ang, float x, float y, float z, Matrix4x3f dest) { float s = Math.sin(ang); float c = Math.cosFromSin(s, ang); float C = 1.0f - c; float xx = x * x, xy = x * y, xz = x * z; float yy = y * y, yz = y * z; float zz = z * z; float lm00 = xx * C + c; float lm01 = xy * C + z * s; float lm02 = xz * C - y * s; float lm10 = xy * C - z * s; float lm11 = yy * C + c; float lm12 = yz * C + x * s; float lm20 = xz * C + y * s; float lm21 = yz * C - x * s; float lm22 = zz * C + c; float nm00 = lm00 * m00 + lm10 * m01 + lm20 * m02; float nm01 = lm01 * m00 + lm11 * m01 + lm21 * m02; float nm02 = lm02 * m00 + lm12 * m01 + lm22 * m02; float nm10 = lm00 * m10 + lm10 * m11 + lm20 * m12; float nm11 = lm01 * m10 + lm11 * m11 + lm21 * m12; float nm12 = lm02 * m10 + lm12 * m11 + lm22 * m12; float nm20 = lm00 * m20 + lm10 * m21 + lm20 * m22; float nm21 = lm01 * m20 + lm11 * m21 + lm21 * m22; float nm22 = lm02 * m20 + lm12 * m21 + lm22 * m22; float nm30 = lm00 * m30 + lm10 * m31 + lm20 * m32; float nm31 = lm01 * m30 + lm11 * m31 + lm21 * m32; float nm32 = lm02 * m30 + lm12 * m31 + lm22 * m32; dest.m00 = nm00; dest.m01 = nm01; dest.m02 = nm02; dest.m10 = nm10; dest.m11 = nm11; dest.m12 = nm12; dest.m20 = nm20; dest.m21 = nm21; dest.m22 = nm22; dest.m30 = nm30; dest.m31 = nm31; dest.m32 = nm32; dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION); return dest; } /** * Pre-multiply a rotation to this matrix by rotating the given amount of radians * about the specified (x, y, z) axis. *

* The axis described by the three components needs to be a unit vector. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and R the rotation matrix, * then the new matrix will be R * M. So when transforming a * vector v with the new matrix by using R * M * v, the * rotation will be applied last! *

* In order to set the matrix to a rotation matrix without pre-multiplying the rotation * transformation, use {@link #rotation(float, float, float, float) rotation()}. *

* Reference: http://en.wikipedia.org * * @see #rotation(float, float, float, float) * * @param ang * the angle in radians * @param x * the x component of the axis * @param y * the y component of the axis * @param z * the z component of the axis * @return this */ public Matrix4x3f rotateLocal(float ang, float x, float y, float z) { return rotateLocal(ang, x, y, z, this); } /** * Pre-multiply a rotation around the X axis to this matrix by rotating the given amount of radians * about the X axis and store the result in dest. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and R the rotation matrix, * then the new matrix will be R * M. So when transforming a * vector v with the new matrix by using R * M * v, the * rotation will be applied last! *

* In order to set the matrix to a rotation matrix without pre-multiplying the rotation * transformation, use {@link #rotationX(float) rotationX()}. *

* Reference: http://en.wikipedia.org * * @see #rotationX(float) * * @param ang * the angle in radians to rotate about the X axis * @param dest * will hold the result * @return dest */ public Matrix4x3f rotateLocalX(float ang, Matrix4x3f dest) { float sin = Math.sin(ang); float cos = Math.cosFromSin(sin, ang); float nm01 = cos * m01 - sin * m02; float nm02 = sin * m01 + cos * m02; float nm11 = cos * m11 - sin * m12; float nm12 = sin * m11 + cos * m12; float nm21 = cos * m21 - sin * m22; float nm22 = sin * m21 + cos * m22; float nm31 = cos * m31 - sin * m32; float nm32 = sin * m31 + cos * m32; dest ._m00(m00) ._m01(nm01) ._m02(nm02) ._m10(m10) ._m11(nm11) ._m12(nm12) ._m20(m20) ._m21(nm21) ._m22(nm22) ._m30(m30) ._m31(nm31) ._m32(nm32) ._properties(properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION)); return dest; } /** * Pre-multiply a rotation to this matrix by rotating the given amount of radians about the X axis. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and R the rotation matrix, * then the new matrix will be R * M. So when transforming a * vector v with the new matrix by using R * M * v, the * rotation will be applied last! *

* In order to set the matrix to a rotation matrix without pre-multiplying the rotation * transformation, use {@link #rotationX(float) rotationX()}. *

* Reference: http://en.wikipedia.org * * @see #rotationX(float) * * @param ang * the angle in radians to rotate about the X axis * @return this */ public Matrix4x3f rotateLocalX(float ang) { return rotateLocalX(ang, this); } /** * Pre-multiply a rotation around the Y axis to this matrix by rotating the given amount of radians * about the Y axis and store the result in dest. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and R the rotation matrix, * then the new matrix will be R * M. So when transforming a * vector v with the new matrix by using R * M * v, the * rotation will be applied last! *

* In order to set the matrix to a rotation matrix without pre-multiplying the rotation * transformation, use {@link #rotationY(float) rotationY()}. *

* Reference: http://en.wikipedia.org * * @see #rotationY(float) * * @param ang * the angle in radians to rotate about the Y axis * @param dest * will hold the result * @return dest */ public Matrix4x3f rotateLocalY(float ang, Matrix4x3f dest) { float sin = Math.sin(ang); float cos = Math.cosFromSin(sin, ang); float nm00 = cos * m00 + sin * m02; float nm02 = -sin * m00 + cos * m02; float nm10 = cos * m10 + sin * m12; float nm12 = -sin * m10 + cos * m12; float nm20 = cos * m20 + sin * m22; float nm22 = -sin * m20 + cos * m22; float nm30 = cos * m30 + sin * m32; float nm32 = -sin * m30 + cos * m32; dest ._m00(nm00) ._m01(m01) ._m02(nm02) ._m10(nm10) ._m11(m11) ._m12(nm12) ._m20(nm20) ._m21(m21) ._m22(nm22) ._m30(nm30) ._m31(m31) ._m32(nm32) ._properties(properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION)); return dest; } /** * Pre-multiply a rotation to this matrix by rotating the given amount of radians about the Y axis. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and R the rotation matrix, * then the new matrix will be R * M. So when transforming a * vector v with the new matrix by using R * M * v, the * rotation will be applied last! *

* In order to set the matrix to a rotation matrix without pre-multiplying the rotation * transformation, use {@link #rotationY(float) rotationY()}. *

* Reference: http://en.wikipedia.org * * @see #rotationY(float) * * @param ang * the angle in radians to rotate about the Y axis * @return this */ public Matrix4x3f rotateLocalY(float ang) { return rotateLocalY(ang, this); } /** * Pre-multiply a rotation around the Z axis to this matrix by rotating the given amount of radians * about the Z axis and store the result in dest. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and R the rotation matrix, * then the new matrix will be R * M. So when transforming a * vector v with the new matrix by using R * M * v, the * rotation will be applied last! *

* In order to set the matrix to a rotation matrix without pre-multiplying the rotation * transformation, use {@link #rotationZ(float) rotationZ()}. *

* Reference: http://en.wikipedia.org * * @see #rotationZ(float) * * @param ang * the angle in radians to rotate about the Z axis * @param dest * will hold the result * @return dest */ public Matrix4x3f rotateLocalZ(float ang, Matrix4x3f dest) { float sin = Math.sin(ang); float cos = Math.cosFromSin(sin, ang); float nm00 = cos * m00 - sin * m01; float nm01 = sin * m00 + cos * m01; float nm10 = cos * m10 - sin * m11; float nm11 = sin * m10 + cos * m11; float nm20 = cos * m20 - sin * m21; float nm21 = sin * m20 + cos * m21; float nm30 = cos * m30 - sin * m31; float nm31 = sin * m30 + cos * m31; dest ._m00(nm00) ._m01(nm01) ._m02(m02) ._m10(nm10) ._m11(nm11) ._m12(m12) ._m20(nm20) ._m21(nm21) ._m22(m22) ._m30(nm30) ._m31(nm31) ._m32(m32) ._properties(properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION)); return dest; } /** * Pre-multiply a rotation to this matrix by rotating the given amount of radians about the Z axis. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and R the rotation matrix, * then the new matrix will be R * M. So when transforming a * vector v with the new matrix by using R * M * v, the * rotation will be applied last! *

* In order to set the matrix to a rotation matrix without pre-multiplying the rotation * transformation, use {@link #rotationZ(float) rotationY()}. *

* Reference: http://en.wikipedia.org * * @see #rotationY(float) * * @param ang * the angle in radians to rotate about the Z axis * @return this */ public Matrix4x3f rotateLocalZ(float ang) { return rotateLocalZ(ang, this); } /** * Apply a translation to this matrix by translating by the given number of * units in x, y and z. *

* If M is this matrix and T the translation * matrix, then the new matrix will be M * T. So when * transforming a vector v with the new matrix by using * M * T * v, the translation will be applied first! *

* In order to set the matrix to a translation transformation without post-multiplying * it, use {@link #translation(Vector3fc)}. * * @see #translation(Vector3fc) * * @param offset * the number of units in x, y and z by which to translate * @return this */ public Matrix4x3f translate(Vector3fc offset) { return translate(offset.x(), offset.y(), offset.z()); } /** * Apply a translation to this matrix by translating by the given number of * units in x, y and z and store the result in dest. *

* If M is this matrix and T the translation * matrix, then the new matrix will be M * T. So when * transforming a vector v with the new matrix by using * M * T * v, the translation will be applied first! *

* In order to set the matrix to a translation transformation without post-multiplying * it, use {@link #translation(Vector3fc)}. * * @see #translation(Vector3fc) * * @param offset * the number of units in x, y and z by which to translate * @param dest * will hold the result * @return dest */ public Matrix4x3f translate(Vector3fc offset, Matrix4x3f dest) { return translate(offset.x(), offset.y(), offset.z(), dest); } /** * Apply a translation to this matrix by translating by the given number of * units in x, y and z and store the result in dest. *

* If M is this matrix and T the translation * matrix, then the new matrix will be M * T. So when * transforming a vector v with the new matrix by using * M * T * v, the translation will be applied first! *

* In order to set the matrix to a translation transformation without post-multiplying * it, use {@link #translation(float, float, float)}. * * @see #translation(float, float, float) * * @param x * the offset to translate in x * @param y * the offset to translate in y * @param z * the offset to translate in z * @param dest * will hold the result * @return dest */ public Matrix4x3f translate(float x, float y, float z, Matrix4x3f dest) { if ((properties & PROPERTY_IDENTITY) != 0) return dest.translation(x, y, z); return translateGeneric(x, y, z, dest); } private Matrix4x3f translateGeneric(float x, float y, float z, Matrix4x3f dest) { MemUtil.INSTANCE.copy(this, dest); dest.m30 = m00 * x + m10 * y + m20 * z + m30; dest.m31 = m01 * x + m11 * y + m21 * z + m31; dest.m32 = m02 * x + m12 * y + m22 * z + m32; dest.properties = properties & ~(PROPERTY_IDENTITY); return dest; } /** * Apply a translation to this matrix by translating by the given number of * units in x, y and z. *

* If M is this matrix and T the translation * matrix, then the new matrix will be M * T. So when * transforming a vector v with the new matrix by using * M * T * v, the translation will be applied first! *

* In order to set the matrix to a translation transformation without post-multiplying * it, use {@link #translation(float, float, float)}. * * @see #translation(float, float, float) * * @param x * the offset to translate in x * @param y * the offset to translate in y * @param z * the offset to translate in z * @return this */ public Matrix4x3f translate(float x, float y, float z) { if ((properties & PROPERTY_IDENTITY) != 0) return translation(x, y, z); Matrix4x3f c = this; c.m30 = c.m00 * x + c.m10 * y + c.m20 * z + c.m30; c.m31 = c.m01 * x + c.m11 * y + c.m21 * z + c.m31; c.m32 = c.m02 * x + c.m12 * y + c.m22 * z + c.m32; c.properties &= ~(PROPERTY_IDENTITY); return this; } /** * Pre-multiply a translation to this matrix by translating by the given number of * units in x, y and z. *

* If M is this matrix and T the translation * matrix, then the new matrix will be T * M. So when * transforming a vector v with the new matrix by using * T * M * v, the translation will be applied last! *

* In order to set the matrix to a translation transformation without pre-multiplying * it, use {@link #translation(Vector3fc)}. * * @see #translation(Vector3fc) * * @param offset * the number of units in x, y and z by which to translate * @return this */ public Matrix4x3f translateLocal(Vector3fc offset) { return translateLocal(offset.x(), offset.y(), offset.z()); } /** * Pre-multiply a translation to this matrix by translating by the given number of * units in x, y and z and store the result in dest. *

* If M is this matrix and T the translation * matrix, then the new matrix will be T * M. So when * transforming a vector v with the new matrix by using * T * M * v, the translation will be applied last! *

* In order to set the matrix to a translation transformation without pre-multiplying * it, use {@link #translation(Vector3fc)}. * * @see #translation(Vector3fc) * * @param offset * the number of units in x, y and z by which to translate * @param dest * will hold the result * @return dest */ public Matrix4x3f translateLocal(Vector3fc offset, Matrix4x3f dest) { return translateLocal(offset.x(), offset.y(), offset.z(), dest); } /** * Pre-multiply a translation to this matrix by translating by the given number of * units in x, y and z and store the result in dest. *

* If M is this matrix and T the translation * matrix, then the new matrix will be T * M. So when * transforming a vector v with the new matrix by using * T * M * v, the translation will be applied last! *

* In order to set the matrix to a translation transformation without pre-multiplying * it, use {@link #translation(float, float, float)}. * * @see #translation(float, float, float) * * @param x * the offset to translate in x * @param y * the offset to translate in y * @param z * the offset to translate in z * @param dest * will hold the result * @return dest */ public Matrix4x3f translateLocal(float x, float y, float z, Matrix4x3f dest) { dest.m00 = m00; dest.m01 = m01; dest.m02 = m02; dest.m10 = m10; dest.m11 = m11; dest.m12 = m12; dest.m20 = m20; dest.m21 = m21; dest.m22 = m22; dest.m30 = m30 + x; dest.m31 = m31 + y; dest.m32 = m32 + z; dest.properties = properties & ~(PROPERTY_IDENTITY); return dest; } /** * Pre-multiply a translation to this matrix by translating by the given number of * units in x, y and z. *

* If M is this matrix and T the translation * matrix, then the new matrix will be T * M. So when * transforming a vector v with the new matrix by using * T * M * v, the translation will be applied last! *

* In order to set the matrix to a translation transformation without pre-multiplying * it, use {@link #translation(float, float, float)}. * * @see #translation(float, float, float) * * @param x * the offset to translate in x * @param y * the offset to translate in y * @param z * the offset to translate in z * @return this */ public Matrix4x3f translateLocal(float x, float y, float z) { return translateLocal(x, y, z, this); } public void writeExternal(ObjectOutput out) throws IOException { out.writeFloat(m00); out.writeFloat(m01); out.writeFloat(m02); out.writeFloat(m10); out.writeFloat(m11); out.writeFloat(m12); out.writeFloat(m20); out.writeFloat(m21); out.writeFloat(m22); out.writeFloat(m30); out.writeFloat(m31); out.writeFloat(m32); } public void readExternal(ObjectInput in) throws IOException { m00 = in.readFloat(); m01 = in.readFloat(); m02 = in.readFloat(); m10 = in.readFloat(); m11 = in.readFloat(); m12 = in.readFloat(); m20 = in.readFloat(); m21 = in.readFloat(); m22 = in.readFloat(); m30 = in.readFloat(); m31 = in.readFloat(); m32 = in.readFloat(); determineProperties(); } /** * Apply an orthographic projection transformation for a right-handed coordinate system * using the given NDC z range to this matrix and store the result in dest. *

* If M is this matrix and O the orthographic projection matrix, * then the new matrix will be M * O. So when transforming a * vector v with the new matrix by using M * O * v, the * orthographic projection transformation will be applied first! *

* In order to set the matrix to an orthographic projection without post-multiplying it, * use {@link #setOrtho(float, float, float, float, float, float, boolean) setOrtho()}. *

* Reference: http://www.songho.ca * * @see #setOrtho(float, float, float, float, float, float, boolean) * * @param left * the distance from the center to the left frustum edge * @param right * the distance from the center to the right frustum edge * @param bottom * the distance from the center to the bottom frustum edge * @param top * the distance from the center to the top frustum edge * @param zNear * near clipping plane distance * @param zFar * far clipping plane distance * @param zZeroToOne * whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true * or whether to use OpenGL's NDC z range of [-1..+1] when false * @param dest * will hold the result * @return dest */ public Matrix4x3f ortho(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne, Matrix4x3f dest) { // calculate right matrix elements float rm00 = 2.0f / (right - left); float rm11 = 2.0f / (top - bottom); float rm22 = (zZeroToOne ? 1.0f : 2.0f) / (zNear - zFar); float rm30 = (left + right) / (left - right); float rm31 = (top + bottom) / (bottom - top); float rm32 = (zZeroToOne ? zNear : (zFar + zNear)) / (zNear - zFar); // perform optimized multiplication // compute the last column first, because other columns do not depend on it dest.m30 = m00 * rm30 + m10 * rm31 + m20 * rm32 + m30; dest.m31 = m01 * rm30 + m11 * rm31 + m21 * rm32 + m31; dest.m32 = m02 * rm30 + m12 * rm31 + m22 * rm32 + m32; dest.m00 = m00 * rm00; dest.m01 = m01 * rm00; dest.m02 = m02 * rm00; dest.m10 = m10 * rm11; dest.m11 = m11 * rm11; dest.m12 = m12 * rm11; dest.m20 = m20 * rm22; dest.m21 = m21 * rm22; dest.m22 = m22 * rm22; dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL); return dest; } /** * Apply an orthographic projection transformation for a right-handed coordinate system * using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest. *

* If M is this matrix and O the orthographic projection matrix, * then the new matrix will be M * O. So when transforming a * vector v with the new matrix by using M * O * v, the * orthographic projection transformation will be applied first! *

* In order to set the matrix to an orthographic projection without post-multiplying it, * use {@link #setOrtho(float, float, float, float, float, float) setOrtho()}. *

* Reference: http://www.songho.ca * * @see #setOrtho(float, float, float, float, float, float) * * @param left * the distance from the center to the left frustum edge * @param right * the distance from the center to the right frustum edge * @param bottom * the distance from the center to the bottom frustum edge * @param top * the distance from the center to the top frustum edge * @param zNear * near clipping plane distance * @param zFar * far clipping plane distance * @param dest * will hold the result * @return dest */ public Matrix4x3f ortho(float left, float right, float bottom, float top, float zNear, float zFar, Matrix4x3f dest) { return ortho(left, right, bottom, top, zNear, zFar, false, dest); } /** * Apply an orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix. *

* If M is this matrix and O the orthographic projection matrix, * then the new matrix will be M * O. So when transforming a * vector v with the new matrix by using M * O * v, the * orthographic projection transformation will be applied first! *

* In order to set the matrix to an orthographic projection without post-multiplying it, * use {@link #setOrtho(float, float, float, float, float, float, boolean) setOrtho()}. *

* Reference: http://www.songho.ca * * @see #setOrtho(float, float, float, float, float, float, boolean) * * @param left * the distance from the center to the left frustum edge * @param right * the distance from the center to the right frustum edge * @param bottom * the distance from the center to the bottom frustum edge * @param top * the distance from the center to the top frustum edge * @param zNear * near clipping plane distance * @param zFar * far clipping plane distance * @param zZeroToOne * whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true * or whether to use OpenGL's NDC z range of [-1..+1] when false * @return this */ public Matrix4x3f ortho(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne) { return ortho(left, right, bottom, top, zNear, zFar, zZeroToOne, this); } /** * Apply an orthographic projection transformation for a right-handed coordinate system * using OpenGL's NDC z range of [-1..+1] to this matrix. *

* If M is this matrix and O the orthographic projection matrix, * then the new matrix will be M * O. So when transforming a * vector v with the new matrix by using M * O * v, the * orthographic projection transformation will be applied first! *

* In order to set the matrix to an orthographic projection without post-multiplying it, * use {@link #setOrtho(float, float, float, float, float, float) setOrtho()}. *

* Reference: http://www.songho.ca * * @see #setOrtho(float, float, float, float, float, float) * * @param left * the distance from the center to the left frustum edge * @param right * the distance from the center to the right frustum edge * @param bottom * the distance from the center to the bottom frustum edge * @param top * the distance from the center to the top frustum edge * @param zNear * near clipping plane distance * @param zFar * far clipping plane distance * @return this */ public Matrix4x3f ortho(float left, float right, float bottom, float top, float zNear, float zFar) { return ortho(left, right, bottom, top, zNear, zFar, false); } /** * Apply an orthographic projection transformation for a left-handed coordiante system * using the given NDC z range to this matrix and store the result in dest. *

* If M is this matrix and O the orthographic projection matrix, * then the new matrix will be M * O. So when transforming a * vector v with the new matrix by using M * O * v, the * orthographic projection transformation will be applied first! *

* In order to set the matrix to an orthographic projection without post-multiplying it, * use {@link #setOrthoLH(float, float, float, float, float, float, boolean) setOrthoLH()}. *

* Reference: http://www.songho.ca * * @see #setOrthoLH(float, float, float, float, float, float, boolean) * * @param left * the distance from the center to the left frustum edge * @param right * the distance from the center to the right frustum edge * @param bottom * the distance from the center to the bottom frustum edge * @param top * the distance from the center to the top frustum edge * @param zNear * near clipping plane distance * @param zFar * far clipping plane distance * @param zZeroToOne * whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true * or whether to use OpenGL's NDC z range of [-1..+1] when false * @param dest * will hold the result * @return dest */ public Matrix4x3f orthoLH(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne, Matrix4x3f dest) { // calculate right matrix elements float rm00 = 2.0f / (right - left); float rm11 = 2.0f / (top - bottom); float rm22 = (zZeroToOne ? 1.0f : 2.0f) / (zFar - zNear); float rm30 = (left + right) / (left - right); float rm31 = (top + bottom) / (bottom - top); float rm32 = (zZeroToOne ? zNear : (zFar + zNear)) / (zNear - zFar); // perform optimized multiplication // compute the last column first, because other columns do not depend on it dest.m30 = m00 * rm30 + m10 * rm31 + m20 * rm32 + m30; dest.m31 = m01 * rm30 + m11 * rm31 + m21 * rm32 + m31; dest.m32 = m02 * rm30 + m12 * rm31 + m22 * rm32 + m32; dest.m00 = m00 * rm00; dest.m01 = m01 * rm00; dest.m02 = m02 * rm00; dest.m10 = m10 * rm11; dest.m11 = m11 * rm11; dest.m12 = m12 * rm11; dest.m20 = m20 * rm22; dest.m21 = m21 * rm22; dest.m22 = m22 * rm22; dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL); return dest; } /** * Apply an orthographic projection transformation for a left-handed coordiante system * using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest. *

* If M is this matrix and O the orthographic projection matrix, * then the new matrix will be M * O. So when transforming a * vector v with the new matrix by using M * O * v, the * orthographic projection transformation will be applied first! *

* In order to set the matrix to an orthographic projection without post-multiplying it, * use {@link #setOrthoLH(float, float, float, float, float, float) setOrthoLH()}. *

* Reference: http://www.songho.ca * * @see #setOrthoLH(float, float, float, float, float, float) * * @param left * the distance from the center to the left frustum edge * @param right * the distance from the center to the right frustum edge * @param bottom * the distance from the center to the bottom frustum edge * @param top * the distance from the center to the top frustum edge * @param zNear * near clipping plane distance * @param zFar * far clipping plane distance * @param dest * will hold the result * @return dest */ public Matrix4x3f orthoLH(float left, float right, float bottom, float top, float zNear, float zFar, Matrix4x3f dest) { return orthoLH(left, right, bottom, top, zNear, zFar, false, dest); } /** * Apply an orthographic projection transformation for a left-handed coordiante system * using the given NDC z range to this matrix. *

* If M is this matrix and O the orthographic projection matrix, * then the new matrix will be M * O. So when transforming a * vector v with the new matrix by using M * O * v, the * orthographic projection transformation will be applied first! *

* In order to set the matrix to an orthographic projection without post-multiplying it, * use {@link #setOrthoLH(float, float, float, float, float, float, boolean) setOrthoLH()}. *

* Reference: http://www.songho.ca * * @see #setOrthoLH(float, float, float, float, float, float, boolean) * * @param left * the distance from the center to the left frustum edge * @param right * the distance from the center to the right frustum edge * @param bottom * the distance from the center to the bottom frustum edge * @param top * the distance from the center to the top frustum edge * @param zNear * near clipping plane distance * @param zFar * far clipping plane distance * @param zZeroToOne * whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true * or whether to use OpenGL's NDC z range of [-1..+1] when false * @return this */ public Matrix4x3f orthoLH(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne) { return orthoLH(left, right, bottom, top, zNear, zFar, zZeroToOne, this); } /** * Apply an orthographic projection transformation for a left-handed coordiante system * using OpenGL's NDC z range of [-1..+1] to this matrix. *

* If M is this matrix and O the orthographic projection matrix, * then the new matrix will be M * O. So when transforming a * vector v with the new matrix by using M * O * v, the * orthographic projection transformation will be applied first! *

* In order to set the matrix to an orthographic projection without post-multiplying it, * use {@link #setOrthoLH(float, float, float, float, float, float) setOrthoLH()}. *

* Reference: http://www.songho.ca * * @see #setOrthoLH(float, float, float, float, float, float) * * @param left * the distance from the center to the left frustum edge * @param right * the distance from the center to the right frustum edge * @param bottom * the distance from the center to the bottom frustum edge * @param top * the distance from the center to the top frustum edge * @param zNear * near clipping plane distance * @param zFar * far clipping plane distance * @return this */ public Matrix4x3f orthoLH(float left, float right, float bottom, float top, float zNear, float zFar) { return orthoLH(left, right, bottom, top, zNear, zFar, false); } /** * Set this matrix to be an orthographic projection transformation for a right-handed coordinate system * using the given NDC z range. *

* In order to apply the orthographic projection to an already existing transformation, * use {@link #ortho(float, float, float, float, float, float, boolean) ortho()}. *

* Reference: http://www.songho.ca * * @see #ortho(float, float, float, float, float, float, boolean) * * @param left * the distance from the center to the left frustum edge * @param right * the distance from the center to the right frustum edge * @param bottom * the distance from the center to the bottom frustum edge * @param top * the distance from the center to the top frustum edge * @param zNear * near clipping plane distance * @param zFar * far clipping plane distance * @param zZeroToOne * whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true * or whether to use OpenGL's NDC z range of [-1..+1] when false * @return this */ public Matrix4x3f setOrtho(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne) { MemUtil.INSTANCE.identity(this); m00 = 2.0f / (right - left); m11 = 2.0f / (top - bottom); m22 = (zZeroToOne ? 1.0f : 2.0f) / (zNear - zFar); m30 = (right + left) / (left - right); m31 = (top + bottom) / (bottom - top); m32 = (zZeroToOne ? zNear : (zFar + zNear)) / (zNear - zFar); properties = 0; return this; } /** * Set this matrix to be an orthographic projection transformation for a right-handed coordinate system * using OpenGL's NDC z range of [-1..+1]. *

* In order to apply the orthographic projection to an already existing transformation, * use {@link #ortho(float, float, float, float, float, float) ortho()}. *

* Reference: http://www.songho.ca * * @see #ortho(float, float, float, float, float, float) * * @param left * the distance from the center to the left frustum edge * @param right * the distance from the center to the right frustum edge * @param bottom * the distance from the center to the bottom frustum edge * @param top * the distance from the center to the top frustum edge * @param zNear * near clipping plane distance * @param zFar * far clipping plane distance * @return this */ public Matrix4x3f setOrtho(float left, float right, float bottom, float top, float zNear, float zFar) { return setOrtho(left, right, bottom, top, zNear, zFar, false); } /** * Set this matrix to be an orthographic projection transformation for a left-handed coordinate system * using the given NDC z range. *

* In order to apply the orthographic projection to an already existing transformation, * use {@link #orthoLH(float, float, float, float, float, float, boolean) orthoLH()}. *

* Reference: http://www.songho.ca * * @see #orthoLH(float, float, float, float, float, float, boolean) * * @param left * the distance from the center to the left frustum edge * @param right * the distance from the center to the right frustum edge * @param bottom * the distance from the center to the bottom frustum edge * @param top * the distance from the center to the top frustum edge * @param zNear * near clipping plane distance * @param zFar * far clipping plane distance * @param zZeroToOne * whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true * or whether to use OpenGL's NDC z range of [-1..+1] when false * @return this */ public Matrix4x3f setOrthoLH(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne) { MemUtil.INSTANCE.identity(this); m00 = 2.0f / (right - left); m11 = 2.0f / (top - bottom); m22 = (zZeroToOne ? 1.0f : 2.0f) / (zFar - zNear); m30 = (right + left) / (left - right); m31 = (top + bottom) / (bottom - top); m32 = (zZeroToOne ? zNear : (zFar + zNear)) / (zNear - zFar); properties = 0; return this; } /** * Set this matrix to be an orthographic projection transformation for a left-handed coordinate system * using OpenGL's NDC z range of [-1..+1]. *

* In order to apply the orthographic projection to an already existing transformation, * use {@link #orthoLH(float, float, float, float, float, float) orthoLH()}. *

* Reference: http://www.songho.ca * * @see #orthoLH(float, float, float, float, float, float) * * @param left * the distance from the center to the left frustum edge * @param right * the distance from the center to the right frustum edge * @param bottom * the distance from the center to the bottom frustum edge * @param top * the distance from the center to the top frustum edge * @param zNear * near clipping plane distance * @param zFar * far clipping plane distance * @return this */ public Matrix4x3f setOrthoLH(float left, float right, float bottom, float top, float zNear, float zFar) { return setOrthoLH(left, right, bottom, top, zNear, zFar, false); } /** * Apply a symmetric orthographic projection transformation for a right-handed coordinate system * using the given NDC z range to this matrix and store the result in dest. *

* This method is equivalent to calling {@link #ortho(float, float, float, float, float, float, boolean, Matrix4x3f) ortho()} with * left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2. *

* If M is this matrix and O the orthographic projection matrix, * then the new matrix will be M * O. So when transforming a * vector v with the new matrix by using M * O * v, the * orthographic projection transformation will be applied first! *

* In order to set the matrix to a symmetric orthographic projection without post-multiplying it, * use {@link #setOrthoSymmetric(float, float, float, float, boolean) setOrthoSymmetric()}. *

* Reference: http://www.songho.ca * * @see #setOrthoSymmetric(float, float, float, float, boolean) * * @param width * the distance between the right and left frustum edges * @param height * the distance between the top and bottom frustum edges * @param zNear * near clipping plane distance * @param zFar * far clipping plane distance * @param dest * will hold the result * @param zZeroToOne * whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true * or whether to use OpenGL's NDC z range of [-1..+1] when false * @return dest */ public Matrix4x3f orthoSymmetric(float width, float height, float zNear, float zFar, boolean zZeroToOne, Matrix4x3f dest) { // calculate right matrix elements float rm00 = 2.0f / width; float rm11 = 2.0f / height; float rm22 = (zZeroToOne ? 1.0f : 2.0f) / (zNear - zFar); float rm32 = (zZeroToOne ? zNear : (zFar + zNear)) / (zNear - zFar); // perform optimized multiplication // compute the last column first, because other columns do not depend on it dest.m30 = m20 * rm32 + m30; dest.m31 = m21 * rm32 + m31; dest.m32 = m22 * rm32 + m32; dest.m00 = m00 * rm00; dest.m01 = m01 * rm00; dest.m02 = m02 * rm00; dest.m10 = m10 * rm11; dest.m11 = m11 * rm11; dest.m12 = m12 * rm11; dest.m20 = m20 * rm22; dest.m21 = m21 * rm22; dest.m22 = m22 * rm22; dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL); return dest; } /** * Apply a symmetric orthographic projection transformation for a right-handed coordinate system * using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest. *

* This method is equivalent to calling {@link #ortho(float, float, float, float, float, float, Matrix4x3f) ortho()} with * left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2. *

* If M is this matrix and O the orthographic projection matrix, * then the new matrix will be M * O. So when transforming a * vector v with the new matrix by using M * O * v, the * orthographic projection transformation will be applied first! *

* In order to set the matrix to a symmetric orthographic projection without post-multiplying it, * use {@link #setOrthoSymmetric(float, float, float, float) setOrthoSymmetric()}. *

* Reference: http://www.songho.ca * * @see #setOrthoSymmetric(float, float, float, float) * * @param width * the distance between the right and left frustum edges * @param height * the distance between the top and bottom frustum edges * @param zNear * near clipping plane distance * @param zFar * far clipping plane distance * @param dest * will hold the result * @return dest */ public Matrix4x3f orthoSymmetric(float width, float height, float zNear, float zFar, Matrix4x3f dest) { return orthoSymmetric(width, height, zNear, zFar, false, dest); } /** * Apply a symmetric orthographic projection transformation for a right-handed coordinate system * using the given NDC z range to this matrix. *

* This method is equivalent to calling {@link #ortho(float, float, float, float, float, float, boolean) ortho()} with * left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2. *

* If M is this matrix and O the orthographic projection matrix, * then the new matrix will be M * O. So when transforming a * vector v with the new matrix by using M * O * v, the * orthographic projection transformation will be applied first! *

* In order to set the matrix to a symmetric orthographic projection without post-multiplying it, * use {@link #setOrthoSymmetric(float, float, float, float, boolean) setOrthoSymmetric()}. *

* Reference: http://www.songho.ca * * @see #setOrthoSymmetric(float, float, float, float, boolean) * * @param width * the distance between the right and left frustum edges * @param height * the distance between the top and bottom frustum edges * @param zNear * near clipping plane distance * @param zFar * far clipping plane distance * @param zZeroToOne * whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true * or whether to use OpenGL's NDC z range of [-1..+1] when false * @return this */ public Matrix4x3f orthoSymmetric(float width, float height, float zNear, float zFar, boolean zZeroToOne) { return orthoSymmetric(width, height, zNear, zFar, zZeroToOne, this); } /** * Apply a symmetric orthographic projection transformation for a right-handed coordinate system * using OpenGL's NDC z range of [-1..+1] to this matrix. *

* This method is equivalent to calling {@link #ortho(float, float, float, float, float, float) ortho()} with * left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2. *

* If M is this matrix and O the orthographic projection matrix, * then the new matrix will be M * O. So when transforming a * vector v with the new matrix by using M * O * v, the * orthographic projection transformation will be applied first! *

* In order to set the matrix to a symmetric orthographic projection without post-multiplying it, * use {@link #setOrthoSymmetric(float, float, float, float) setOrthoSymmetric()}. *

* Reference: http://www.songho.ca * * @see #setOrthoSymmetric(float, float, float, float) * * @param width * the distance between the right and left frustum edges * @param height * the distance between the top and bottom frustum edges * @param zNear * near clipping plane distance * @param zFar * far clipping plane distance * @return this */ public Matrix4x3f orthoSymmetric(float width, float height, float zNear, float zFar) { return orthoSymmetric(width, height, zNear, zFar, false, this); } /** * Apply a symmetric orthographic projection transformation for a left-handed coordinate system * using the given NDC z range to this matrix and store the result in dest. *

* This method is equivalent to calling {@link #orthoLH(float, float, float, float, float, float, boolean, Matrix4x3f) orthoLH()} with * left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2. *

* If M is this matrix and O the orthographic projection matrix, * then the new matrix will be M * O. So when transforming a * vector v with the new matrix by using M * O * v, the * orthographic projection transformation will be applied first! *

* In order to set the matrix to a symmetric orthographic projection without post-multiplying it, * use {@link #setOrthoSymmetricLH(float, float, float, float, boolean) setOrthoSymmetricLH()}. *

* Reference: http://www.songho.ca * * @see #setOrthoSymmetricLH(float, float, float, float, boolean) * * @param width * the distance between the right and left frustum edges * @param height * the distance between the top and bottom frustum edges * @param zNear * near clipping plane distance * @param zFar * far clipping plane distance * @param dest * will hold the result * @param zZeroToOne * whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true * or whether to use OpenGL's NDC z range of [-1..+1] when false * @return dest */ public Matrix4x3f orthoSymmetricLH(float width, float height, float zNear, float zFar, boolean zZeroToOne, Matrix4x3f dest) { // calculate right matrix elements float rm00 = 2.0f / width; float rm11 = 2.0f / height; float rm22 = (zZeroToOne ? 1.0f : 2.0f) / (zFar - zNear); float rm32 = (zZeroToOne ? zNear : (zFar + zNear)) / (zNear - zFar); // perform optimized multiplication // compute the last column first, because other columns do not depend on it dest.m30 = m20 * rm32 + m30; dest.m31 = m21 * rm32 + m31; dest.m32 = m22 * rm32 + m32; dest.m00 = m00 * rm00; dest.m01 = m01 * rm00; dest.m02 = m02 * rm00; dest.m10 = m10 * rm11; dest.m11 = m11 * rm11; dest.m12 = m12 * rm11; dest.m20 = m20 * rm22; dest.m21 = m21 * rm22; dest.m22 = m22 * rm22; dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL); return dest; } /** * Apply a symmetric orthographic projection transformation for a left-handed coordinate system * using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest. *

* This method is equivalent to calling {@link #orthoLH(float, float, float, float, float, float, Matrix4x3f) orthoLH()} with * left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2. *

* If M is this matrix and O the orthographic projection matrix, * then the new matrix will be M * O. So when transforming a * vector v with the new matrix by using M * O * v, the * orthographic projection transformation will be applied first! *

* In order to set the matrix to a symmetric orthographic projection without post-multiplying it, * use {@link #setOrthoSymmetricLH(float, float, float, float) setOrthoSymmetricLH()}. *

* Reference: http://www.songho.ca * * @see #setOrthoSymmetricLH(float, float, float, float) * * @param width * the distance between the right and left frustum edges * @param height * the distance between the top and bottom frustum edges * @param zNear * near clipping plane distance * @param zFar * far clipping plane distance * @param dest * will hold the result * @return dest */ public Matrix4x3f orthoSymmetricLH(float width, float height, float zNear, float zFar, Matrix4x3f dest) { return orthoSymmetricLH(width, height, zNear, zFar, false, dest); } /** * Apply a symmetric orthographic projection transformation for a left-handed coordinate system * using the given NDC z range to this matrix. *

* This method is equivalent to calling {@link #orthoLH(float, float, float, float, float, float, boolean) orthoLH()} with * left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2. *

* If M is this matrix and O the orthographic projection matrix, * then the new matrix will be M * O. So when transforming a * vector v with the new matrix by using M * O * v, the * orthographic projection transformation will be applied first! *

* In order to set the matrix to a symmetric orthographic projection without post-multiplying it, * use {@link #setOrthoSymmetricLH(float, float, float, float, boolean) setOrthoSymmetricLH()}. *

* Reference: http://www.songho.ca * * @see #setOrthoSymmetricLH(float, float, float, float, boolean) * * @param width * the distance between the right and left frustum edges * @param height * the distance between the top and bottom frustum edges * @param zNear * near clipping plane distance * @param zFar * far clipping plane distance * @param zZeroToOne * whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true * or whether to use OpenGL's NDC z range of [-1..+1] when false * @return this */ public Matrix4x3f orthoSymmetricLH(float width, float height, float zNear, float zFar, boolean zZeroToOne) { return orthoSymmetricLH(width, height, zNear, zFar, zZeroToOne, this); } /** * Apply a symmetric orthographic projection transformation for a left-handed coordinate system * using OpenGL's NDC z range of [-1..+1] to this matrix. *

* This method is equivalent to calling {@link #orthoLH(float, float, float, float, float, float) orthoLH()} with * left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2. *

* If M is this matrix and O the orthographic projection matrix, * then the new matrix will be M * O. So when transforming a * vector v with the new matrix by using M * O * v, the * orthographic projection transformation will be applied first! *

* In order to set the matrix to a symmetric orthographic projection without post-multiplying it, * use {@link #setOrthoSymmetricLH(float, float, float, float) setOrthoSymmetricLH()}. *

* Reference: http://www.songho.ca * * @see #setOrthoSymmetricLH(float, float, float, float) * * @param width * the distance between the right and left frustum edges * @param height * the distance between the top and bottom frustum edges * @param zNear * near clipping plane distance * @param zFar * far clipping plane distance * @return this */ public Matrix4x3f orthoSymmetricLH(float width, float height, float zNear, float zFar) { return orthoSymmetricLH(width, height, zNear, zFar, false, this); } /** * Set this matrix to be a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range. *

* This method is equivalent to calling {@link #setOrtho(float, float, float, float, float, float, boolean) setOrtho()} with * left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2. *

* In order to apply the symmetric orthographic projection to an already existing transformation, * use {@link #orthoSymmetric(float, float, float, float, boolean) orthoSymmetric()}. *

* Reference: http://www.songho.ca * * @see #orthoSymmetric(float, float, float, float, boolean) * * @param width * the distance between the right and left frustum edges * @param height * the distance between the top and bottom frustum edges * @param zNear * near clipping plane distance * @param zFar * far clipping plane distance * @param zZeroToOne * whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true * or whether to use OpenGL's NDC z range of [-1..+1] when false * @return this */ public Matrix4x3f setOrthoSymmetric(float width, float height, float zNear, float zFar, boolean zZeroToOne) { MemUtil.INSTANCE.identity(this); m00 = 2.0f / width; m11 = 2.0f / height; m22 = (zZeroToOne ? 1.0f : 2.0f) / (zNear - zFar); m32 = (zZeroToOne ? zNear : (zFar + zNear)) / (zNear - zFar); properties = 0; return this; } /** * Set this matrix to be a symmetric orthographic projection transformation for a right-handed coordinate system * using OpenGL's NDC z range of [-1..+1]. *

* This method is equivalent to calling {@link #setOrtho(float, float, float, float, float, float) setOrtho()} with * left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2. *

* In order to apply the symmetric orthographic projection to an already existing transformation, * use {@link #orthoSymmetric(float, float, float, float) orthoSymmetric()}. *

* Reference: http://www.songho.ca * * @see #orthoSymmetric(float, float, float, float) * * @param width * the distance between the right and left frustum edges * @param height * the distance between the top and bottom frustum edges * @param zNear * near clipping plane distance * @param zFar * far clipping plane distance * @return this */ public Matrix4x3f setOrthoSymmetric(float width, float height, float zNear, float zFar) { return setOrthoSymmetric(width, height, zNear, zFar, false); } /** * Set this matrix to be a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range. *

* This method is equivalent to calling {@link #setOrtho(float, float, float, float, float, float, boolean) setOrtho()} with * left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2. *

* In order to apply the symmetric orthographic projection to an already existing transformation, * use {@link #orthoSymmetricLH(float, float, float, float, boolean) orthoSymmetricLH()}. *

* Reference: http://www.songho.ca * * @see #orthoSymmetricLH(float, float, float, float, boolean) * * @param width * the distance between the right and left frustum edges * @param height * the distance between the top and bottom frustum edges * @param zNear * near clipping plane distance * @param zFar * far clipping plane distance * @param zZeroToOne * whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true * or whether to use OpenGL's NDC z range of [-1..+1] when false * @return this */ public Matrix4x3f setOrthoSymmetricLH(float width, float height, float zNear, float zFar, boolean zZeroToOne) { MemUtil.INSTANCE.identity(this); m00 = 2.0f / width; m11 = 2.0f / height; m22 = (zZeroToOne ? 1.0f : 2.0f) / (zFar - zNear); m32 = (zZeroToOne ? zNear : (zFar + zNear)) / (zNear - zFar); properties = 0; return this; } /** * Set this matrix to be a symmetric orthographic projection transformation for a left-handed coordinate system * using OpenGL's NDC z range of [-1..+1]. *

* This method is equivalent to calling {@link #setOrthoLH(float, float, float, float, float, float) setOrthoLH()} with * left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2. *

* In order to apply the symmetric orthographic projection to an already existing transformation, * use {@link #orthoSymmetricLH(float, float, float, float) orthoSymmetricLH()}. *

* Reference: http://www.songho.ca * * @see #orthoSymmetricLH(float, float, float, float) * * @param width * the distance between the right and left frustum edges * @param height * the distance between the top and bottom frustum edges * @param zNear * near clipping plane distance * @param zFar * far clipping plane distance * @return this */ public Matrix4x3f setOrthoSymmetricLH(float width, float height, float zNear, float zFar) { return setOrthoSymmetricLH(width, height, zNear, zFar, false); } /** * Apply an orthographic projection transformation for a right-handed coordinate system to this matrix * and store the result in dest. *

* This method is equivalent to calling {@link #ortho(float, float, float, float, float, float, Matrix4x3f) ortho()} with * zNear=-1 and zFar=+1. *

* If M is this matrix and O the orthographic projection matrix, * then the new matrix will be M * O. So when transforming a * vector v with the new matrix by using M * O * v, the * orthographic projection transformation will be applied first! *

* In order to set the matrix to an orthographic projection without post-multiplying it, * use {@link #setOrtho2D(float, float, float, float) setOrtho()}. *

* Reference: http://www.songho.ca * * @see #ortho(float, float, float, float, float, float, Matrix4x3f) * @see #setOrtho2D(float, float, float, float) * * @param left * the distance from the center to the left frustum edge * @param right * the distance from the center to the right frustum edge * @param bottom * the distance from the center to the bottom frustum edge * @param top * the distance from the center to the top frustum edge * @param dest * will hold the result * @return dest */ public Matrix4x3f ortho2D(float left, float right, float bottom, float top, Matrix4x3f dest) { // calculate right matrix elements float rm00 = 2.0f / (right - left); float rm11 = 2.0f / (top - bottom); float rm30 = -(right + left) / (right - left); float rm31 = -(top + bottom) / (top - bottom); // perform optimized multiplication // compute the last column first, because other columns do not depend on it dest.m30 = m00 * rm30 + m10 * rm31 + m30; dest.m31 = m01 * rm30 + m11 * rm31 + m31; dest.m32 = m02 * rm30 + m12 * rm31 + m32; dest.m00 = m00 * rm00; dest.m01 = m01 * rm00; dest.m02 = m02 * rm00; dest.m10 = m10 * rm11; dest.m11 = m11 * rm11; dest.m12 = m12 * rm11; dest.m20 = -m20; dest.m21 = -m21; dest.m22 = -m22; dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL); return dest; } /** * Apply an orthographic projection transformation for a right-handed coordinate system to this matrix. *

* This method is equivalent to calling {@link #ortho(float, float, float, float, float, float) ortho()} with * zNear=-1 and zFar=+1. *

* If M is this matrix and O the orthographic projection matrix, * then the new matrix will be M * O. So when transforming a * vector v with the new matrix by using M * O * v, the * orthographic projection transformation will be applied first! *

* In order to set the matrix to an orthographic projection without post-multiplying it, * use {@link #setOrtho2D(float, float, float, float) setOrtho2D()}. *

* Reference: http://www.songho.ca * * @see #ortho(float, float, float, float, float, float) * @see #setOrtho2D(float, float, float, float) * * @param left * the distance from the center to the left frustum edge * @param right * the distance from the center to the right frustum edge * @param bottom * the distance from the center to the bottom frustum edge * @param top * the distance from the center to the top frustum edge * @return this */ public Matrix4x3f ortho2D(float left, float right, float bottom, float top) { return ortho2D(left, right, bottom, top, this); } /** * Apply an orthographic projection transformation for a left-handed coordinate system to this matrix and store the result in dest. *

* This method is equivalent to calling {@link #orthoLH(float, float, float, float, float, float, Matrix4x3f) orthoLH()} with * zNear=-1 and zFar=+1. *

* If M is this matrix and O the orthographic projection matrix, * then the new matrix will be M * O. So when transforming a * vector v with the new matrix by using M * O * v, the * orthographic projection transformation will be applied first! *

* In order to set the matrix to an orthographic projection without post-multiplying it, * use {@link #setOrtho2DLH(float, float, float, float) setOrthoLH()}. *

* Reference: http://www.songho.ca * * @see #orthoLH(float, float, float, float, float, float, Matrix4x3f) * @see #setOrtho2DLH(float, float, float, float) * * @param left * the distance from the center to the left frustum edge * @param right * the distance from the center to the right frustum edge * @param bottom * the distance from the center to the bottom frustum edge * @param top * the distance from the center to the top frustum edge * @param dest * will hold the result * @return dest */ public Matrix4x3f ortho2DLH(float left, float right, float bottom, float top, Matrix4x3f dest) { // calculate right matrix elements float rm00 = 2.0f / (right - left); float rm11 = 2.0f / (top - bottom); float rm30 = -(right + left) / (right - left); float rm31 = -(top + bottom) / (top - bottom); // perform optimized multiplication // compute the last column first, because other columns do not depend on it dest.m30 = m00 * rm30 + m10 * rm31 + m30; dest.m31 = m01 * rm30 + m11 * rm31 + m31; dest.m32 = m02 * rm30 + m12 * rm31 + m32; dest.m00 = m00 * rm00; dest.m01 = m01 * rm00; dest.m02 = m02 * rm00; dest.m10 = m10 * rm11; dest.m11 = m11 * rm11; dest.m12 = m12 * rm11; dest.m20 = m20; dest.m21 = m21; dest.m22 = m22; dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL); return dest; } /** * Apply an orthographic projection transformation for a left-handed coordinate system to this matrix. *

* This method is equivalent to calling {@link #orthoLH(float, float, float, float, float, float) orthoLH()} with * zNear=-1 and zFar=+1. *

* If M is this matrix and O the orthographic projection matrix, * then the new matrix will be M * O. So when transforming a * vector v with the new matrix by using M * O * v, the * orthographic projection transformation will be applied first! *

* In order to set the matrix to an orthographic projection without post-multiplying it, * use {@link #setOrtho2DLH(float, float, float, float) setOrtho2DLH()}. *

* Reference: http://www.songho.ca * * @see #orthoLH(float, float, float, float, float, float) * @see #setOrtho2DLH(float, float, float, float) * * @param left * the distance from the center to the left frustum edge * @param right * the distance from the center to the right frustum edge * @param bottom * the distance from the center to the bottom frustum edge * @param top * the distance from the center to the top frustum edge * @return this */ public Matrix4x3f ortho2DLH(float left, float right, float bottom, float top) { return ortho2DLH(left, right, bottom, top, this); } /** * Set this matrix to be an orthographic projection transformation for a right-handed coordinate system. *

* This method is equivalent to calling {@link #setOrtho(float, float, float, float, float, float) setOrtho()} with * zNear=-1 and zFar=+1. *

* In order to apply the orthographic projection to an already existing transformation, * use {@link #ortho2D(float, float, float, float) ortho2D()}. *

* Reference: http://www.songho.ca * * @see #setOrtho(float, float, float, float, float, float) * @see #ortho2D(float, float, float, float) * * @param left * the distance from the center to the left frustum edge * @param right * the distance from the center to the right frustum edge * @param bottom * the distance from the center to the bottom frustum edge * @param top * the distance from the center to the top frustum edge * @return this */ public Matrix4x3f setOrtho2D(float left, float right, float bottom, float top) { MemUtil.INSTANCE.identity(this); m00 = 2.0f / (right - left); m11 = 2.0f / (top - bottom); m22 = -1.0f; m30 = -(right + left) / (right - left); m31 = -(top + bottom) / (top - bottom); properties = 0; return this; } /** * Set this matrix to be an orthographic projection transformation for a left-handed coordinate system. *

* This method is equivalent to calling {@link #setOrtho(float, float, float, float, float, float) setOrthoLH()} with * zNear=-1 and zFar=+1. *

* In order to apply the orthographic projection to an already existing transformation, * use {@link #ortho2DLH(float, float, float, float) ortho2DLH()}. *

* Reference: http://www.songho.ca * * @see #setOrthoLH(float, float, float, float, float, float) * @see #ortho2DLH(float, float, float, float) * * @param left * the distance from the center to the left frustum edge * @param right * the distance from the center to the right frustum edge * @param bottom * the distance from the center to the bottom frustum edge * @param top * the distance from the center to the top frustum edge * @return this */ public Matrix4x3f setOrtho2DLH(float left, float right, float bottom, float top) { MemUtil.INSTANCE.identity(this); m00 = 2.0f / (right - left); m11 = 2.0f / (top - bottom); m22 = 1.0f; m30 = -(right + left) / (right - left); m31 = -(top + bottom) / (top - bottom); properties = 0; return this; } /** * Apply a rotation transformation to this matrix to make -z point along dir. *

* If M is this matrix and L the lookalong rotation matrix, * then the new matrix will be M * L. So when transforming a * vector v with the new matrix by using M * L * v, the * lookalong rotation transformation will be applied first! *

* This is equivalent to calling * {@link #lookAt(Vector3fc, Vector3fc, Vector3fc) lookAt} * with eye = (0, 0, 0) and center = dir. *

* In order to set the matrix to a lookalong transformation without post-multiplying it, * use {@link #setLookAlong(Vector3fc, Vector3fc) setLookAlong()}. * * @see #lookAlong(float, float, float, float, float, float) * @see #lookAt(Vector3fc, Vector3fc, Vector3fc) * @see #setLookAlong(Vector3fc, Vector3fc) * * @param dir * the direction in space to look along * @param up * the direction of 'up' * @return this */ public Matrix4x3f lookAlong(Vector3fc dir, Vector3fc up) { return lookAlong(dir.x(), dir.y(), dir.z(), up.x(), up.y(), up.z(), this); } /** * Apply a rotation transformation to this matrix to make -z point along dir * and store the result in dest. *

* If M is this matrix and L the lookalong rotation matrix, * then the new matrix will be M * L. So when transforming a * vector v with the new matrix by using M * L * v, the * lookalong rotation transformation will be applied first! *

* This is equivalent to calling * {@link #lookAt(Vector3fc, Vector3fc, Vector3fc) lookAt} * with eye = (0, 0, 0) and center = dir. *

* In order to set the matrix to a lookalong transformation without post-multiplying it, * use {@link #setLookAlong(Vector3fc, Vector3fc) setLookAlong()}. * * @see #lookAlong(float, float, float, float, float, float) * @see #lookAt(Vector3fc, Vector3fc, Vector3fc) * @see #setLookAlong(Vector3fc, Vector3fc) * * @param dir * the direction in space to look along * @param up * the direction of 'up' * @param dest * will hold the result * @return dest */ public Matrix4x3f lookAlong(Vector3fc dir, Vector3fc up, Matrix4x3f dest) { return lookAlong(dir.x(), dir.y(), dir.z(), up.x(), up.y(), up.z(), dest); } /** * Apply a rotation transformation to this matrix to make -z point along dir * and store the result in dest. *

* If M is this matrix and L the lookalong rotation matrix, * then the new matrix will be M * L. So when transforming a * vector v with the new matrix by using M * L * v, the * lookalong rotation transformation will be applied first! *

* This is equivalent to calling * {@link #lookAt(float, float, float, float, float, float, float, float, float) lookAt()} * with eye = (0, 0, 0) and center = dir. *

* In order to set the matrix to a lookalong transformation without post-multiplying it, * use {@link #setLookAlong(float, float, float, float, float, float) setLookAlong()} * * @see #lookAt(float, float, float, float, float, float, float, float, float) * @see #setLookAlong(float, float, float, float, float, float) * * @param dirX * the x-coordinate of the direction to look along * @param dirY * the y-coordinate of the direction to look along * @param dirZ * the z-coordinate of the direction to look along * @param upX * the x-coordinate of the up vector * @param upY * the y-coordinate of the up vector * @param upZ * the z-coordinate of the up vector * @param dest * will hold the result * @return dest */ public Matrix4x3f lookAlong(float dirX, float dirY, float dirZ, float upX, float upY, float upZ, Matrix4x3f dest) { if ((properties & PROPERTY_IDENTITY) != 0) return setLookAlong(dirX, dirY, dirZ, upX, upY, upZ); // Normalize direction float invDirLength = Math.invsqrt(dirX * dirX + dirY * dirY + dirZ * dirZ); dirX *= -invDirLength; dirY *= -invDirLength; dirZ *= -invDirLength; // left = up x direction float leftX, leftY, leftZ; leftX = upY * dirZ - upZ * dirY; leftY = upZ * dirX - upX * dirZ; leftZ = upX * dirY - upY * dirX; // normalize left float invLeftLength = Math.invsqrt(leftX * leftX + leftY * leftY + leftZ * leftZ); leftX *= invLeftLength; leftY *= invLeftLength; leftZ *= invLeftLength; // up = direction x left float upnX = dirY * leftZ - dirZ * leftY; float upnY = dirZ * leftX - dirX * leftZ; float upnZ = dirX * leftY - dirY * leftX; // calculate right matrix elements float rm00 = leftX; float rm01 = upnX; float rm02 = dirX; float rm10 = leftY; float rm11 = upnY; float rm12 = dirY; float rm20 = leftZ; float rm21 = upnZ; float rm22 = dirZ; // perform optimized matrix multiplication // introduce temporaries for dependent results float nm00 = m00 * rm00 + m10 * rm01 + m20 * rm02; float nm01 = m01 * rm00 + m11 * rm01 + m21 * rm02; float nm02 = m02 * rm00 + m12 * rm01 + m22 * rm02; float nm10 = m00 * rm10 + m10 * rm11 + m20 * rm12; float nm11 = m01 * rm10 + m11 * rm11 + m21 * rm12; float nm12 = m02 * rm10 + m12 * rm11 + m22 * rm12; dest.m20 = m00 * rm20 + m10 * rm21 + m20 * rm22; dest.m21 = m01 * rm20 + m11 * rm21 + m21 * rm22; dest.m22 = m02 * rm20 + m12 * rm21 + m22 * rm22; // set the rest of the matrix elements dest.m00 = nm00; dest.m01 = nm01; dest.m02 = nm02; dest.m10 = nm10; dest.m11 = nm11; dest.m12 = nm12; dest.m30 = m30; dest.m31 = m31; dest.m32 = m32; dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION); return dest; } /** * Apply a rotation transformation to this matrix to make -z point along dir. *

* If M is this matrix and L the lookalong rotation matrix, * then the new matrix will be M * L. So when transforming a * vector v with the new matrix by using M * L * v, the * lookalong rotation transformation will be applied first! *

* This is equivalent to calling * {@link #lookAt(float, float, float, float, float, float, float, float, float) lookAt()} * with eye = (0, 0, 0) and center = dir. *

* In order to set the matrix to a lookalong transformation without post-multiplying it, * use {@link #setLookAlong(float, float, float, float, float, float) setLookAlong()} * * @see #lookAt(float, float, float, float, float, float, float, float, float) * @see #setLookAlong(float, float, float, float, float, float) * * @param dirX * the x-coordinate of the direction to look along * @param dirY * the y-coordinate of the direction to look along * @param dirZ * the z-coordinate of the direction to look along * @param upX * the x-coordinate of the up vector * @param upY * the y-coordinate of the up vector * @param upZ * the z-coordinate of the up vector * @return this */ public Matrix4x3f lookAlong(float dirX, float dirY, float dirZ, float upX, float upY, float upZ) { return lookAlong(dirX, dirY, dirZ, upX, upY, upZ, this); } /** * Set this matrix to a rotation transformation to make -z * point along dir. *

* This is equivalent to calling * {@link #setLookAt(Vector3fc, Vector3fc, Vector3fc) setLookAt()} * with eye = (0, 0, 0) and center = dir. *

* In order to apply the lookalong transformation to any previous existing transformation, * use {@link #lookAlong(Vector3fc, Vector3fc)}. * * @see #setLookAlong(Vector3fc, Vector3fc) * @see #lookAlong(Vector3fc, Vector3fc) * * @param dir * the direction in space to look along * @param up * the direction of 'up' * @return this */ public Matrix4x3f setLookAlong(Vector3fc dir, Vector3fc up) { return setLookAlong(dir.x(), dir.y(), dir.z(), up.x(), up.y(), up.z()); } /** * Set this matrix to a rotation transformation to make -z * point along dir. *

* This is equivalent to calling * {@link #setLookAt(float, float, float, float, float, float, float, float, float) * setLookAt()} with eye = (0, 0, 0) and center = dir. *

* In order to apply the lookalong transformation to any previous existing transformation, * use {@link #lookAlong(float, float, float, float, float, float) lookAlong()} * * @see #setLookAlong(float, float, float, float, float, float) * @see #lookAlong(float, float, float, float, float, float) * * @param dirX * the x-coordinate of the direction to look along * @param dirY * the y-coordinate of the direction to look along * @param dirZ * the z-coordinate of the direction to look along * @param upX * the x-coordinate of the up vector * @param upY * the y-coordinate of the up vector * @param upZ * the z-coordinate of the up vector * @return this */ public Matrix4x3f setLookAlong(float dirX, float dirY, float dirZ, float upX, float upY, float upZ) { // Normalize direction float invDirLength = Math.invsqrt(dirX * dirX + dirY * dirY + dirZ * dirZ); dirX *= -invDirLength; dirY *= -invDirLength; dirZ *= -invDirLength; // left = up x direction float leftX, leftY, leftZ; leftX = upY * dirZ - upZ * dirY; leftY = upZ * dirX - upX * dirZ; leftZ = upX * dirY - upY * dirX; // normalize left float invLeftLength = Math.invsqrt(leftX * leftX + leftY * leftY + leftZ * leftZ); leftX *= invLeftLength; leftY *= invLeftLength; leftZ *= invLeftLength; // up = direction x left float upnX = dirY * leftZ - dirZ * leftY; float upnY = dirZ * leftX - dirX * leftZ; float upnZ = dirX * leftY - dirY * leftX; m00 = leftX; m01 = upnX; m02 = dirX; m10 = leftY; m11 = upnY; m12 = dirY; m20 = leftZ; m21 = upnZ; m22 = dirZ; m30 = 0.0f; m31 = 0.0f; m32 = 0.0f; properties = PROPERTY_ORTHONORMAL; return this; } /** * Set this matrix to be a "lookat" transformation for a right-handed coordinate system, that aligns * -z with center - eye. *

* In order to not make use of vectors to specify eye, center and up but use primitives, * like in the GLU function, use {@link #setLookAt(float, float, float, float, float, float, float, float, float) setLookAt()} * instead. *

* In order to apply the lookat transformation to a previous existing transformation, * use {@link #lookAt(Vector3fc, Vector3fc, Vector3fc) lookAt()}. * * @see #setLookAt(float, float, float, float, float, float, float, float, float) * @see #lookAt(Vector3fc, Vector3fc, Vector3fc) * * @param eye * the position of the camera * @param center * the point in space to look at * @param up * the direction of 'up' * @return this */ public Matrix4x3f setLookAt(Vector3fc eye, Vector3fc center, Vector3fc up) { return setLookAt(eye.x(), eye.y(), eye.z(), center.x(), center.y(), center.z(), up.x(), up.y(), up.z()); } /** * Set this matrix to be a "lookat" transformation for a right-handed coordinate system, * that aligns -z with center - eye. *

* In order to apply the lookat transformation to a previous existing transformation, * use {@link #lookAt(float, float, float, float, float, float, float, float, float) lookAt}. * * @see #setLookAt(Vector3fc, Vector3fc, Vector3fc) * @see #lookAt(float, float, float, float, float, float, float, float, float) * * @param eyeX * the x-coordinate of the eye/camera location * @param eyeY * the y-coordinate of the eye/camera location * @param eyeZ * the z-coordinate of the eye/camera location * @param centerX * the x-coordinate of the point to look at * @param centerY * the y-coordinate of the point to look at * @param centerZ * the z-coordinate of the point to look at * @param upX * the x-coordinate of the up vector * @param upY * the y-coordinate of the up vector * @param upZ * the z-coordinate of the up vector * @return this */ public Matrix4x3f setLookAt(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ) { // Compute direction from position to lookAt float dirX, dirY, dirZ; dirX = eyeX - centerX; dirY = eyeY - centerY; dirZ = eyeZ - centerZ; // Normalize direction float invDirLength = Math.invsqrt(dirX * dirX + dirY * dirY + dirZ * dirZ); dirX *= invDirLength; dirY *= invDirLength; dirZ *= invDirLength; // left = up x direction float leftX, leftY, leftZ; leftX = upY * dirZ - upZ * dirY; leftY = upZ * dirX - upX * dirZ; leftZ = upX * dirY - upY * dirX; // normalize left float invLeftLength = Math.invsqrt(leftX * leftX + leftY * leftY + leftZ * leftZ); leftX *= invLeftLength; leftY *= invLeftLength; leftZ *= invLeftLength; // up = direction x left float upnX = dirY * leftZ - dirZ * leftY; float upnY = dirZ * leftX - dirX * leftZ; float upnZ = dirX * leftY - dirY * leftX; m00 = leftX; m01 = upnX; m02 = dirX; m10 = leftY; m11 = upnY; m12 = dirY; m20 = leftZ; m21 = upnZ; m22 = dirZ; m30 = -(leftX * eyeX + leftY * eyeY + leftZ * eyeZ); m31 = -(upnX * eyeX + upnY * eyeY + upnZ * eyeZ); m32 = -(dirX * eyeX + dirY * eyeY + dirZ * eyeZ); properties = PROPERTY_ORTHONORMAL; return this; } /** * Apply a "lookat" transformation to this matrix for a right-handed coordinate system, * that aligns -z with center - eye and store the result in dest. *

* If M is this matrix and L the lookat matrix, * then the new matrix will be M * L. So when transforming a * vector v with the new matrix by using M * L * v, * the lookat transformation will be applied first! *

* In order to set the matrix to a lookat transformation without post-multiplying it, * use {@link #setLookAt(Vector3fc, Vector3fc, Vector3fc)}. * * @see #lookAt(float, float, float, float, float, float, float, float, float) * @see #setLookAlong(Vector3fc, Vector3fc) * * @param eye * the position of the camera * @param center * the point in space to look at * @param up * the direction of 'up' * @param dest * will hold the result * @return dest */ public Matrix4x3f lookAt(Vector3fc eye, Vector3fc center, Vector3fc up, Matrix4x3f dest) { return lookAt(eye.x(), eye.y(), eye.z(), center.x(), center.y(), center.z(), up.x(), up.y(), up.z(), dest); } /** * Apply a "lookat" transformation to this matrix for a right-handed coordinate system, * that aligns -z with center - eye. *

* If M is this matrix and L the lookat matrix, * then the new matrix will be M * L. So when transforming a * vector v with the new matrix by using M * L * v, * the lookat transformation will be applied first! *

* In order to set the matrix to a lookat transformation without post-multiplying it, * use {@link #setLookAt(Vector3fc, Vector3fc, Vector3fc)}. * * @see #lookAt(float, float, float, float, float, float, float, float, float) * @see #setLookAlong(Vector3fc, Vector3fc) * * @param eye * the position of the camera * @param center * the point in space to look at * @param up * the direction of 'up' * @return this */ public Matrix4x3f lookAt(Vector3fc eye, Vector3fc center, Vector3fc up) { return lookAt(eye.x(), eye.y(), eye.z(), center.x(), center.y(), center.z(), up.x(), up.y(), up.z(), this); } /** * Apply a "lookat" transformation to this matrix for a right-handed coordinate system, * that aligns -z with center - eye and store the result in dest. *

* If M is this matrix and L the lookat matrix, * then the new matrix will be M * L. So when transforming a * vector v with the new matrix by using M * L * v, * the lookat transformation will be applied first! *

* In order to set the matrix to a lookat transformation without post-multiplying it, * use {@link #setLookAt(float, float, float, float, float, float, float, float, float) setLookAt()}. * * @see #lookAt(Vector3fc, Vector3fc, Vector3fc) * @see #setLookAt(float, float, float, float, float, float, float, float, float) * * @param eyeX * the x-coordinate of the eye/camera location * @param eyeY * the y-coordinate of the eye/camera location * @param eyeZ * the z-coordinate of the eye/camera location * @param centerX * the x-coordinate of the point to look at * @param centerY * the y-coordinate of the point to look at * @param centerZ * the z-coordinate of the point to look at * @param upX * the x-coordinate of the up vector * @param upY * the y-coordinate of the up vector * @param upZ * the z-coordinate of the up vector * @param dest * will hold the result * @return dest */ public Matrix4x3f lookAt(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ, Matrix4x3f dest) { if ((properties & PROPERTY_IDENTITY) != 0) return dest.setLookAt(eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ); return lookAtGeneric(eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ, dest); } private Matrix4x3f lookAtGeneric(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ, Matrix4x3f dest) { // Compute direction from position to lookAt float dirX, dirY, dirZ; dirX = eyeX - centerX; dirY = eyeY - centerY; dirZ = eyeZ - centerZ; // Normalize direction float invDirLength = Math.invsqrt(dirX * dirX + dirY * dirY + dirZ * dirZ); dirX *= invDirLength; dirY *= invDirLength; dirZ *= invDirLength; // left = up x direction float leftX, leftY, leftZ; leftX = upY * dirZ - upZ * dirY; leftY = upZ * dirX - upX * dirZ; leftZ = upX * dirY - upY * dirX; // normalize left float invLeftLength = Math.invsqrt(leftX * leftX + leftY * leftY + leftZ * leftZ); leftX *= invLeftLength; leftY *= invLeftLength; leftZ *= invLeftLength; // up = direction x left float upnX = dirY * leftZ - dirZ * leftY; float upnY = dirZ * leftX - dirX * leftZ; float upnZ = dirX * leftY - dirY * leftX; // calculate right matrix elements float rm00 = leftX; float rm01 = upnX; float rm02 = dirX; float rm10 = leftY; float rm11 = upnY; float rm12 = dirY; float rm20 = leftZ; float rm21 = upnZ; float rm22 = dirZ; float rm30 = -(leftX * eyeX + leftY * eyeY + leftZ * eyeZ); float rm31 = -(upnX * eyeX + upnY * eyeY + upnZ * eyeZ); float rm32 = -(dirX * eyeX + dirY * eyeY + dirZ * eyeZ); // perform optimized matrix multiplication // compute last column first, because others do not depend on it dest.m30 = m00 * rm30 + m10 * rm31 + m20 * rm32 + m30; dest.m31 = m01 * rm30 + m11 * rm31 + m21 * rm32 + m31; dest.m32 = m02 * rm30 + m12 * rm31 + m22 * rm32 + m32; // introduce temporaries for dependent results float nm00 = m00 * rm00 + m10 * rm01 + m20 * rm02; float nm01 = m01 * rm00 + m11 * rm01 + m21 * rm02; float nm02 = m02 * rm00 + m12 * rm01 + m22 * rm02; float nm10 = m00 * rm10 + m10 * rm11 + m20 * rm12; float nm11 = m01 * rm10 + m11 * rm11 + m21 * rm12; float nm12 = m02 * rm10 + m12 * rm11 + m22 * rm12; dest.m20 = m00 * rm20 + m10 * rm21 + m20 * rm22; dest.m21 = m01 * rm20 + m11 * rm21 + m21 * rm22; dest.m22 = m02 * rm20 + m12 * rm21 + m22 * rm22; // set the rest of the matrix elements dest.m00 = nm00; dest.m01 = nm01; dest.m02 = nm02; dest.m10 = nm10; dest.m11 = nm11; dest.m12 = nm12; dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION); return dest; } /** * Apply a "lookat" transformation to this matrix for a right-handed coordinate system, * that aligns -z with center - eye. *

* If M is this matrix and L the lookat matrix, * then the new matrix will be M * L. So when transforming a * vector v with the new matrix by using M * L * v, * the lookat transformation will be applied first! *

* In order to set the matrix to a lookat transformation without post-multiplying it, * use {@link #setLookAt(float, float, float, float, float, float, float, float, float) setLookAt()}. * * @see #lookAt(Vector3fc, Vector3fc, Vector3fc) * @see #setLookAt(float, float, float, float, float, float, float, float, float) * * @param eyeX * the x-coordinate of the eye/camera location * @param eyeY * the y-coordinate of the eye/camera location * @param eyeZ * the z-coordinate of the eye/camera location * @param centerX * the x-coordinate of the point to look at * @param centerY * the y-coordinate of the point to look at * @param centerZ * the z-coordinate of the point to look at * @param upX * the x-coordinate of the up vector * @param upY * the y-coordinate of the up vector * @param upZ * the z-coordinate of the up vector * @return this */ public Matrix4x3f lookAt(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ) { return lookAt(eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ, this); } /** * Set this matrix to be a "lookat" transformation for a left-handed coordinate system, that aligns * +z with center - eye. *

* In order to not make use of vectors to specify eye, center and up but use primitives, * like in the GLU function, use {@link #setLookAtLH(float, float, float, float, float, float, float, float, float) setLookAtLH()} * instead. *

* In order to apply the lookat transformation to a previous existing transformation, * use {@link #lookAtLH(Vector3fc, Vector3fc, Vector3fc) lookAt()}. * * @see #setLookAtLH(float, float, float, float, float, float, float, float, float) * @see #lookAtLH(Vector3fc, Vector3fc, Vector3fc) * * @param eye * the position of the camera * @param center * the point in space to look at * @param up * the direction of 'up' * @return this */ public Matrix4x3f setLookAtLH(Vector3fc eye, Vector3fc center, Vector3fc up) { return setLookAtLH(eye.x(), eye.y(), eye.z(), center.x(), center.y(), center.z(), up.x(), up.y(), up.z()); } /** * Set this matrix to be a "lookat" transformation for a left-handed coordinate system, * that aligns +z with center - eye. *

* In order to apply the lookat transformation to a previous existing transformation, * use {@link #lookAtLH(float, float, float, float, float, float, float, float, float) lookAtLH}. * * @see #setLookAtLH(Vector3fc, Vector3fc, Vector3fc) * @see #lookAtLH(float, float, float, float, float, float, float, float, float) * * @param eyeX * the x-coordinate of the eye/camera location * @param eyeY * the y-coordinate of the eye/camera location * @param eyeZ * the z-coordinate of the eye/camera location * @param centerX * the x-coordinate of the point to look at * @param centerY * the y-coordinate of the point to look at * @param centerZ * the z-coordinate of the point to look at * @param upX * the x-coordinate of the up vector * @param upY * the y-coordinate of the up vector * @param upZ * the z-coordinate of the up vector * @return this */ public Matrix4x3f setLookAtLH(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ) { // Compute direction from position to lookAt float dirX, dirY, dirZ; dirX = centerX - eyeX; dirY = centerY - eyeY; dirZ = centerZ - eyeZ; // Normalize direction float invDirLength = Math.invsqrt(dirX * dirX + dirY * dirY + dirZ * dirZ); dirX *= invDirLength; dirY *= invDirLength; dirZ *= invDirLength; // left = up x direction float leftX, leftY, leftZ; leftX = upY * dirZ - upZ * dirY; leftY = upZ * dirX - upX * dirZ; leftZ = upX * dirY - upY * dirX; // normalize left float invLeftLength = Math.invsqrt(leftX * leftX + leftY * leftY + leftZ * leftZ); leftX *= invLeftLength; leftY *= invLeftLength; leftZ *= invLeftLength; // up = direction x left float upnX = dirY * leftZ - dirZ * leftY; float upnY = dirZ * leftX - dirX * leftZ; float upnZ = dirX * leftY - dirY * leftX; m00 = leftX; m01 = upnX; m02 = dirX; m10 = leftY; m11 = upnY; m12 = dirY; m20 = leftZ; m21 = upnZ; m22 = dirZ; m30 = -(leftX * eyeX + leftY * eyeY + leftZ * eyeZ); m31 = -(upnX * eyeX + upnY * eyeY + upnZ * eyeZ); m32 = -(dirX * eyeX + dirY * eyeY + dirZ * eyeZ); properties = PROPERTY_ORTHONORMAL; return this; } /** * Apply a "lookat" transformation to this matrix for a left-handed coordinate system, * that aligns +z with center - eye and store the result in dest. *

* If M is this matrix and L the lookat matrix, * then the new matrix will be M * L. So when transforming a * vector v with the new matrix by using M * L * v, * the lookat transformation will be applied first! *

* In order to set the matrix to a lookat transformation without post-multiplying it, * use {@link #setLookAtLH(Vector3fc, Vector3fc, Vector3fc)}. * * @see #lookAtLH(float, float, float, float, float, float, float, float, float) * * @param eye * the position of the camera * @param center * the point in space to look at * @param up * the direction of 'up' * @param dest * will hold the result * @return dest */ public Matrix4x3f lookAtLH(Vector3fc eye, Vector3fc center, Vector3fc up, Matrix4x3f dest) { return lookAtLH(eye.x(), eye.y(), eye.z(), center.x(), center.y(), center.z(), up.x(), up.y(), up.z(), dest); } /** * Apply a "lookat" transformation to this matrix for a left-handed coordinate system, * that aligns +z with center - eye. *

* If M is this matrix and L the lookat matrix, * then the new matrix will be M * L. So when transforming a * vector v with the new matrix by using M * L * v, * the lookat transformation will be applied first! *

* In order to set the matrix to a lookat transformation without post-multiplying it, * use {@link #setLookAtLH(Vector3fc, Vector3fc, Vector3fc)}. * * @see #lookAtLH(float, float, float, float, float, float, float, float, float) * * @param eye * the position of the camera * @param center * the point in space to look at * @param up * the direction of 'up' * @return this */ public Matrix4x3f lookAtLH(Vector3fc eye, Vector3fc center, Vector3fc up) { return lookAtLH(eye.x(), eye.y(), eye.z(), center.x(), center.y(), center.z(), up.x(), up.y(), up.z(), this); } /** * Apply a "lookat" transformation to this matrix for a left-handed coordinate system, * that aligns +z with center - eye and store the result in dest. *

* If M is this matrix and L the lookat matrix, * then the new matrix will be M * L. So when transforming a * vector v with the new matrix by using M * L * v, * the lookat transformation will be applied first! *

* In order to set the matrix to a lookat transformation without post-multiplying it, * use {@link #setLookAtLH(float, float, float, float, float, float, float, float, float) setLookAtLH()}. * * @see #lookAtLH(Vector3fc, Vector3fc, Vector3fc) * @see #setLookAtLH(float, float, float, float, float, float, float, float, float) * * @param eyeX * the x-coordinate of the eye/camera location * @param eyeY * the y-coordinate of the eye/camera location * @param eyeZ * the z-coordinate of the eye/camera location * @param centerX * the x-coordinate of the point to look at * @param centerY * the y-coordinate of the point to look at * @param centerZ * the z-coordinate of the point to look at * @param upX * the x-coordinate of the up vector * @param upY * the y-coordinate of the up vector * @param upZ * the z-coordinate of the up vector * @param dest * will hold the result * @return dest */ public Matrix4x3f lookAtLH(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ, Matrix4x3f dest) { if ((properties & PROPERTY_IDENTITY) != 0) return dest.setLookAtLH(eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ); return lookAtLHGeneric(eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ, dest); } private Matrix4x3f lookAtLHGeneric(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ, Matrix4x3f dest) { // Compute direction from position to lookAt float dirX, dirY, dirZ; dirX = centerX - eyeX; dirY = centerY - eyeY; dirZ = centerZ - eyeZ; // Normalize direction float invDirLength = Math.invsqrt(dirX * dirX + dirY * dirY + dirZ * dirZ); dirX *= invDirLength; dirY *= invDirLength; dirZ *= invDirLength; // left = up x direction float leftX, leftY, leftZ; leftX = upY * dirZ - upZ * dirY; leftY = upZ * dirX - upX * dirZ; leftZ = upX * dirY - upY * dirX; // normalize left float invLeftLength = Math.invsqrt(leftX * leftX + leftY * leftY + leftZ * leftZ); leftX *= invLeftLength; leftY *= invLeftLength; leftZ *= invLeftLength; // up = direction x left float upnX = dirY * leftZ - dirZ * leftY; float upnY = dirZ * leftX - dirX * leftZ; float upnZ = dirX * leftY - dirY * leftX; // calculate right matrix elements float rm00 = leftX; float rm01 = upnX; float rm02 = dirX; float rm10 = leftY; float rm11 = upnY; float rm12 = dirY; float rm20 = leftZ; float rm21 = upnZ; float rm22 = dirZ; float rm30 = -(leftX * eyeX + leftY * eyeY + leftZ * eyeZ); float rm31 = -(upnX * eyeX + upnY * eyeY + upnZ * eyeZ); float rm32 = -(dirX * eyeX + dirY * eyeY + dirZ * eyeZ); // perform optimized matrix multiplication // compute last column first, because others do not depend on it dest.m30 = m00 * rm30 + m10 * rm31 + m20 * rm32 + m30; dest.m31 = m01 * rm30 + m11 * rm31 + m21 * rm32 + m31; dest.m32 = m02 * rm30 + m12 * rm31 + m22 * rm32 + m32; // introduce temporaries for dependent results float nm00 = m00 * rm00 + m10 * rm01 + m20 * rm02; float nm01 = m01 * rm00 + m11 * rm01 + m21 * rm02; float nm02 = m02 * rm00 + m12 * rm01 + m22 * rm02; float nm10 = m00 * rm10 + m10 * rm11 + m20 * rm12; float nm11 = m01 * rm10 + m11 * rm11 + m21 * rm12; float nm12 = m02 * rm10 + m12 * rm11 + m22 * rm12; dest.m20 = m00 * rm20 + m10 * rm21 + m20 * rm22; dest.m21 = m01 * rm20 + m11 * rm21 + m21 * rm22; dest.m22 = m02 * rm20 + m12 * rm21 + m22 * rm22; // set the rest of the matrix elements dest.m00 = nm00; dest.m01 = nm01; dest.m02 = nm02; dest.m10 = nm10; dest.m11 = nm11; dest.m12 = nm12; dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION); return dest; } /** * Apply a "lookat" transformation to this matrix for a left-handed coordinate system, * that aligns +z with center - eye. *

* If M is this matrix and L the lookat matrix, * then the new matrix will be M * L. So when transforming a * vector v with the new matrix by using M * L * v, * the lookat transformation will be applied first! *

* In order to set the matrix to a lookat transformation without post-multiplying it, * use {@link #setLookAtLH(float, float, float, float, float, float, float, float, float) setLookAtLH()}. * * @see #lookAtLH(Vector3fc, Vector3fc, Vector3fc) * @see #setLookAtLH(float, float, float, float, float, float, float, float, float) * * @param eyeX * the x-coordinate of the eye/camera location * @param eyeY * the y-coordinate of the eye/camera location * @param eyeZ * the z-coordinate of the eye/camera location * @param centerX * the x-coordinate of the point to look at * @param centerY * the y-coordinate of the point to look at * @param centerZ * the z-coordinate of the point to look at * @param upX * the x-coordinate of the up vector * @param upY * the y-coordinate of the up vector * @param upZ * the z-coordinate of the up vector * @return this */ public Matrix4x3f lookAtLH(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ) { return lookAtLH(eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ, this); } /** * Apply the rotation - and possibly scaling - transformation of the given {@link Quaternionfc} to this matrix and store * the result in dest. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and Q the rotation matrix obtained from the given quaternion, * then the new matrix will be M * Q. So when transforming a * vector v with the new matrix by using M * Q * v, * the quaternion rotation will be applied first! *

* In order to set the matrix to a rotation transformation without post-multiplying, * use {@link #rotation(Quaternionfc)}. *

* Reference: http://en.wikipedia.org * * @see #rotation(Quaternionfc) * * @param quat * the {@link Quaternionfc} * @param dest * will hold the result * @return dest */ public Matrix4x3f rotate(Quaternionfc quat, Matrix4x3f dest) { if ((properties & PROPERTY_IDENTITY) != 0) return dest.rotation(quat); else if ((properties & PROPERTY_TRANSLATION) != 0) return rotateTranslation(quat, dest); return rotateGeneric(quat, dest); } private Matrix4x3f rotateGeneric(Quaternionfc quat, Matrix4x3f dest) { float w2 = quat.w() * quat.w(), x2 = quat.x() * quat.x(); float y2 = quat.y() * quat.y(), z2 = quat.z() * quat.z(); float zw = quat.z() * quat.w(), dzw = zw + zw, xy = quat.x() * quat.y(), dxy = xy + xy; float xz = quat.x() * quat.z(), dxz = xz + xz, yw = quat.y() * quat.w(), dyw = yw + yw; float yz = quat.y() * quat.z(), dyz = yz + yz, xw = quat.x() * quat.w(), dxw = xw + xw; float rm00 = w2 + x2 - z2 - y2; float rm01 = dxy + dzw; float rm02 = dxz - dyw; float rm10 = dxy - dzw; float rm11 = y2 - z2 + w2 - x2; float rm12 = dyz + dxw; float rm20 = dyw + dxz; float rm21 = dyz - dxw; float rm22 = z2 - y2 - x2 + w2; float nm00 = m00 * rm00 + m10 * rm01 + m20 * rm02; float nm01 = m01 * rm00 + m11 * rm01 + m21 * rm02; float nm02 = m02 * rm00 + m12 * rm01 + m22 * rm02; float nm10 = m00 * rm10 + m10 * rm11 + m20 * rm12; float nm11 = m01 * rm10 + m11 * rm11 + m21 * rm12; float nm12 = m02 * rm10 + m12 * rm11 + m22 * rm12; dest.m20 = m00 * rm20 + m10 * rm21 + m20 * rm22; dest.m21 = m01 * rm20 + m11 * rm21 + m21 * rm22; dest.m22 = m02 * rm20 + m12 * rm21 + m22 * rm22; dest.m00 = nm00; dest.m01 = nm01; dest.m02 = nm02; dest.m10 = nm10; dest.m11 = nm11; dest.m12 = nm12; dest.m30 = m30; dest.m31 = m31; dest.m32 = m32; dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION); return dest; } /** * Apply the rotation - and possibly scaling - transformation of the given {@link Quaternionfc} to this matrix. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and Q the rotation matrix obtained from the given quaternion, * then the new matrix will be M * Q. So when transforming a * vector v with the new matrix by using M * Q * v, * the quaternion rotation will be applied first! *

* In order to set the matrix to a rotation transformation without post-multiplying, * use {@link #rotation(Quaternionfc)}. *

* Reference: http://en.wikipedia.org * * @see #rotation(Quaternionfc) * * @param quat * the {@link Quaternionfc} * @return this */ public Matrix4x3f rotate(Quaternionfc quat) { return rotate(quat, this); } /** * Apply the rotation - and possibly scaling - transformation of the given {@link Quaternionfc} to this matrix, which is assumed to only contain a translation, and store * the result in dest. *

* This method assumes this to only contain a translation. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and Q the rotation matrix obtained from the given quaternion, * then the new matrix will be M * Q. So when transforming a * vector v with the new matrix by using M * Q * v, * the quaternion rotation will be applied first! *

* In order to set the matrix to a rotation transformation without post-multiplying, * use {@link #rotation(Quaternionfc)}. *

* Reference: http://en.wikipedia.org * * @see #rotation(Quaternionfc) * * @param quat * the {@link Quaternionfc} * @param dest * will hold the result * @return dest */ public Matrix4x3f rotateTranslation(Quaternionfc quat, Matrix4x3f dest) { float w2 = quat.w() * quat.w(), x2 = quat.x() * quat.x(); float y2 = quat.y() * quat.y(), z2 = quat.z() * quat.z(); float zw = quat.z() * quat.w(), dzw = zw + zw, xy = quat.x() * quat.y(), dxy = xy + xy; float xz = quat.x() * quat.z(), dxz = xz + xz, yw = quat.y() * quat.w(), dyw = yw + yw; float yz = quat.y() * quat.z(), dyz = yz + yz, xw = quat.x() * quat.w(), dxw = xw + xw; float rm00 = w2 + x2 - z2 - y2; float rm01 = dxy + dzw; float rm02 = dxz - dyw; float rm10 = dxy - dzw; float rm11 = y2 - z2 + w2 - x2; float rm12 = dyz + dxw; float rm20 = dyw + dxz; float rm21 = dyz - dxw; float rm22 = z2 - y2 - x2 + w2; dest.m20 = rm20; dest.m21 = rm21; dest.m22 = rm22; dest.m00 = rm00; dest.m01 = rm01; dest.m02 = rm02; dest.m10 = rm10; dest.m11 = rm11; dest.m12 = rm12; dest.m30 = m30; dest.m31 = m31; dest.m32 = m32; dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION); return dest; } /** * Pre-multiply the rotation - and possibly scaling - transformation of the given {@link Quaternionfc} to this matrix and store * the result in dest. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and Q the rotation matrix obtained from the given quaternion, * then the new matrix will be Q * M. So when transforming a * vector v with the new matrix by using Q * M * v, * the quaternion rotation will be applied last! *

* In order to set the matrix to a rotation transformation without pre-multiplying, * use {@link #rotation(Quaternionfc)}. *

* Reference: http://en.wikipedia.org * * @see #rotation(Quaternionfc) * * @param quat * the {@link Quaternionfc} * @param dest * will hold the result * @return dest */ public Matrix4x3f rotateLocal(Quaternionfc quat, Matrix4x3f dest) { float w2 = quat.w() * quat.w(); float x2 = quat.x() * quat.x(); float y2 = quat.y() * quat.y(); float z2 = quat.z() * quat.z(); float zw = quat.z() * quat.w(); float xy = quat.x() * quat.y(); float xz = quat.x() * quat.z(); float yw = quat.y() * quat.w(); float yz = quat.y() * quat.z(); float xw = quat.x() * quat.w(); float lm00 = w2 + x2 - z2 - y2; float lm01 = xy + zw + zw + xy; float lm02 = xz - yw + xz - yw; float lm10 = -zw + xy - zw + xy; float lm11 = y2 - z2 + w2 - x2; float lm12 = yz + yz + xw + xw; float lm20 = yw + xz + xz + yw; float lm21 = yz + yz - xw - xw; float lm22 = z2 - y2 - x2 + w2; float nm00 = lm00 * m00 + lm10 * m01 + lm20 * m02; float nm01 = lm01 * m00 + lm11 * m01 + lm21 * m02; float nm02 = lm02 * m00 + lm12 * m01 + lm22 * m02; float nm10 = lm00 * m10 + lm10 * m11 + lm20 * m12; float nm11 = lm01 * m10 + lm11 * m11 + lm21 * m12; float nm12 = lm02 * m10 + lm12 * m11 + lm22 * m12; float nm20 = lm00 * m20 + lm10 * m21 + lm20 * m22; float nm21 = lm01 * m20 + lm11 * m21 + lm21 * m22; float nm22 = lm02 * m20 + lm12 * m21 + lm22 * m22; float nm30 = lm00 * m30 + lm10 * m31 + lm20 * m32; float nm31 = lm01 * m30 + lm11 * m31 + lm21 * m32; float nm32 = lm02 * m30 + lm12 * m31 + lm22 * m32; dest.m00 = nm00; dest.m01 = nm01; dest.m02 = nm02; dest.m10 = nm10; dest.m11 = nm11; dest.m12 = nm12; dest.m20 = nm20; dest.m21 = nm21; dest.m22 = nm22; dest.m30 = nm30; dest.m31 = nm31; dest.m32 = nm32; dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION); return dest; } /** * Pre-multiply the rotation - and possibly scaling - transformation of the given {@link Quaternionfc} to this matrix. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and Q the rotation matrix obtained from the given quaternion, * then the new matrix will be Q * M. So when transforming a * vector v with the new matrix by using Q * M * v, * the quaternion rotation will be applied last! *

* In order to set the matrix to a rotation transformation without pre-multiplying, * use {@link #rotation(Quaternionfc)}. *

* Reference: http://en.wikipedia.org * * @see #rotation(Quaternionfc) * * @param quat * the {@link Quaternionfc} * @return this */ public Matrix4x3f rotateLocal(Quaternionfc quat) { return rotateLocal(quat, this); } /** * Apply a rotation transformation, rotating about the given {@link AxisAngle4f}, to this matrix. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and A the rotation matrix obtained from the given {@link AxisAngle4f}, * then the new matrix will be M * A. So when transforming a * vector v with the new matrix by using M * A * v, * the {@link AxisAngle4f} rotation will be applied first! *

* In order to set the matrix to a rotation transformation without post-multiplying, * use {@link #rotation(AxisAngle4f)}. *

* Reference: http://en.wikipedia.org * * @see #rotate(float, float, float, float) * @see #rotation(AxisAngle4f) * * @param axisAngle * the {@link AxisAngle4f} (needs to be {@link AxisAngle4f#normalize() normalized}) * @return this */ public Matrix4x3f rotate(AxisAngle4f axisAngle) { return rotate(axisAngle.angle, axisAngle.x, axisAngle.y, axisAngle.z); } /** * Apply a rotation transformation, rotating about the given {@link AxisAngle4f} and store the result in dest. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and A the rotation matrix obtained from the given {@link AxisAngle4f}, * then the new matrix will be M * A. So when transforming a * vector v with the new matrix by using M * A * v, * the {@link AxisAngle4f} rotation will be applied first! *

* In order to set the matrix to a rotation transformation without post-multiplying, * use {@link #rotation(AxisAngle4f)}. *

* Reference: http://en.wikipedia.org * * @see #rotate(float, float, float, float) * @see #rotation(AxisAngle4f) * * @param axisAngle * the {@link AxisAngle4f} (needs to be {@link AxisAngle4f#normalize() normalized}) * @param dest * will hold the result * @return dest */ public Matrix4x3f rotate(AxisAngle4f axisAngle, Matrix4x3f dest) { return rotate(axisAngle.angle, axisAngle.x, axisAngle.y, axisAngle.z, dest); } /** * Apply a rotation transformation, rotating the given radians about the specified axis, to this matrix. *

* The axis described by the axis vector needs to be a unit vector. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and A the rotation matrix obtained from the given axis-angle, * then the new matrix will be M * A. So when transforming a * vector v with the new matrix by using M * A * v, * the axis-angle rotation will be applied first! *

* In order to set the matrix to a rotation transformation without post-multiplying, * use {@link #rotation(float, Vector3fc)}. *

* Reference: http://en.wikipedia.org * * @see #rotate(float, float, float, float) * @see #rotation(float, Vector3fc) * * @param angle * the angle in radians * @param axis * the rotation axis (needs to be {@link Vector3f#normalize() normalized}) * @return this */ public Matrix4x3f rotate(float angle, Vector3fc axis) { return rotate(angle, axis.x(), axis.y(), axis.z()); } /** * Apply a rotation transformation, rotating the given radians about the specified axis and store the result in dest. *

* The axis described by the axis vector needs to be a unit vector. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and A the rotation matrix obtained from the given axis-angle, * then the new matrix will be M * A. So when transforming a * vector v with the new matrix by using M * A * v, * the axis-angle rotation will be applied first! *

* In order to set the matrix to a rotation transformation without post-multiplying, * use {@link #rotation(float, Vector3fc)}. *

* Reference: http://en.wikipedia.org * * @see #rotate(float, float, float, float) * @see #rotation(float, Vector3fc) * * @param angle * the angle in radians * @param axis * the rotation axis (needs to be {@link Vector3f#normalize() normalized}) * @param dest * will hold the result * @return dest */ public Matrix4x3f rotate(float angle, Vector3fc axis, Matrix4x3f dest) { return rotate(angle, axis.x(), axis.y(), axis.z(), dest); } public Matrix4x3f reflect(float a, float b, float c, float d, Matrix4x3f dest) { if ((properties & PROPERTY_IDENTITY) != 0) return dest.reflection(a, b, c, d); float da = a + a, db = b + b, dc = c + c, dd = d + d; float rm00 = 1.0f - da * a; float rm01 = -da * b; float rm02 = -da * c; float rm10 = -db * a; float rm11 = 1.0f - db * b; float rm12 = -db * c; float rm20 = -dc * a; float rm21 = -dc * b; float rm22 = 1.0f - dc * c; float rm30 = -dd * a; float rm31 = -dd * b; float rm32 = -dd * c; // matrix multiplication dest.m30 = m00 * rm30 + m10 * rm31 + m20 * rm32 + m30; dest.m31 = m01 * rm30 + m11 * rm31 + m21 * rm32 + m31; dest.m32 = m02 * rm30 + m12 * rm31 + m22 * rm32 + m32; float nm00 = m00 * rm00 + m10 * rm01 + m20 * rm02; float nm01 = m01 * rm00 + m11 * rm01 + m21 * rm02; float nm02 = m02 * rm00 + m12 * rm01 + m22 * rm02; float nm10 = m00 * rm10 + m10 * rm11 + m20 * rm12; float nm11 = m01 * rm10 + m11 * rm11 + m21 * rm12; float nm12 = m02 * rm10 + m12 * rm11 + m22 * rm12; dest.m20 = m00 * rm20 + m10 * rm21 + m20 * rm22; dest.m21 = m01 * rm20 + m11 * rm21 + m21 * rm22; dest.m22 = m02 * rm20 + m12 * rm21 + m22 * rm22; dest.m00 = nm00; dest.m01 = nm01; dest.m02 = nm02; dest.m10 = nm10; dest.m11 = nm11; dest.m12 = nm12; dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION); return dest; } /** * Apply a mirror/reflection transformation to this matrix that reflects about the given plane * specified via the equation x*a + y*b + z*c + d = 0. *

* The vector (a, b, c) must be a unit vector. *

* If M is this matrix and R the reflection matrix, * then the new matrix will be M * R. So when transforming a * vector v with the new matrix by using M * R * v, the * reflection will be applied first! *

* Reference: msdn.microsoft.com * * @param a * the x factor in the plane equation * @param b * the y factor in the plane equation * @param c * the z factor in the plane equation * @param d * the constant in the plane equation * @return this */ public Matrix4x3f reflect(float a, float b, float c, float d) { return reflect(a, b, c, d, this); } /** * Apply a mirror/reflection transformation to this matrix that reflects about the given plane * specified via the plane normal and a point on the plane. *

* If M is this matrix and R the reflection matrix, * then the new matrix will be M * R. So when transforming a * vector v with the new matrix by using M * R * v, the * reflection will be applied first! * * @param nx * the x-coordinate of the plane normal * @param ny * the y-coordinate of the plane normal * @param nz * the z-coordinate of the plane normal * @param px * the x-coordinate of a point on the plane * @param py * the y-coordinate of a point on the plane * @param pz * the z-coordinate of a point on the plane * @return this */ public Matrix4x3f reflect(float nx, float ny, float nz, float px, float py, float pz) { return reflect(nx, ny, nz, px, py, pz, this); } public Matrix4x3f reflect(float nx, float ny, float nz, float px, float py, float pz, Matrix4x3f dest) { float invLength = Math.invsqrt(nx * nx + ny * ny + nz * nz); float nnx = nx * invLength; float nny = ny * invLength; float nnz = nz * invLength; /* See: http://mathworld.wolfram.com/Plane.html */ return reflect(nnx, nny, nnz, -nnx * px - nny * py - nnz * pz, dest); } /** * Apply a mirror/reflection transformation to this matrix that reflects about the given plane * specified via the plane normal and a point on the plane. *

* If M is this matrix and R the reflection matrix, * then the new matrix will be M * R. So when transforming a * vector v with the new matrix by using M * R * v, the * reflection will be applied first! * * @param normal * the plane normal * @param point * a point on the plane * @return this */ public Matrix4x3f reflect(Vector3fc normal, Vector3fc point) { return reflect(normal.x(), normal.y(), normal.z(), point.x(), point.y(), point.z()); } /** * Apply a mirror/reflection transformation to this matrix that reflects about a plane * specified via the plane orientation and a point on the plane. *

* This method can be used to build a reflection transformation based on the orientation of a mirror object in the scene. * It is assumed that the default mirror plane's normal is (0, 0, 1). So, if the given {@link Quaternionfc} is * the identity (does not apply any additional rotation), the reflection plane will be z=0, offset by the given point. *

* If M is this matrix and R the reflection matrix, * then the new matrix will be M * R. So when transforming a * vector v with the new matrix by using M * R * v, the * reflection will be applied first! * * @param orientation * the plane orientation * @param point * a point on the plane * @return this */ public Matrix4x3f reflect(Quaternionfc orientation, Vector3fc point) { return reflect(orientation, point, this); } public Matrix4x3f reflect(Quaternionfc orientation, Vector3fc point, Matrix4x3f dest) { double num1 = orientation.x() + orientation.x(); double num2 = orientation.y() + orientation.y(); double num3 = orientation.z() + orientation.z(); float normalX = (float) (orientation.x() * num3 + orientation.w() * num2); float normalY = (float) (orientation.y() * num3 - orientation.w() * num1); float normalZ = (float) (1.0 - (orientation.x() * num1 + orientation.y() * num2)); return reflect(normalX, normalY, normalZ, point.x(), point.y(), point.z(), dest); } public Matrix4x3f reflect(Vector3fc normal, Vector3fc point, Matrix4x3f dest) { return reflect(normal.x(), normal.y(), normal.z(), point.x(), point.y(), point.z(), dest); } /** * Set this matrix to a mirror/reflection transformation that reflects about the given plane * specified via the equation x*a + y*b + z*c + d = 0. *

* The vector (a, b, c) must be a unit vector. *

* Reference: msdn.microsoft.com * * @param a * the x factor in the plane equation * @param b * the y factor in the plane equation * @param c * the z factor in the plane equation * @param d * the constant in the plane equation * @return this */ public Matrix4x3f reflection(float a, float b, float c, float d) { float da = a + a, db = b + b, dc = c + c, dd = d + d; m00 = 1.0f - da * a; m01 = -da * b; m02 = -da * c; m10 = -db * a; m11 = 1.0f - db * b; m12 = -db * c; m20 = -dc * a; m21 = -dc * b; m22 = 1.0f - dc * c; m30 = -dd * a; m31 = -dd * b; m32 = -dd * c; properties = PROPERTY_ORTHONORMAL; return this; } /** * Set this matrix to a mirror/reflection transformation that reflects about the given plane * specified via the plane normal and a point on the plane. * * @param nx * the x-coordinate of the plane normal * @param ny * the y-coordinate of the plane normal * @param nz * the z-coordinate of the plane normal * @param px * the x-coordinate of a point on the plane * @param py * the y-coordinate of a point on the plane * @param pz * the z-coordinate of a point on the plane * @return this */ public Matrix4x3f reflection(float nx, float ny, float nz, float px, float py, float pz) { float invLength = Math.invsqrt(nx * nx + ny * ny + nz * nz); float nnx = nx * invLength; float nny = ny * invLength; float nnz = nz * invLength; /* See: http://mathworld.wolfram.com/Plane.html */ return reflection(nnx, nny, nnz, -nnx * px - nny * py - nnz * pz); } /** * Set this matrix to a mirror/reflection transformation that reflects about the given plane * specified via the plane normal and a point on the plane. * * @param normal * the plane normal * @param point * a point on the plane * @return this */ public Matrix4x3f reflection(Vector3fc normal, Vector3fc point) { return reflection(normal.x(), normal.y(), normal.z(), point.x(), point.y(), point.z()); } /** * Set this matrix to a mirror/reflection transformation that reflects about a plane * specified via the plane orientation and a point on the plane. *

* This method can be used to build a reflection transformation based on the orientation of a mirror object in the scene. * It is assumed that the default mirror plane's normal is (0, 0, 1). So, if the given {@link Quaternionfc} is * the identity (does not apply any additional rotation), the reflection plane will be z=0, offset by the given point. * * @param orientation * the plane orientation * @param point * a point on the plane * @return this */ public Matrix4x3f reflection(Quaternionfc orientation, Vector3fc point) { double num1 = orientation.x() + orientation.x(); double num2 = orientation.y() + orientation.y(); double num3 = orientation.z() + orientation.z(); float normalX = (float) (orientation.x() * num3 + orientation.w() * num2); float normalY = (float) (orientation.y() * num3 - orientation.w() * num1); float normalZ = (float) (1.0 - (orientation.x() * num1 + orientation.y() * num2)); return reflection(normalX, normalY, normalZ, point.x(), point.y(), point.z()); } public Vector4f getRow(int row, Vector4f dest) throws IndexOutOfBoundsException { switch (row) { case 0: dest.x = m00; dest.y = m10; dest.z = m20; dest.w = m30; break; case 1: dest.x = m01; dest.y = m11; dest.z = m21; dest.w = m31; break; case 2: dest.x = m02; dest.y = m12; dest.z = m22; dest.w = m32; break; default: throw new IndexOutOfBoundsException(); } return dest; } /** * Set the row at the given row index, starting with 0. * * @param row * the row index in [0..2] * @param src * the row components to set * @return this * @throws IndexOutOfBoundsException if row is not in [0..2] */ public Matrix4x3f setRow(int row, Vector4fc src) throws IndexOutOfBoundsException { switch (row) { case 0: this.m00 = src.x(); this.m10 = src.y(); this.m20 = src.z(); this.m30 = src.w(); break; case 1: this.m01 = src.x(); this.m11 = src.y(); this.m21 = src.z(); this.m31 = src.w(); break; case 2: this.m02 = src.x(); this.m12 = src.y(); this.m22 = src.z(); this.m32 = src.w(); break; default: throw new IndexOutOfBoundsException(); } properties = 0; return this; } public Vector3f getColumn(int column, Vector3f dest) throws IndexOutOfBoundsException { switch (column) { case 0: dest.x = m00; dest.y = m01; dest.z = m02; break; case 1: dest.x = m10; dest.y = m11; dest.z = m12; break; case 2: dest.x = m20; dest.y = m21; dest.z = m22; break; case 3: dest.x = m30; dest.y = m31; dest.z = m32; break; default: throw new IndexOutOfBoundsException(); } return dest; } /** * Set the column at the given column index, starting with 0. * * @param column * the column index in [0..3] * @param src * the column components to set * @return this * @throws IndexOutOfBoundsException if column is not in [0..3] */ public Matrix4x3f setColumn(int column, Vector3fc src) throws IndexOutOfBoundsException { switch (column) { case 0: this.m00 = src.x(); this.m01 = src.y(); this.m02 = src.z(); break; case 1: this.m10 = src.x(); this.m11 = src.y(); this.m12 = src.z(); break; case 2: this.m20 = src.x(); this.m21 = src.y(); this.m22 = src.z(); break; case 3: this.m30 = src.x(); this.m31 = src.y(); this.m32 = src.z(); break; default: throw new IndexOutOfBoundsException(); } properties = 0; return this; } /** * Compute a normal matrix from the left 3x3 submatrix of this * and store it into the left 3x3 submatrix of this. * All other values of this will be set to {@link #identity() identity}. *

* The normal matrix of m is the transpose of the inverse of m. *

* Please note that, if this is an orthogonal matrix or a matrix whose columns are orthogonal vectors, * then this method need not be invoked, since in that case this itself is its normal matrix. * In that case, use {@link #set3x3(Matrix4x3fc)} to set a given Matrix4x3f to only the left 3x3 submatrix * of this matrix. * * @see #set3x3(Matrix4x3fc) * * @return this */ public Matrix4x3f normal() { return normal(this); } /** * Compute a normal matrix from the left 3x3 submatrix of this * and store it into the left 3x3 submatrix of dest. * All other values of dest will be set to {@link #identity() identity}. *

* The normal matrix of m is the transpose of the inverse of m. *

* Please note that, if this is an orthogonal matrix or a matrix whose columns are orthogonal vectors, * then this method need not be invoked, since in that case this itself is its normal matrix. * In that case, use {@link #set3x3(Matrix4x3fc)} to set a given Matrix4x3f to only the left 3x3 submatrix * of this matrix. * * @see #set3x3(Matrix4x3fc) * * @param dest * will hold the result * @return dest */ public Matrix4x3f normal(Matrix4x3f dest) { if ((properties & PROPERTY_IDENTITY) != 0) return dest.identity(); else if ((properties & PROPERTY_ORTHONORMAL) != 0) return normalOrthonormal(dest); return normalGeneric(dest); } private Matrix4x3f normalOrthonormal(Matrix4x3f dest) { if (dest != this) dest.set(this); return dest._properties(PROPERTY_ORTHONORMAL); } private Matrix4x3f normalGeneric(Matrix4x3f dest) { float m00m11 = m00 * m11; float m01m10 = m01 * m10; float m02m10 = m02 * m10; float m00m12 = m00 * m12; float m01m12 = m01 * m12; float m02m11 = m02 * m11; float det = (m00m11 - m01m10) * m22 + (m02m10 - m00m12) * m21 + (m01m12 - m02m11) * m20; float s = 1.0f / det; /* Invert and transpose in one go */ float nm00 = (m11 * m22 - m21 * m12) * s; float nm01 = (m20 * m12 - m10 * m22) * s; float nm02 = (m10 * m21 - m20 * m11) * s; float nm10 = (m21 * m02 - m01 * m22) * s; float nm11 = (m00 * m22 - m20 * m02) * s; float nm12 = (m20 * m01 - m00 * m21) * s; float nm20 = (m01m12 - m02m11) * s; float nm21 = (m02m10 - m00m12) * s; float nm22 = (m00m11 - m01m10) * s; dest.m00 = nm00; dest.m01 = nm01; dest.m02 = nm02; dest.m10 = nm10; dest.m11 = nm11; dest.m12 = nm12; dest.m20 = nm20; dest.m21 = nm21; dest.m22 = nm22; dest.m30 = 0.0f; dest.m31 = 0.0f; dest.m32 = 0.0f; dest.properties = properties & ~PROPERTY_TRANSLATION; return dest; } public Matrix3f normal(Matrix3f dest) { if ((properties & PROPERTY_ORTHONORMAL) != 0) return normalOrthonormal(dest); return normalGeneric(dest); } private Matrix3f normalOrthonormal(Matrix3f dest) { return dest.set(this); } private Matrix3f normalGeneric(Matrix3f dest) { float m00m11 = m00 * m11; float m01m10 = m01 * m10; float m02m10 = m02 * m10; float m00m12 = m00 * m12; float m01m12 = m01 * m12; float m02m11 = m02 * m11; float det = (m00m11 - m01m10) * m22 + (m02m10 - m00m12) * m21 + (m01m12 - m02m11) * m20; float s = 1.0f / det; /* Invert and transpose in one go */ dest.m00((m11 * m22 - m21 * m12) * s); dest.m01((m20 * m12 - m10 * m22) * s); dest.m02((m10 * m21 - m20 * m11) * s); dest.m10((m21 * m02 - m01 * m22) * s); dest.m11((m00 * m22 - m20 * m02) * s); dest.m12((m20 * m01 - m00 * m21) * s); dest.m20((m01m12 - m02m11) * s); dest.m21((m02m10 - m00m12) * s); dest.m22((m00m11 - m01m10) * s); return dest; } /** * Compute the cofactor matrix of the left 3x3 submatrix of this. *

* The cofactor matrix can be used instead of {@link #normal()} to transform normals * when the orientation of the normals with respect to the surface should be preserved. * * @return this */ public Matrix4x3f cofactor3x3() { return cofactor3x3(this); } /** * Compute the cofactor matrix of the left 3x3 submatrix of this * and store it into dest. *

* The cofactor matrix can be used instead of {@link #normal(Matrix3f)} to transform normals * when the orientation of the normals with respect to the surface should be preserved. * * @param dest * will hold the result * @return dest */ public Matrix3f cofactor3x3(Matrix3f dest) { dest.m00 = m11 * m22 - m21 * m12; dest.m01 = m20 * m12 - m10 * m22; dest.m02 = m10 * m21 - m20 * m11; dest.m10 = m21 * m02 - m01 * m22; dest.m11 = m00 * m22 - m20 * m02; dest.m12 = m20 * m01 - m00 * m21; dest.m20 = m01 * m12 - m02 * m11; dest.m21 = m02 * m10 - m00 * m12; dest.m22 = m00 * m11 - m01 * m10; return dest; } /** * Compute the cofactor matrix of the left 3x3 submatrix of this * and store it into dest. * All other values of dest will be set to {@link #identity() identity}. *

* The cofactor matrix can be used instead of {@link #normal(Matrix4x3f)} to transform normals * when the orientation of the normals with respect to the surface should be preserved. * * @param dest * will hold the result * @return dest */ public Matrix4x3f cofactor3x3(Matrix4x3f dest) { float nm00 = m11 * m22 - m21 * m12; float nm01 = m20 * m12 - m10 * m22; float nm02 = m10 * m21 - m20 * m11; float nm10 = m21 * m02 - m01 * m22; float nm11 = m00 * m22 - m20 * m02; float nm12 = m20 * m01 - m00 * m21; float nm20 = m01 * m12 - m11 * m02; float nm21 = m02 * m10 - m12 * m00; float nm22 = m00 * m11 - m10 * m01; dest.m00 = nm00; dest.m01 = nm01; dest.m02 = nm02; dest.m10 = nm10; dest.m11 = nm11; dest.m12 = nm12; dest.m20 = nm20; dest.m21 = nm21; dest.m22 = nm22; dest.m30 = 0.0f; dest.m31 = 0.0f; dest.m32 = 0.0f; dest.properties = properties & ~PROPERTY_TRANSLATION; return dest; } /** * Normalize the left 3x3 submatrix of this matrix. *

* The resulting matrix will map unit vectors to unit vectors, though a pair of orthogonal input unit * vectors need not be mapped to a pair of orthogonal output vectors if the original matrix was not orthogonal itself * (i.e. had skewing). * * @return this */ public Matrix4x3f normalize3x3() { return normalize3x3(this); } public Matrix4x3f normalize3x3(Matrix4x3f dest) { float invXlen = Math.invsqrt(m00 * m00 + m01 * m01 + m02 * m02); float invYlen = Math.invsqrt(m10 * m10 + m11 * m11 + m12 * m12); float invZlen = Math.invsqrt(m20 * m20 + m21 * m21 + m22 * m22); dest.m00 = m00 * invXlen; dest.m01 = m01 * invXlen; dest.m02 = m02 * invXlen; dest.m10 = m10 * invYlen; dest.m11 = m11 * invYlen; dest.m12 = m12 * invYlen; dest.m20 = m20 * invZlen; dest.m21 = m21 * invZlen; dest.m22 = m22 * invZlen; dest.properties = properties; return dest; } public Matrix3f normalize3x3(Matrix3f dest) { float invXlen = Math.invsqrt(m00 * m00 + m01 * m01 + m02 * m02); float invYlen = Math.invsqrt(m10 * m10 + m11 * m11 + m12 * m12); float invZlen = Math.invsqrt(m20 * m20 + m21 * m21 + m22 * m22); dest.m00(m00 * invXlen); dest.m01(m01 * invXlen); dest.m02(m02 * invXlen); dest.m10(m10 * invYlen); dest.m11(m11 * invYlen); dest.m12(m12 * invYlen); dest.m20(m20 * invZlen); dest.m21(m21 * invZlen); dest.m22(m22 * invZlen); return dest; } public Planef frustumPlane(int which, Planef plane) { switch (which) { case PLANE_NX: plane.set(m00, m10, m20, 1.0f + m30).normalize(plane); break; case PLANE_PX: plane.set(-m00, -m10, -m20, 1.0f - m30).normalize(plane); break; case PLANE_NY: plane.set(m01, m11, m21, 1.0f + m31).normalize(plane); break; case PLANE_PY: plane.set(-m01, -m11, -m21, 1.0f - m31).normalize(plane); break; case PLANE_NZ: plane.set(m02, m12, m22, 1.0f + m32).normalize(plane); break; case PLANE_PZ: plane.set(-m02, -m12, -m22, 1.0f - m32).normalize(plane); break; default: throw new IllegalArgumentException("which"); //$NON-NLS-1$ } return plane; } public Vector3f positiveZ(Vector3f dir) { dir.x = m10 * m21 - m11 * m20; dir.y = m20 * m01 - m21 * m00; dir.z = m00 * m11 - m01 * m10; return dir.normalize(dir); } public Vector3f normalizedPositiveZ(Vector3f dir) { dir.x = m02; dir.y = m12; dir.z = m22; return dir; } public Vector3f positiveX(Vector3f dir) { dir.x = m11 * m22 - m12 * m21; dir.y = m02 * m21 - m01 * m22; dir.z = m01 * m12 - m02 * m11; return dir.normalize(dir); } public Vector3f normalizedPositiveX(Vector3f dir) { dir.x = m00; dir.y = m10; dir.z = m20; return dir; } public Vector3f positiveY(Vector3f dir) { dir.x = m12 * m20 - m10 * m22; dir.y = m00 * m22 - m02 * m20; dir.z = m02 * m10 - m00 * m12; return dir.normalize(dir); } public Vector3f normalizedPositiveY(Vector3f dir) { dir.x = m01; dir.y = m11; dir.z = m21; return dir; } public Vector3f origin(Vector3f origin) { float a = m00 * m11 - m01 * m10; float b = m00 * m12 - m02 * m10; float d = m01 * m12 - m02 * m11; float g = m20 * m31 - m21 * m30; float h = m20 * m32 - m22 * m30; float j = m21 * m32 - m22 * m31; origin.x = -m10 * j + m11 * h - m12 * g; origin.y = m00 * j - m01 * h + m02 * g; origin.z = -m30 * d + m31 * b - m32 * a; return origin; } /** * Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equation * x*a + y*b + z*c + d = 0 as if casting a shadow from a given light position/direction light. *

* If light.w is 0.0 the light is being treated as a directional light; if it is 1.0 it is a point light. *

* If M is this matrix and S the shadow matrix, * then the new matrix will be M * S. So when transforming a * vector v with the new matrix by using M * S * v, the * reflection will be applied first! *

* Reference: ftp.sgi.com * * @param light * the light's vector * @param a * the x factor in the plane equation * @param b * the y factor in the plane equation * @param c * the z factor in the plane equation * @param d * the constant in the plane equation * @return this */ public Matrix4x3f shadow(Vector4fc light, float a, float b, float c, float d) { return shadow(light.x(), light.y(), light.z(), light.w(), a, b, c, d, this); } public Matrix4x3f shadow(Vector4fc light, float a, float b, float c, float d, Matrix4x3f dest) { return shadow(light.x(), light.y(), light.z(), light.w(), a, b, c, d, dest); } /** * Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equation * x*a + y*b + z*c + d = 0 as if casting a shadow from a given light position/direction (lightX, lightY, lightZ, lightW). *

* If lightW is 0.0 the light is being treated as a directional light; if it is 1.0 it is a point light. *

* If M is this matrix and S the shadow matrix, * then the new matrix will be M * S. So when transforming a * vector v with the new matrix by using M * S * v, the * reflection will be applied first! *

* Reference: ftp.sgi.com * * @param lightX * the x-component of the light's vector * @param lightY * the y-component of the light's vector * @param lightZ * the z-component of the light's vector * @param lightW * the w-component of the light's vector * @param a * the x factor in the plane equation * @param b * the y factor in the plane equation * @param c * the z factor in the plane equation * @param d * the constant in the plane equation * @return this */ public Matrix4x3f shadow(float lightX, float lightY, float lightZ, float lightW, float a, float b, float c, float d) { return shadow(lightX, lightY, lightZ, lightW, a, b, c, d, this); } public Matrix4x3f shadow(float lightX, float lightY, float lightZ, float lightW, float a, float b, float c, float d, Matrix4x3f dest) { // normalize plane float invPlaneLen = Math.invsqrt(a*a + b*b + c*c); float an = a * invPlaneLen; float bn = b * invPlaneLen; float cn = c * invPlaneLen; float dn = d * invPlaneLen; float dot = an * lightX + bn * lightY + cn * lightZ + dn * lightW; // compute right matrix elements float rm00 = dot - an * lightX; float rm01 = -an * lightY; float rm02 = -an * lightZ; float rm03 = -an * lightW; float rm10 = -bn * lightX; float rm11 = dot - bn * lightY; float rm12 = -bn * lightZ; float rm13 = -bn * lightW; float rm20 = -cn * lightX; float rm21 = -cn * lightY; float rm22 = dot - cn * lightZ; float rm23 = -cn * lightW; float rm30 = -dn * lightX; float rm31 = -dn * lightY; float rm32 = -dn * lightZ; float rm33 = dot - dn * lightW; // matrix multiplication float nm00 = m00 * rm00 + m10 * rm01 + m20 * rm02 + m30 * rm03; float nm01 = m01 * rm00 + m11 * rm01 + m21 * rm02 + m31 * rm03; float nm02 = m02 * rm00 + m12 * rm01 + m22 * rm02 + m32 * rm03; float nm10 = m00 * rm10 + m10 * rm11 + m20 * rm12 + m30 * rm13; float nm11 = m01 * rm10 + m11 * rm11 + m21 * rm12 + m31 * rm13; float nm12 = m02 * rm10 + m12 * rm11 + m22 * rm12 + m32 * rm13; float nm20 = m00 * rm20 + m10 * rm21 + m20 * rm22 + m30 * rm23; float nm21 = m01 * rm20 + m11 * rm21 + m21 * rm22 + m31 * rm23; float nm22 = m02 * rm20 + m12 * rm21 + m22 * rm22 + m32 * rm23; dest.m30 = m00 * rm30 + m10 * rm31 + m20 * rm32 + m30 * rm33; dest.m31 = m01 * rm30 + m11 * rm31 + m21 * rm32 + m31 * rm33; dest.m32 = m02 * rm30 + m12 * rm31 + m22 * rm32 + m32 * rm33; dest.m00 = nm00; dest.m01 = nm01; dest.m02 = nm02; dest.m10 = nm10; dest.m11 = nm11; dest.m12 = nm12; dest.m20 = nm20; dest.m21 = nm21; dest.m22 = nm22; dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL); return dest; } public Matrix4x3f shadow(Vector4fc light, Matrix4x3fc planeTransform, Matrix4x3f dest) { // compute plane equation by transforming (y = 0) float a = planeTransform.m10(); float b = planeTransform.m11(); float c = planeTransform.m12(); float d = -a * planeTransform.m30() - b * planeTransform.m31() - c * planeTransform.m32(); return shadow(light.x(), light.y(), light.z(), light.w(), a, b, c, d, dest); } /** * Apply a projection transformation to this matrix that projects onto the plane with the general plane equation * y = 0 as if casting a shadow from a given light position/direction light. *

* Before the shadow projection is applied, the plane is transformed via the specified planeTransformation. *

* If light.w is 0.0 the light is being treated as a directional light; if it is 1.0 it is a point light. *

* If M is this matrix and S the shadow matrix, * then the new matrix will be M * S. So when transforming a * vector v with the new matrix by using M * S * v, the * reflection will be applied first! * * @param light * the light's vector * @param planeTransform * the transformation to transform the implied plane y = 0 before applying the projection * @return this */ public Matrix4x3f shadow(Vector4fc light, Matrix4x3fc planeTransform) { return shadow(light, planeTransform, this); } public Matrix4x3f shadow(float lightX, float lightY, float lightZ, float lightW, Matrix4x3fc planeTransform, Matrix4x3f dest) { // compute plane equation by transforming (y = 0) float a = planeTransform.m10(); float b = planeTransform.m11(); float c = planeTransform.m12(); float d = -a * planeTransform.m30() - b * planeTransform.m31() - c * planeTransform.m32(); return shadow(lightX, lightY, lightZ, lightW, a, b, c, d, dest); } /** * Apply a projection transformation to this matrix that projects onto the plane with the general plane equation * y = 0 as if casting a shadow from a given light position/direction (lightX, lightY, lightZ, lightW). *

* Before the shadow projection is applied, the plane is transformed via the specified planeTransformation. *

* If lightW is 0.0 the light is being treated as a directional light; if it is 1.0 it is a point light. *

* If M is this matrix and S the shadow matrix, * then the new matrix will be M * S. So when transforming a * vector v with the new matrix by using M * S * v, the * reflection will be applied first! * * @param lightX * the x-component of the light vector * @param lightY * the y-component of the light vector * @param lightZ * the z-component of the light vector * @param lightW * the w-component of the light vector * @param planeTransform * the transformation to transform the implied plane y = 0 before applying the projection * @return this */ public Matrix4x3f shadow(float lightX, float lightY, float lightZ, float lightW, Matrix4x3f planeTransform) { return shadow(lightX, lightY, lightZ, lightW, planeTransform, this); } /** * Set this matrix to a cylindrical billboard transformation that rotates the local +Z axis of a given object with position objPos towards * a target position at targetPos while constraining a cylindrical rotation around the given up vector. *

* This method can be used to create the complete model transformation for a given object, including the translation of the object to * its position objPos. * * @param objPos * the position of the object to rotate towards targetPos * @param targetPos * the position of the target (for example the camera) towards which to rotate the object * @param up * the rotation axis (must be {@link Vector3f#normalize() normalized}) * @return this */ public Matrix4x3f billboardCylindrical(Vector3fc objPos, Vector3fc targetPos, Vector3fc up) { float dirX = targetPos.x() - objPos.x(); float dirY = targetPos.y() - objPos.y(); float dirZ = targetPos.z() - objPos.z(); // left = up x dir float leftX = up.y() * dirZ - up.z() * dirY; float leftY = up.z() * dirX - up.x() * dirZ; float leftZ = up.x() * dirY - up.y() * dirX; // normalize left float invLeftLen = Math.invsqrt(leftX * leftX + leftY * leftY + leftZ * leftZ); leftX *= invLeftLen; leftY *= invLeftLen; leftZ *= invLeftLen; // recompute dir by constraining rotation around 'up' // dir = left x up dirX = leftY * up.z() - leftZ * up.y(); dirY = leftZ * up.x() - leftX * up.z(); dirZ = leftX * up.y() - leftY * up.x(); // normalize dir float invDirLen = Math.invsqrt(dirX * dirX + dirY * dirY + dirZ * dirZ); dirX *= invDirLen; dirY *= invDirLen; dirZ *= invDirLen; // set matrix elements m00 = leftX; m01 = leftY; m02 = leftZ; m10 = up.x(); m11 = up.y(); m12 = up.z(); m20 = dirX; m21 = dirY; m22 = dirZ; m30 = objPos.x(); m31 = objPos.y(); m32 = objPos.z(); properties = PROPERTY_ORTHONORMAL; return this; } /** * Set this matrix to a spherical billboard transformation that rotates the local +Z axis of a given object with position objPos towards * a target position at targetPos. *

* This method can be used to create the complete model transformation for a given object, including the translation of the object to * its position objPos. *

* If preserving an up vector is not necessary when rotating the +Z axis, then a shortest arc rotation can be obtained * using {@link #billboardSpherical(Vector3fc, Vector3fc)}. * * @see #billboardSpherical(Vector3fc, Vector3fc) * * @param objPos * the position of the object to rotate towards targetPos * @param targetPos * the position of the target (for example the camera) towards which to rotate the object * @param up * the up axis used to orient the object * @return this */ public Matrix4x3f billboardSpherical(Vector3fc objPos, Vector3fc targetPos, Vector3fc up) { float dirX = targetPos.x() - objPos.x(); float dirY = targetPos.y() - objPos.y(); float dirZ = targetPos.z() - objPos.z(); // normalize dir float invDirLen = Math.invsqrt(dirX * dirX + dirY * dirY + dirZ * dirZ); dirX *= invDirLen; dirY *= invDirLen; dirZ *= invDirLen; // left = up x dir float leftX = up.y() * dirZ - up.z() * dirY; float leftY = up.z() * dirX - up.x() * dirZ; float leftZ = up.x() * dirY - up.y() * dirX; // normalize left float invLeftLen = Math.invsqrt(leftX * leftX + leftY * leftY + leftZ * leftZ); leftX *= invLeftLen; leftY *= invLeftLen; leftZ *= invLeftLen; // up = dir x left float upX = dirY * leftZ - dirZ * leftY; float upY = dirZ * leftX - dirX * leftZ; float upZ = dirX * leftY - dirY * leftX; // set matrix elements m00 = leftX; m01 = leftY; m02 = leftZ; m10 = upX; m11 = upY; m12 = upZ; m20 = dirX; m21 = dirY; m22 = dirZ; m30 = objPos.x(); m31 = objPos.y(); m32 = objPos.z(); properties = PROPERTY_ORTHONORMAL; return this; } /** * Set this matrix to a spherical billboard transformation that rotates the local +Z axis of a given object with position objPos towards * a target position at targetPos using a shortest arc rotation by not preserving any up vector of the object. *

* This method can be used to create the complete model transformation for a given object, including the translation of the object to * its position objPos. *

* In order to specify an up vector which needs to be maintained when rotating the +Z axis of the object, * use {@link #billboardSpherical(Vector3fc, Vector3fc, Vector3fc)}. * * @see #billboardSpherical(Vector3fc, Vector3fc, Vector3fc) * * @param objPos * the position of the object to rotate towards targetPos * @param targetPos * the position of the target (for example the camera) towards which to rotate the object * @return this */ public Matrix4x3f billboardSpherical(Vector3fc objPos, Vector3fc targetPos) { float toDirX = targetPos.x() - objPos.x(); float toDirY = targetPos.y() - objPos.y(); float toDirZ = targetPos.z() - objPos.z(); float x = -toDirY; float y = toDirX; float w = Math.sqrt(toDirX * toDirX + toDirY * toDirY + toDirZ * toDirZ) + toDirZ; float invNorm = Math.invsqrt(x * x + y * y + w * w); x *= invNorm; y *= invNorm; w *= invNorm; float q00 = (x + x) * x; float q11 = (y + y) * y; float q01 = (x + x) * y; float q03 = (x + x) * w; float q13 = (y + y) * w; m00 = 1.0f - q11; m01 = q01; m02 = -q13; m10 = q01; m11 = 1.0f - q00; m12 = q03; m20 = q13; m21 = -q03; m22 = 1.0f - q11 - q00; m30 = objPos.x(); m31 = objPos.y(); m32 = objPos.z(); properties = PROPERTY_ORTHONORMAL; return this; } public int hashCode() { final int prime = 31; int result = 1; result = prime * result + Float.floatToIntBits(m00); result = prime * result + Float.floatToIntBits(m01); result = prime * result + Float.floatToIntBits(m02); result = prime * result + Float.floatToIntBits(m10); result = prime * result + Float.floatToIntBits(m11); result = prime * result + Float.floatToIntBits(m12); result = prime * result + Float.floatToIntBits(m20); result = prime * result + Float.floatToIntBits(m21); result = prime * result + Float.floatToIntBits(m22); result = prime * result + Float.floatToIntBits(m30); result = prime * result + Float.floatToIntBits(m31); result = prime * result + Float.floatToIntBits(m32); return result; } public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (!(obj instanceof Matrix4x3f)) return false; Matrix4x3f other = (Matrix4x3f) obj; if (Float.floatToIntBits(m00) != Float.floatToIntBits(other.m00)) return false; if (Float.floatToIntBits(m01) != Float.floatToIntBits(other.m01)) return false; if (Float.floatToIntBits(m02) != Float.floatToIntBits(other.m02)) return false; if (Float.floatToIntBits(m10) != Float.floatToIntBits(other.m10)) return false; if (Float.floatToIntBits(m11) != Float.floatToIntBits(other.m11)) return false; if (Float.floatToIntBits(m12) != Float.floatToIntBits(other.m12)) return false; if (Float.floatToIntBits(m20) != Float.floatToIntBits(other.m20)) return false; if (Float.floatToIntBits(m21) != Float.floatToIntBits(other.m21)) return false; if (Float.floatToIntBits(m22) != Float.floatToIntBits(other.m22)) return false; if (Float.floatToIntBits(m30) != Float.floatToIntBits(other.m30)) return false; if (Float.floatToIntBits(m31) != Float.floatToIntBits(other.m31)) return false; if (Float.floatToIntBits(m32) != Float.floatToIntBits(other.m32)) return false; return true; } public boolean equals(Matrix4x3fc m, float delta) { if (this == m) return true; if (m == null) return false; if (!(m instanceof Matrix4x3f)) return false; if (!Runtime.equals(m00, m.m00(), delta)) return false; if (!Runtime.equals(m01, m.m01(), delta)) return false; if (!Runtime.equals(m02, m.m02(), delta)) return false; if (!Runtime.equals(m10, m.m10(), delta)) return false; if (!Runtime.equals(m11, m.m11(), delta)) return false; if (!Runtime.equals(m12, m.m12(), delta)) return false; if (!Runtime.equals(m20, m.m20(), delta)) return false; if (!Runtime.equals(m21, m.m21(), delta)) return false; if (!Runtime.equals(m22, m.m22(), delta)) return false; if (!Runtime.equals(m30, m.m30(), delta)) return false; if (!Runtime.equals(m31, m.m31(), delta)) return false; if (!Runtime.equals(m32, m.m32(), delta)) return false; return true; } public Matrix4x3f pick(float x, float y, float width, float height, int[] viewport, Matrix4x3f dest) { float sx = viewport[2] / width; float sy = viewport[3] / height; float tx = (viewport[2] + 2.0f * (viewport[0] - x)) / width; float ty = (viewport[3] + 2.0f * (viewport[1] - y)) / height; dest.m30 = m00 * tx + m10 * ty + m30; dest.m31 = m01 * tx + m11 * ty + m31; dest.m32 = m02 * tx + m12 * ty + m32; dest.m00 = m00 * sx; dest.m01 = m01 * sx; dest.m02 = m02 * sx; dest.m10 = m10 * sy; dest.m11 = m11 * sy; dest.m12 = m12 * sy; dest.properties = 0; return dest; } /** * Apply a picking transformation to this matrix using the given window coordinates (x, y) as the pick center * and the given (width, height) as the size of the picking region in window coordinates. * * @param x * the x coordinate of the picking region center in window coordinates * @param y * the y coordinate of the picking region center in window coordinates * @param width * the width of the picking region in window coordinates * @param height * the height of the picking region in window coordinates * @param viewport * the viewport described by [x, y, width, height] * @return this */ public Matrix4x3f pick(float x, float y, float width, float height, int[] viewport) { return pick(x, y, width, height, viewport, this); } /** * Exchange the values of this matrix with the given other matrix. * * @param other * the other matrix to exchange the values with * @return this */ public Matrix4x3f swap(Matrix4x3f other) { MemUtil.INSTANCE.swap(this, other); int props = properties; this.properties = other.properties; other.properties = props; return this; } public Matrix4x3f arcball(float radius, float centerX, float centerY, float centerZ, float angleX, float angleY, Matrix4x3f dest) { float m30 = m20 * -radius + this.m30; float m31 = m21 * -radius + this.m31; float m32 = m22 * -radius + this.m32; float sin = Math.sin(angleX); float cos = Math.cosFromSin(sin, angleX); float nm10 = m10 * cos + m20 * sin; float nm11 = m11 * cos + m21 * sin; float nm12 = m12 * cos + m22 * sin; float m20 = this.m20 * cos - m10 * sin; float m21 = this.m21 * cos - m11 * sin; float m22 = this.m22 * cos - m12 * sin; sin = Math.sin(angleY); cos = Math.cosFromSin(sin, angleY); float nm00 = m00 * cos - m20 * sin; float nm01 = m01 * cos - m21 * sin; float nm02 = m02 * cos - m22 * sin; float nm20 = m00 * sin + m20 * cos; float nm21 = m01 * sin + m21 * cos; float nm22 = m02 * sin + m22 * cos; dest.m30 = -nm00 * centerX - nm10 * centerY - nm20 * centerZ + m30; dest.m31 = -nm01 * centerX - nm11 * centerY - nm21 * centerZ + m31; dest.m32 = -nm02 * centerX - nm12 * centerY - nm22 * centerZ + m32; dest.m20 = nm20; dest.m21 = nm21; dest.m22 = nm22; dest.m10 = nm10; dest.m11 = nm11; dest.m12 = nm12; dest.m00 = nm00; dest.m01 = nm01; dest.m02 = nm02; dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION); return dest; } public Matrix4x3f arcball(float radius, Vector3fc center, float angleX, float angleY, Matrix4x3f dest) { return arcball(radius, center.x(), center.y(), center.z(), angleX, angleY, dest); } /** * Apply an arcball view transformation to this matrix with the given radius and center (centerX, centerY, centerZ) * position of the arcball and the specified X and Y rotation angles. *

* This method is equivalent to calling: translate(0, 0, -radius).rotateX(angleX).rotateY(angleY).translate(-centerX, -centerY, -centerZ) * * @param radius * the arcball radius * @param centerX * the x coordinate of the center position of the arcball * @param centerY * the y coordinate of the center position of the arcball * @param centerZ * the z coordinate of the center position of the arcball * @param angleX * the rotation angle around the X axis in radians * @param angleY * the rotation angle around the Y axis in radians * @return this */ public Matrix4x3f arcball(float radius, float centerX, float centerY, float centerZ, float angleX, float angleY) { return arcball(radius, centerX, centerY, centerZ, angleX, angleY, this); } /** * Apply an arcball view transformation to this matrix with the given radius and center * position of the arcball and the specified X and Y rotation angles. *

* This method is equivalent to calling: translate(0, 0, -radius).rotateX(angleX).rotateY(angleY).translate(-center.x, -center.y, -center.z) * * @param radius * the arcball radius * @param center * the center position of the arcball * @param angleX * the rotation angle around the X axis in radians * @param angleY * the rotation angle around the Y axis in radians * @return this */ public Matrix4x3f arcball(float radius, Vector3fc center, float angleX, float angleY) { return arcball(radius, center.x(), center.y(), center.z(), angleX, angleY, this); } public Matrix4x3f transformAab(float minX, float minY, float minZ, float maxX, float maxY, float maxZ, Vector3f outMin, Vector3f outMax) { float xax = m00 * minX, xay = m01 * minX, xaz = m02 * minX; float xbx = m00 * maxX, xby = m01 * maxX, xbz = m02 * maxX; float yax = m10 * minY, yay = m11 * minY, yaz = m12 * minY; float ybx = m10 * maxY, yby = m11 * maxY, ybz = m12 * maxY; float zax = m20 * minZ, zay = m21 * minZ, zaz = m22 * minZ; float zbx = m20 * maxZ, zby = m21 * maxZ, zbz = m22 * maxZ; float xminx, xminy, xminz, yminx, yminy, yminz, zminx, zminy, zminz; float xmaxx, xmaxy, xmaxz, ymaxx, ymaxy, ymaxz, zmaxx, zmaxy, zmaxz; if (xax < xbx) { xminx = xax; xmaxx = xbx; } else { xminx = xbx; xmaxx = xax; } if (xay < xby) { xminy = xay; xmaxy = xby; } else { xminy = xby; xmaxy = xay; } if (xaz < xbz) { xminz = xaz; xmaxz = xbz; } else { xminz = xbz; xmaxz = xaz; } if (yax < ybx) { yminx = yax; ymaxx = ybx; } else { yminx = ybx; ymaxx = yax; } if (yay < yby) { yminy = yay; ymaxy = yby; } else { yminy = yby; ymaxy = yay; } if (yaz < ybz) { yminz = yaz; ymaxz = ybz; } else { yminz = ybz; ymaxz = yaz; } if (zax < zbx) { zminx = zax; zmaxx = zbx; } else { zminx = zbx; zmaxx = zax; } if (zay < zby) { zminy = zay; zmaxy = zby; } else { zminy = zby; zmaxy = zay; } if (zaz < zbz) { zminz = zaz; zmaxz = zbz; } else { zminz = zbz; zmaxz = zaz; } outMin.x = xminx + yminx + zminx + m30; outMin.y = xminy + yminy + zminy + m31; outMin.z = xminz + yminz + zminz + m32; outMax.x = xmaxx + ymaxx + zmaxx + m30; outMax.y = xmaxy + ymaxy + zmaxy + m31; outMax.z = xmaxz + ymaxz + zmaxz + m32; return this; } public Matrix4x3f transformAab(Vector3fc min, Vector3fc max, Vector3f outMin, Vector3f outMax) { return transformAab(min.x(), min.y(), min.z(), max.x(), max.y(), max.z(), outMin, outMax); } /** * Linearly interpolate this and other using the given interpolation factor t * and store the result in this. *

* If t is 0.0 then the result is this. If the interpolation factor is 1.0 * then the result is other. * * @param other * the other matrix * @param t * the interpolation factor between 0.0 and 1.0 * @return this */ public Matrix4x3f lerp(Matrix4x3fc other, float t) { return lerp(other, t, this); } public Matrix4x3f lerp(Matrix4x3fc other, float t, Matrix4x3f dest) { dest.m00 = Math.fma(other.m00() - m00, t, m00); dest.m01 = Math.fma(other.m01() - m01, t, m01); dest.m02 = Math.fma(other.m02() - m02, t, m02); dest.m10 = Math.fma(other.m10() - m10, t, m10); dest.m11 = Math.fma(other.m11() - m11, t, m11); dest.m12 = Math.fma(other.m12() - m12, t, m12); dest.m20 = Math.fma(other.m20() - m20, t, m20); dest.m21 = Math.fma(other.m21() - m21, t, m21); dest.m22 = Math.fma(other.m22() - m22, t, m22); dest.m30 = Math.fma(other.m30() - m30, t, m30); dest.m31 = Math.fma(other.m31() - m31, t, m31); dest.m32 = Math.fma(other.m32() - m32, t, m32); dest.properties = properties & other.properties(); return dest; } /** * Apply a model transformation to this matrix for a right-handed coordinate system, * that aligns the local +Z axis with dir * and store the result in dest. *

* If M is this matrix and L the lookat matrix, * then the new matrix will be M * L. So when transforming a * vector v with the new matrix by using M * L * v, * the lookat transformation will be applied first! *

* In order to set the matrix to a rotation transformation without post-multiplying it, * use {@link #rotationTowards(Vector3fc, Vector3fc) rotationTowards()}. *

* This method is equivalent to calling: mul(new Matrix4x3f().lookAt(new Vector3f(), new Vector3f(dir).negate(), up).invert(), dest) * * @see #rotateTowards(float, float, float, float, float, float, Matrix4x3f) * @see #rotationTowards(Vector3fc, Vector3fc) * * @param dir * the direction to rotate towards * @param up * the up vector * @param dest * will hold the result * @return dest */ public Matrix4x3f rotateTowards(Vector3fc dir, Vector3fc up, Matrix4x3f dest) { return rotateTowards(dir.x(), dir.y(), dir.z(), up.x(), up.y(), up.z(), dest); } /** * Apply a model transformation to this matrix for a right-handed coordinate system, * that aligns the local +Z axis with dir. *

* If M is this matrix and L the lookat matrix, * then the new matrix will be M * L. So when transforming a * vector v with the new matrix by using M * L * v, * the lookat transformation will be applied first! *

* In order to set the matrix to a rotation transformation without post-multiplying it, * use {@link #rotationTowards(Vector3fc, Vector3fc) rotationTowards()}. *

* This method is equivalent to calling: mul(new Matrix4x3f().lookAt(new Vector3f(), new Vector3f(dir).negate(), up).invert()) * * @see #rotateTowards(float, float, float, float, float, float) * @see #rotationTowards(Vector3fc, Vector3fc) * * @param dir * the direction to orient towards * @param up * the up vector * @return this */ public Matrix4x3f rotateTowards(Vector3fc dir, Vector3fc up) { return rotateTowards(dir.x(), dir.y(), dir.z(), up.x(), up.y(), up.z(), this); } /** * Apply a model transformation to this matrix for a right-handed coordinate system, * that aligns the local +Z axis with (dirX, dirY, dirZ). *

* If M is this matrix and L the lookat matrix, * then the new matrix will be M * L. So when transforming a * vector v with the new matrix by using M * L * v, * the lookat transformation will be applied first! *

* In order to set the matrix to a rotation transformation without post-multiplying it, * use {@link #rotationTowards(float, float, float, float, float, float) rotationTowards()}. *

* This method is equivalent to calling: mul(new Matrix4x3f().lookAt(0, 0, 0, -dirX, -dirY, -dirZ, upX, upY, upZ).invert()) * * @see #rotateTowards(Vector3fc, Vector3fc) * @see #rotationTowards(float, float, float, float, float, float) * * @param dirX * the x-coordinate of the direction to rotate towards * @param dirY * the y-coordinate of the direction to rotate towards * @param dirZ * the z-coordinate of the direction to rotate towards * @param upX * the x-coordinate of the up vector * @param upY * the y-coordinate of the up vector * @param upZ * the z-coordinate of the up vector * @return this */ public Matrix4x3f rotateTowards(float dirX, float dirY, float dirZ, float upX, float upY, float upZ) { return rotateTowards(dirX, dirY, dirZ, upX, upY, upZ, this); } /** * Apply a model transformation to this matrix for a right-handed coordinate system, * that aligns the local +Z axis with (dirX, dirY, dirZ) * and store the result in dest. *

* If M is this matrix and L the lookat matrix, * then the new matrix will be M * L. So when transforming a * vector v with the new matrix by using M * L * v, * the lookat transformation will be applied first! *

* In order to set the matrix to a rotation transformation without post-multiplying it, * use {@link #rotationTowards(float, float, float, float, float, float) rotationTowards()}. *

* This method is equivalent to calling: mul(new Matrix4x3f().lookAt(0, 0, 0, -dirX, -dirY, -dirZ, upX, upY, upZ).invert(), dest) * * @see #rotateTowards(Vector3fc, Vector3fc) * @see #rotationTowards(float, float, float, float, float, float) * * @param dirX * the x-coordinate of the direction to rotate towards * @param dirY * the y-coordinate of the direction to rotate towards * @param dirZ * the z-coordinate of the direction to rotate towards * @param upX * the x-coordinate of the up vector * @param upY * the y-coordinate of the up vector * @param upZ * the z-coordinate of the up vector * @param dest * will hold the result * @return dest */ public Matrix4x3f rotateTowards(float dirX, float dirY, float dirZ, float upX, float upY, float upZ, Matrix4x3f dest) { // Normalize direction float invDirLength = Math.invsqrt(dirX * dirX + dirY * dirY + dirZ * dirZ); float ndirX = dirX * invDirLength; float ndirY = dirY * invDirLength; float ndirZ = dirZ * invDirLength; // left = up x direction float leftX, leftY, leftZ; leftX = upY * ndirZ - upZ * ndirY; leftY = upZ * ndirX - upX * ndirZ; leftZ = upX * ndirY - upY * ndirX; // normalize left float invLeftLength = Math.invsqrt(leftX * leftX + leftY * leftY + leftZ * leftZ); leftX *= invLeftLength; leftY *= invLeftLength; leftZ *= invLeftLength; // up = direction x left float upnX = ndirY * leftZ - ndirZ * leftY; float upnY = ndirZ * leftX - ndirX * leftZ; float upnZ = ndirX * leftY - ndirY * leftX; float rm00 = leftX; float rm01 = leftY; float rm02 = leftZ; float rm10 = upnX; float rm11 = upnY; float rm12 = upnZ; float rm20 = ndirX; float rm21 = ndirY; float rm22 = ndirZ; dest.m30 = m30; dest.m31 = m31; dest.m32 = m32; float nm00 = m00 * rm00 + m10 * rm01 + m20 * rm02; float nm01 = m01 * rm00 + m11 * rm01 + m21 * rm02; float nm02 = m02 * rm00 + m12 * rm01 + m22 * rm02; float nm10 = m00 * rm10 + m10 * rm11 + m20 * rm12; float nm11 = m01 * rm10 + m11 * rm11 + m21 * rm12; float nm12 = m02 * rm10 + m12 * rm11 + m22 * rm12; dest.m20 = m00 * rm20 + m10 * rm21 + m20 * rm22; dest.m21 = m01 * rm20 + m11 * rm21 + m21 * rm22; dest.m22 = m02 * rm20 + m12 * rm21 + m22 * rm22; dest.m00 = nm00; dest.m01 = nm01; dest.m02 = nm02; dest.m10 = nm10; dest.m11 = nm11; dest.m12 = nm12; dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION); return dest; } /** * Set this matrix to a model transformation for a right-handed coordinate system, * that aligns the local -z axis with dir. *

* In order to apply the rotation transformation to a previous existing transformation, * use {@link #rotateTowards(float, float, float, float, float, float) rotateTowards}. *

* This method is equivalent to calling: setLookAt(new Vector3f(), new Vector3f(dir).negate(), up).invert() * * @see #rotationTowards(Vector3fc, Vector3fc) * @see #rotateTowards(float, float, float, float, float, float) * * @param dir * the direction to orient the local -z axis towards * @param up * the up vector * @return this */ public Matrix4x3f rotationTowards(Vector3fc dir, Vector3fc up) { return rotationTowards(dir.x(), dir.y(), dir.z(), up.x(), up.y(), up.z()); } /** * Set this matrix to a model transformation for a right-handed coordinate system, * that aligns the local -z axis with (dirX, dirY, dirZ). *

* In order to apply the rotation transformation to a previous existing transformation, * use {@link #rotateTowards(float, float, float, float, float, float) rotateTowards}. *

* This method is equivalent to calling: setLookAt(0, 0, 0, -dirX, -dirY, -dirZ, upX, upY, upZ).invert() * * @see #rotateTowards(Vector3fc, Vector3fc) * @see #rotationTowards(float, float, float, float, float, float) * * @param dirX * the x-coordinate of the direction to rotate towards * @param dirY * the y-coordinate of the direction to rotate towards * @param dirZ * the z-coordinate of the direction to rotate towards * @param upX * the x-coordinate of the up vector * @param upY * the y-coordinate of the up vector * @param upZ * the z-coordinate of the up vector * @return this */ public Matrix4x3f rotationTowards(float dirX, float dirY, float dirZ, float upX, float upY, float upZ) { // Normalize direction float invDirLength = Math.invsqrt(dirX * dirX + dirY * dirY + dirZ * dirZ); float ndirX = dirX * invDirLength; float ndirY = dirY * invDirLength; float ndirZ = dirZ * invDirLength; // left = up x direction float leftX, leftY, leftZ; leftX = upY * ndirZ - upZ * ndirY; leftY = upZ * ndirX - upX * ndirZ; leftZ = upX * ndirY - upY * ndirX; // normalize left float invLeftLength = Math.invsqrt(leftX * leftX + leftY * leftY + leftZ * leftZ); leftX *= invLeftLength; leftY *= invLeftLength; leftZ *= invLeftLength; // up = direction x left float upnX = ndirY * leftZ - ndirZ * leftY; float upnY = ndirZ * leftX - ndirX * leftZ; float upnZ = ndirX * leftY - ndirY * leftX; this.m00 = leftX; this.m01 = leftY; this.m02 = leftZ; this.m10 = upnX; this.m11 = upnY; this.m12 = upnZ; this.m20 = ndirX; this.m21 = ndirY; this.m22 = ndirZ; this.m30 = 0.0f; this.m31 = 0.0f; this.m32 = 0.0f; properties = PROPERTY_ORTHONORMAL; return this; } /** * Set this matrix to a model transformation for a right-handed coordinate system, * that translates to the given pos and aligns the local -z * axis with dir. *

* This method is equivalent to calling: translation(pos).rotateTowards(dir, up) * * @see #translation(Vector3fc) * @see #rotateTowards(Vector3fc, Vector3fc) * * @param pos * the position to translate to * @param dir * the direction to rotate towards * @param up * the up vector * @return this */ public Matrix4x3f translationRotateTowards(Vector3fc pos, Vector3fc dir, Vector3fc up) { return translationRotateTowards(pos.x(), pos.y(), pos.z(), dir.x(), dir.y(), dir.z(), up.x(), up.y(), up.z()); } /** * Set this matrix to a model transformation for a right-handed coordinate system, * that translates to the given (posX, posY, posZ) and aligns the local -z * axis with (dirX, dirY, dirZ). *

* This method is equivalent to calling: translation(posX, posY, posZ).rotateTowards(dirX, dirY, dirZ, upX, upY, upZ) * * @see #translation(float, float, float) * @see #rotateTowards(float, float, float, float, float, float) * * @param posX * the x-coordinate of the position to translate to * @param posY * the y-coordinate of the position to translate to * @param posZ * the z-coordinate of the position to translate to * @param dirX * the x-coordinate of the direction to rotate towards * @param dirY * the y-coordinate of the direction to rotate towards * @param dirZ * the z-coordinate of the direction to rotate towards * @param upX * the x-coordinate of the up vector * @param upY * the y-coordinate of the up vector * @param upZ * the z-coordinate of the up vector * @return this */ public Matrix4x3f translationRotateTowards(float posX, float posY, float posZ, float dirX, float dirY, float dirZ, float upX, float upY, float upZ) { // Normalize direction float invDirLength = Math.invsqrt(dirX * dirX + dirY * dirY + dirZ * dirZ); float ndirX = dirX * invDirLength; float ndirY = dirY * invDirLength; float ndirZ = dirZ * invDirLength; // left = up x direction float leftX, leftY, leftZ; leftX = upY * ndirZ - upZ * ndirY; leftY = upZ * ndirX - upX * ndirZ; leftZ = upX * ndirY - upY * ndirX; // normalize left float invLeftLength = Math.invsqrt(leftX * leftX + leftY * leftY + leftZ * leftZ); leftX *= invLeftLength; leftY *= invLeftLength; leftZ *= invLeftLength; // up = direction x left float upnX = ndirY * leftZ - ndirZ * leftY; float upnY = ndirZ * leftX - ndirX * leftZ; float upnZ = ndirX * leftY - ndirY * leftX; this.m00 = leftX; this.m01 = leftY; this.m02 = leftZ; this.m10 = upnX; this.m11 = upnY; this.m12 = upnZ; this.m20 = ndirX; this.m21 = ndirY; this.m22 = ndirZ; this.m30 = posX; this.m31 = posY; this.m32 = posZ; properties = PROPERTY_ORTHONORMAL; return this; } public Vector3f getEulerAnglesZYX(Vector3f dest) { dest.x = Math.atan2(m12, m22); dest.y = Math.atan2(-m02, Math.sqrt(m12 * m12 + m22 * m22)); dest.z = Math.atan2(m01, m00); return dest; } /** * Apply an oblique projection transformation to this matrix with the given values for a and * b. *

* If M is this matrix and O the oblique transformation matrix, * then the new matrix will be M * O. So when transforming a * vector v with the new matrix by using M * O * v, the * oblique transformation will be applied first! *

* The oblique transformation is defined as: *

     * x' = x + a*z
     * y' = y + a*z
     * z' = z
     * 
* or in matrix form: *
     * 1 0 a 0
     * 0 1 b 0
     * 0 0 1 0
     * 
* * @param a * the value for the z factor that applies to x * @param b * the value for the z factor that applies to y * @return this */ public Matrix4x3f obliqueZ(float a, float b) { this.m20 = m00 * a + m10 * b + m20; this.m21 = m01 * a + m11 * b + m21; this.m22 = m02 * a + m12 * b + m22; this.properties = 0; return this; } /** * Apply an oblique projection transformation to this matrix with the given values for a and * b and store the result in dest. *

* If M is this matrix and O the oblique transformation matrix, * then the new matrix will be M * O. So when transforming a * vector v with the new matrix by using M * O * v, the * oblique transformation will be applied first! *

* The oblique transformation is defined as: *

     * x' = x + a*z
     * y' = y + a*z
     * z' = z
     * 
* or in matrix form: *
     * 1 0 a 0
     * 0 1 b 0
     * 0 0 1 0
     * 
* * @param a * the value for the z factor that applies to x * @param b * the value for the z factor that applies to y * @param dest * will hold the result * @return dest */ public Matrix4x3f obliqueZ(float a, float b, Matrix4x3f dest) { dest.m00 = m00; dest.m01 = m01; dest.m02 = m02; dest.m10 = m10; dest.m11 = m11; dest.m12 = m12; dest.m20 = m00 * a + m10 * b + m20; dest.m21 = m01 * a + m11 * b + m21; dest.m22 = m02 * a + m12 * b + m22; dest.m30 = m30; dest.m31 = m31; dest.m32 = m32; dest.properties = 0; return dest; } /** * Apply a transformation to this matrix to ensure that the local Y axis (as obtained by {@link #positiveY(Vector3f)}) * will be coplanar to the plane spanned by the local Z axis (as obtained by {@link #positiveZ(Vector3f)}) and the * given vector up. *

* This effectively ensures that the resulting matrix will be equal to the one obtained from * {@link #setLookAt(Vector3fc, Vector3fc, Vector3fc)} called with the current * local origin of this matrix (as obtained by {@link #origin(Vector3f)}), the sum of this position and the * negated local Z axis as well as the given vector up. * * @param up * the up vector * @return this */ public Matrix4x3f withLookAtUp(Vector3fc up) { return withLookAtUp(up.x(), up.y(), up.z(), this); } public Matrix4x3f withLookAtUp(Vector3fc up, Matrix4x3f dest) { return withLookAtUp(up.x(), up.y(), up.z()); } /** * Apply a transformation to this matrix to ensure that the local Y axis (as obtained by {@link #positiveY(Vector3f)}) * will be coplanar to the plane spanned by the local Z axis (as obtained by {@link #positiveZ(Vector3f)}) and the * given vector (upX, upY, upZ). *

* This effectively ensures that the resulting matrix will be equal to the one obtained from * {@link #setLookAt(float, float, float, float, float, float, float, float, float)} called with the current * local origin of this matrix (as obtained by {@link #origin(Vector3f)}), the sum of this position and the * negated local Z axis as well as the given vector (upX, upY, upZ). * * @param upX * the x coordinate of the up vector * @param upY * the y coordinate of the up vector * @param upZ * the z coordinate of the up vector * @return this */ public Matrix4x3f withLookAtUp(float upX, float upY, float upZ) { return withLookAtUp(upX, upY, upZ, this); } public Matrix4x3f withLookAtUp(float upX, float upY, float upZ, Matrix4x3f dest) { float y = (upY * m21 - upZ * m11) * m02 + (upZ * m01 - upX * m21) * m12 + (upX * m11 - upY * m01) * m22; float x = upX * m01 + upY * m11 + upZ * m21; if ((properties & PROPERTY_ORTHONORMAL) == 0) x *= Math.sqrt(m01 * m01 + m11 * m11 + m21 * m21); float invsqrt = Math.invsqrt(y * y + x * x); float c = x * invsqrt, s = y * invsqrt; float nm00 = c * m00 - s * m01, nm10 = c * m10 - s * m11, nm20 = c * m20 - s * m21, nm31 = s * m30 + c * m31; float nm01 = s * m00 + c * m01, nm11 = s * m10 + c * m11, nm21 = s * m20 + c * m21, nm30 = c * m30 - s * m31; dest ._m00(nm00)._m10(nm10)._m20(nm20)._m30(nm30) ._m01(nm01)._m11(nm11)._m21(nm21)._m31(nm31); if (dest != this) { dest ._m02(m02)._m12(m12)._m22(m22)._m32(m32); } dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION); return dest; } public boolean isFinite() { return Math.isFinite(m00) && Math.isFinite(m01) && Math.isFinite(m02) && Math.isFinite(m10) && Math.isFinite(m11) && Math.isFinite(m12) && Math.isFinite(m20) && Math.isFinite(m21) && Math.isFinite(m22) && Math.isFinite(m30) && Math.isFinite(m31) && Math.isFinite(m32); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy