org.joml.Vector2f Maven / Gradle / Ivy
/*
* The MIT License
*
* Copyright (c) 2015-2020 Richard Greenlees
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
package org.joml;
import java.io.Externalizable;
import java.io.IOException;
import java.io.ObjectInput;
import java.io.ObjectOutput;
import java.nio.ByteBuffer;
import java.nio.FloatBuffer;
import java.text.DecimalFormat;
import java.text.NumberFormat;
/**
* Represents a 2D vector with single-precision.
*
* @author RGreenlees
* @author Kai Burjack
* @author F. Neurath
*/
public class Vector2f implements Externalizable, Vector2fc {
private static final long serialVersionUID = 1L;
/**
* The x component of the vector.
*/
public float x;
/**
* The y component of the vector.
*/
public float y;
/**
* Create a new {@link Vector2f} and initialize its components to zero.
*/
public Vector2f() {
}
/**
* Create a new {@link Vector2f} and initialize both of its components with the given value.
*
* @param d
* the value of both components
*/
public Vector2f(float d) {
this.x = d;
this.y = d;
}
/**
* Create a new {@link Vector2f} and initialize its components to the given values.
*
* @param x
* the x component
* @param y
* the y component
*/
public Vector2f(float x, float y) {
this.x = x;
this.y = y;
}
/**
* Create a new {@link Vector2f} and initialize its components to the one of the given vector.
*
* @param v
* the {@link Vector2fc} to copy the values from
*/
public Vector2f(Vector2fc v) {
x = v.x();
y = v.y();
}
/**
* Create a new {@link Vector2f} and initialize its components to the one of the given vector.
*
* @param v
* the {@link Vector2ic} to copy the values from
*/
public Vector2f(Vector2ic v) {
x = v.x();
y = v.y();
}
/**
* Create a new {@link Vector2f} and initialize its two components from the first
* two elements of the given array.
*
* @param xy
* the array containing at least two elements
*/
public Vector2f(float[] xy) {
this.x = xy[0];
this.y = xy[1];
}
/**
* Create a new {@link Vector2f} and read this vector from the supplied {@link ByteBuffer}
* at the current buffer {@link ByteBuffer#position() position}.
*
* This method will not increment the position of the given ByteBuffer.
*
* In order to specify the offset into the ByteBuffer at which
* the vector is read, use {@link #Vector2f(int, ByteBuffer)}, taking
* the absolute position as parameter.
*
* @param buffer
* values will be read in x, y
order
* @see #Vector2f(int, ByteBuffer)
*/
public Vector2f(ByteBuffer buffer) {
MemUtil.INSTANCE.get(this, buffer.position(), buffer);
}
/**
* Create a new {@link Vector2f} and read this vector from the supplied {@link ByteBuffer}
* starting at the specified absolute buffer position/index.
*
* This method will not increment the position of the given ByteBuffer.
*
* @param index
* the absolute position into the ByteBuffer
* @param buffer values will be read in x, y
order
*/
public Vector2f(int index, ByteBuffer buffer) {
MemUtil.INSTANCE.get(this, index, buffer);
}
/**
* Create a new {@link Vector2f} and read this vector from the supplied {@link FloatBuffer}
* at the current buffer {@link FloatBuffer#position() position}.
*
* This method will not increment the position of the given FloatBuffer.
*
* In order to specify the offset into the FloatBuffer at which
* the vector is read, use {@link #Vector2f(int, FloatBuffer)}, taking
* the absolute position as parameter.
*
* @param buffer
* values will be read in x, y
order
* @see #Vector2f(int, FloatBuffer)
*/
public Vector2f(FloatBuffer buffer) {
MemUtil.INSTANCE.get(this, buffer.position(), buffer);
}
/**
* Create a new {@link Vector2f} and read this vector from the supplied {@link FloatBuffer}
* starting at the specified absolute buffer position/index.
*
* This method will not increment the position of the given FloatBuffer.
*
* @param index
* the absolute position into the FloatBuffer
* @param buffer
* values will be read in x, y
order
*/
public Vector2f(int index, FloatBuffer buffer) {
MemUtil.INSTANCE.get(this, index, buffer);
}
public float x() {
return this.x;
}
public float y() {
return this.y;
}
/**
* Set the x and y components to the supplied value.
*
* @param d
* the value of both components
* @return this
*/
public Vector2f set(float d) {
this.x = d;
this.y = d;
return this;
}
/**
* Set the x and y components to the supplied values.
*
* @param x
* the x component
* @param y
* the y component
* @return this
*/
public Vector2f set(float x, float y) {
this.x = x;
this.y = y;
return this;
}
/**
* Set the x and y components to the supplied value.
*
* @param d
* the value of both components
* @return this
*/
public Vector2f set(double d) {
this.x = (float) d;
this.y = (float) d;
return this;
}
/**
* Set the x and y components to the supplied values.
*
* @param x
* the x component
* @param y
* the y component
* @return this
*/
public Vector2f set(double x, double y) {
this.x = (float) x;
this.y = (float) y;
return this;
}
/**
* Set this {@link Vector2f} to the values of v.
*
* @param v
* the vector to copy from
* @return this
*/
public Vector2f set(Vector2fc v) {
this.x = v.x();
this.y = v.y();
return this;
}
/**
* Set this {@link Vector2f} to the values of v.
*
* @param v
* the vector to copy from
* @return this
*/
public Vector2f set(Vector2ic v) {
this.x = v.x();
this.y = v.y();
return this;
}
/**
* Set this {@link Vector2f} to the values of v.
*
* Note that due to the given vector v
storing the components in double-precision,
* there is the possibility to lose precision.
*
* @param v
* the vector to copy from
* @return this
*/
public Vector2f set(Vector2dc v) {
this.x = (float) v.x();
this.y = (float) v.y();
return this;
}
/**
* Set the two components of this vector to the first two elements of the given array.
*
* @param xy
* the array containing at least two elements
* @return this
*/
public Vector2f set(float[] xy) {
this.x = xy[0];
this.y = xy[1];
return this;
}
/**
* Read this vector from the supplied {@link ByteBuffer} at the current
* buffer {@link ByteBuffer#position() position}.
*
* This method will not increment the position of the given ByteBuffer.
*
* In order to specify the offset into the ByteBuffer at which
* the vector is read, use {@link #set(int, ByteBuffer)}, taking
* the absolute position as parameter.
*
* @param buffer
* values will be read in x, y
order
* @return this
* @see #set(int, ByteBuffer)
*/
public Vector2f set(ByteBuffer buffer) {
MemUtil.INSTANCE.get(this, buffer.position(), buffer);
return this;
}
/**
* Read this vector from the supplied {@link ByteBuffer} starting at the specified
* absolute buffer position/index.
*
* This method will not increment the position of the given ByteBuffer.
*
* @param index
* the absolute position into the ByteBuffer
* @param buffer
* values will be read in x, y
order
* @return this
*/
public Vector2f set(int index, ByteBuffer buffer) {
MemUtil.INSTANCE.get(this, index, buffer);
return this;
}
/**
* Read this vector from the supplied {@link FloatBuffer} at the current
* buffer {@link FloatBuffer#position() position}.
*
* This method will not increment the position of the given FloatBuffer.
*
* In order to specify the offset into the FloatBuffer at which
* the vector is read, use {@link #set(int, FloatBuffer)}, taking
* the absolute position as parameter.
*
* @param buffer
* values will be read in x, y
order
* @return this
* @see #set(int, FloatBuffer)
*/
public Vector2f set(FloatBuffer buffer) {
MemUtil.INSTANCE.get(this, buffer.position(), buffer);
return this;
}
/**
* Read this vector from the supplied {@link FloatBuffer} starting at the specified
* absolute buffer position/index.
*
* This method will not increment the position of the given FloatBuffer.
*
* @param index
* the absolute position into the FloatBuffer
* @param buffer
* values will be read in x, y
order
* @return this
*/
public Vector2f set(int index, FloatBuffer buffer) {
MemUtil.INSTANCE.get(this, index, buffer);
return this;
}
/**
* Set the values of this vector by reading 2 float values from off-heap memory,
* starting at the given address.
*
* This method will throw an {@link UnsupportedOperationException} when JOML is used with `-Djoml.nounsafe`.
*
* This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process.
*
* @param address
* the off-heap memory address to read the vector values from
* @return this
*/
public Vector2f setFromAddress(long address) {
if (Options.NO_UNSAFE)
throw new UnsupportedOperationException("Not supported when using joml.nounsafe");
MemUtil.MemUtilUnsafe.get(this, address);
return this;
}
public float get(int component) throws IllegalArgumentException {
switch (component) {
case 0:
return x;
case 1:
return y;
default:
throw new IllegalArgumentException();
}
}
public Vector2i get(int mode, Vector2i dest) {
dest.x = Math.roundUsing(this.x(), mode);
dest.y = Math.roundUsing(this.y(), mode);
return dest;
}
public Vector2f get(Vector2f dest) {
dest.x = this.x();
dest.y = this.y();
return dest;
}
public Vector2d get(Vector2d dest) {
dest.x = this.x();
dest.y = this.y();
return dest;
}
/**
* Set the value of the specified component of this vector.
*
* @param component
* the component whose value to set, within [0..1]
* @param value
* the value to set
* @return this
* @throws IllegalArgumentException if component
is not within [0..1]
*/
public Vector2f setComponent(int component, float value) throws IllegalArgumentException {
switch (component) {
case 0:
x = value;
break;
case 1:
y = value;
break;
default:
throw new IllegalArgumentException();
}
return this;
}
public ByteBuffer get(ByteBuffer buffer) {
MemUtil.INSTANCE.put(this, buffer.position(), buffer);
return buffer;
}
public ByteBuffer get(int index, ByteBuffer buffer) {
MemUtil.INSTANCE.put(this, index, buffer);
return buffer;
}
public FloatBuffer get(FloatBuffer buffer) {
MemUtil.INSTANCE.put(this, buffer.position(), buffer);
return buffer;
}
public FloatBuffer get(int index, FloatBuffer buffer) {
MemUtil.INSTANCE.put(this, index, buffer);
return buffer;
}
public Vector2fc getToAddress(long address) {
if (Options.NO_UNSAFE)
throw new UnsupportedOperationException("Not supported when using joml.nounsafe");
MemUtil.MemUtilUnsafe.put(this, address);
return this;
}
/**
* Set this vector to be one of its perpendicular vectors.
*
* @return this
*/
public Vector2f perpendicular() {
float xTemp = y;
this.y = this.x * -1;
this.x = xTemp;
return this;
}
/**
* Subtract v
from this vector.
*
* @param v
* the vector to subtract
* @return this
*/
public Vector2f sub(Vector2fc v) {
this.x = x - v.x();
this.y = y - v.y();
return this;
}
public Vector2f sub(Vector2fc v, Vector2f dest) {
dest.x = x - v.x();
dest.y = y - v.y();
return dest;
}
/**
* Subtract (x, y)
from this vector.
*
* @param x
* the x component to subtract
* @param y
* the y component to subtract
* @return this
*/
public Vector2f sub(float x, float y) {
this.x = this.x - x;
this.y = this.y - y;
return this;
}
public Vector2f sub(float x, float y, Vector2f dest) {
dest.x = this.x - x;
dest.y = this.y - y;
return dest;
}
public float dot(Vector2fc v) {
return x * v.x() + y * v.y();
}
public float angle(Vector2fc v) {
float dot = x*v.x() + y*v.y();
float det = x*v.y() - y*v.x();
return Math.atan2(det, dot);
}
public float lengthSquared() {
return x * x + y * y;
}
/**
* Get the length squared of a 2-dimensional single-precision vector.
*
* @param x The vector's x component
* @param y The vector's y component
*
* @return the length squared of the given vector
*
* @author F. Neurath
*/
public static float lengthSquared(float x, float y) {
return x * x + y * y;
}
public float length() {
return Math.sqrt(x * x + y * y);
}
/**
* Get the length of a 2-dimensional single-precision vector.
*
* @param x The vector's x component
* @param y The vector's y component
*
* @return the length of the given vector
*
* @author F. Neurath
*/
public static float length(float x, float y) {
return Math.sqrt(x * x + y * y);
}
public float distance(Vector2fc v) {
float dx = this.x - v.x();
float dy = this.y - v.y();
return Math.sqrt(dx * dx + dy * dy);
}
public float distanceSquared(Vector2fc v) {
float dx = this.x - v.x();
float dy = this.y - v.y();
return dx * dx + dy * dy;
}
public float distance(float x, float y) {
float dx = this.x - x;
float dy = this.y - y;
return Math.sqrt(dx * dx + dy * dy);
}
public float distanceSquared(float x, float y) {
float dx = this.x - x;
float dy = this.y - y;
return dx * dx + dy * dy;
}
/**
* Return the distance between (x1, y1)
and (x2, y2)
.
*
* @param x1
* the x component of the first vector
* @param y1
* the y component of the first vector
* @param x2
* the x component of the second vector
* @param y2
* the y component of the second vector
* @return the euclidean distance
*/
public static float distance(float x1, float y1, float x2, float y2) {
float dx = x1 - x2;
float dy = y1 - y2;
return Math.sqrt(dx * dx + dy * dy);
}
/**
* Return the squared distance between (x1, y1)
and (x2, y2)
.
*
* @param x1
* the x component of the first vector
* @param y1
* the y component of the first vector
* @param x2
* the x component of the second vector
* @param y2
* the y component of the second vector
* @return the euclidean distance squared
*/
public static float distanceSquared(float x1, float y1, float x2, float y2) {
float dx = x1 - x2;
float dy = y1 - y2;
return dx * dx + dy * dy;
}
/**
* Normalize this vector.
*
* @return this
*/
public Vector2f normalize() {
float invLength = Math.invsqrt(x * x + y * y);
this.x = x * invLength;
this.y = y * invLength;
return this;
}
public Vector2f normalize(Vector2f dest) {
float invLength = Math.invsqrt(x * x + y * y);
dest.x = x * invLength;
dest.y = y * invLength;
return dest;
}
/**
* Scale this vector to have the given length.
*
* @param length
* the desired length
* @return this
*/
public Vector2f normalize(float length) {
float invLength = Math.invsqrt(x * x + y * y) * length;
this.x = x * invLength;
this.y = y * invLength;
return this;
}
public Vector2f normalize(float length, Vector2f dest) {
float invLength = Math.invsqrt(x * x + y * y) * length;
dest.x = x * invLength;
dest.y = y * invLength;
return dest;
}
/**
* Add v
to this vector.
*
* @param v
* the vector to add
* @return this
*/
public Vector2f add(Vector2fc v) {
this.x = x + v.x();
this.y = y + v.y();
return this;
}
public Vector2f add(Vector2fc v, Vector2f dest) {
dest.x = x + v.x();
dest.y = y + v.y();
return dest;
}
/**
* Increment the components of this vector by the given values.
*
* @param x
* the x component to add
* @param y
* the y component to add
* @return this
*/
public Vector2f add(float x, float y) {
return add(x, y, this);
}
public Vector2f add(float x, float y, Vector2f dest) {
dest.x = this.x + x;
dest.y = this.y + y;
return dest;
}
/**
* Set all components to zero.
*
* @return this
*/
public Vector2f zero() {
this.x = 0;
this.y = 0;
return this;
}
public void writeExternal(ObjectOutput out) throws IOException {
out.writeFloat(x);
out.writeFloat(y);
}
public void readExternal(ObjectInput in) throws IOException,
ClassNotFoundException {
x = in.readFloat();
y = in.readFloat();
}
/**
* Negate this vector.
*
* @return this
*/
public Vector2f negate() {
this.x = -x;
this.y = -y;
return this;
}
public Vector2f negate(Vector2f dest) {
dest.x = -x;
dest.y = -y;
return dest;
}
/**
* Multiply the components of this vector by the given scalar.
*
* @param scalar
* the value to multiply this vector's components by
* @return this
*/
public Vector2f mul(float scalar) {
this.x = x * scalar;
this.y = y * scalar;
return this;
}
public Vector2f mul(float scalar, Vector2f dest) {
dest.x = x * scalar;
dest.y = y * scalar;
return dest;
}
/**
* Multiply the components of this Vector2f by the given scalar values and store the result in this
.
*
* @param x
* the x component to multiply this vector by
* @param y
* the y component to multiply this vector by
* @return this
*/
public Vector2f mul(float x, float y) {
this.x = this.x * x;
this.y = this.y * y;
return this;
}
public Vector2f mul(float x, float y, Vector2f dest) {
dest.x = this.x * x;
dest.y = this.y * y;
return dest;
}
/**
* Multiply this Vector2f component-wise by another Vector2f.
*
* @param v
* the vector to multiply by
* @return this
*/
public Vector2f mul(Vector2fc v) {
this.x = x * v.x();
this.y = y * v.y();
return this;
}
public Vector2f mul(Vector2fc v, Vector2f dest) {
dest.x = x * v.x();
dest.y = y * v.y();
return dest;
}
/**
* Divide this Vector3f component-wise by another Vector3fc.
*
* @param v
* the vector to divide by
* @return this
*/
public Vector2f div(Vector2fc v) {
this.x = this.x / v.x();
this.y = this.y / v.y();
return this;
}
public Vector2f div(Vector2fc v, Vector2f dest) {
dest.x = x / v.x();
dest.y = y / v.y();
return dest;
}
/**
* Divide all components of this {@link Vector2f} by the given scalar
* value.
*
* @param scalar
* the scalar to divide by
* @return this
*/
public Vector2f div(float scalar) {
float inv = 1.0f / scalar;
this.x = this.x * inv;
this.y = this.y * inv;
return this;
}
public Vector2f div(float scalar, Vector2f dest) {
float inv = 1.0f / scalar;
dest.x = this.x * inv;
dest.y = this.y * inv;
return dest;
}
/**
* Divide the components of this Vector2f by the given scalar values and store the result in this
.
*
* @param x
* the x component to divide this vector by
* @param y
* the y component to divide this vector by
* @return this
*/
public Vector2f div(float x, float y) {
this.x = this.x / x;
this.y = this.y / y;
return this;
}
public Vector2f div(float x, float y, Vector2f dest) {
dest.x = this.x / x;
dest.y = this.y / y;
return dest;
}
/**
* Multiply the given matrix with this Vector2f and store the result in this
.
*
* @param mat
* the matrix
* @return this
*/
public Vector2f mul(Matrix2fc mat) {
float rx = mat.m00() * x + mat.m10() * y;
float ry = mat.m01() * x + mat.m11() * y;
this.x = rx;
this.y = ry;
return this;
}
public Vector2f mul(Matrix2fc mat, Vector2f dest) {
float rx = mat.m00() * x + mat.m10() * y;
float ry = mat.m01() * x + mat.m11() * y;
dest.x = rx;
dest.y = ry;
return dest;
}
/**
* Multiply the given matrix with this Vector2f and store the result in this
.
*
* @param mat
* the matrix
* @return this
*/
public Vector2f mul(Matrix2dc mat) {
double rx = mat.m00() * x + mat.m10() * y;
double ry = mat.m01() * x + mat.m11() * y;
this.x = (float) rx;
this.y = (float) ry;
return this;
}
public Vector2f mul(Matrix2dc mat, Vector2f dest) {
double rx = mat.m00() * x + mat.m10() * y;
double ry = mat.m01() * x + mat.m11() * y;
dest.x = (float) rx;
dest.y = (float) ry;
return dest;
}
/**
* Multiply the transpose of the given matrix with this Vector2f store the result in this
.
*
* @param mat
* the matrix
* @return this
*/
public Vector2f mulTranspose(Matrix2fc mat) {
float rx = mat.m00() * x + mat.m01() * y;
float ry = mat.m10() * x + mat.m11() * y;
this.x = rx;
this.y = ry;
return this;
}
public Vector2f mulTranspose(Matrix2fc mat, Vector2f dest) {
float rx = mat.m00() * x + mat.m01() * y;
float ry = mat.m10() * x + mat.m11() * y;
dest.x = rx;
dest.y = ry;
return dest;
}
/**
* Multiply the given 3x2 matrix mat
with this
.
*
* This method assumes the z
component of this
to be 1.0
.
*
* @param mat
* the matrix to multiply this vector by
* @return this
*/
public Vector2f mulPosition(Matrix3x2fc mat) {
this.x = mat.m00() * x + mat.m10() * y + mat.m20();
this.y = mat.m01() * x + mat.m11() * y + mat.m21();
return this;
}
public Vector2f mulPosition(Matrix3x2fc mat, Vector2f dest) {
dest.x = mat.m00() * x + mat.m10() * y + mat.m20();
dest.y = mat.m01() * x + mat.m11() * y + mat.m21();
return dest;
}
/**
* Multiply the given 3x2 matrix mat
with this
.
*
* This method assumes the z
component of this
to be 0.0
.
*
* @param mat
* the matrix to multiply this vector by
* @return this
*/
public Vector2f mulDirection(Matrix3x2fc mat) {
this.x = mat.m00() * x + mat.m10() * y;
this.y = mat.m01() * x + mat.m11() * y;
return this;
}
public Vector2f mulDirection(Matrix3x2fc mat, Vector2f dest) {
dest.x = mat.m00() * x + mat.m10() * y;
dest.y = mat.m01() * x + mat.m11() * y;
return dest;
}
/**
* Linearly interpolate this
and other
using the given interpolation factor t
* and store the result in this
.
*
* If t
is 0.0
then the result is this
. If the interpolation factor is 1.0
* then the result is other
.
*
* @param other
* the other vector
* @param t
* the interpolation factor between 0.0 and 1.0
* @return this
*/
public Vector2f lerp(Vector2fc other, float t) {
this.x = x + (other.x() - x) * t;
this.y = y + (other.y() - y) * t;
return this;
}
public Vector2f lerp(Vector2fc other, float t, Vector2f dest) {
dest.x = x + (other.x() - x) * t;
dest.y = y + (other.y() - y) * t;
return dest;
}
public int hashCode() {
final int prime = 31;
int result = 1;
result = prime * result + Float.floatToIntBits(x);
result = prime * result + Float.floatToIntBits(y);
return result;
}
public boolean equals(Object obj) {
if (this == obj)
return true;
if (obj == null)
return false;
if (getClass() != obj.getClass())
return false;
Vector2f other = (Vector2f) obj;
if (Float.floatToIntBits(x) != Float.floatToIntBits(other.x))
return false;
if (Float.floatToIntBits(y) != Float.floatToIntBits(other.y))
return false;
return true;
}
public boolean equals(Vector2fc v, float delta) {
if (this == v)
return true;
if (v == null)
return false;
if (!(v instanceof Vector2fc))
return false;
if (!Runtime.equals(x, v.x(), delta))
return false;
if (!Runtime.equals(y, v.y(), delta))
return false;
return true;
}
public boolean equals(float x, float y) {
if (Float.floatToIntBits(this.x) != Float.floatToIntBits(x))
return false;
if (Float.floatToIntBits(this.y) != Float.floatToIntBits(y))
return false;
return true;
}
/**
* Return a string representation of this vector.
*
* This method creates a new {@link DecimalFormat} on every invocation with the format string "0.000E0;-
".
*
* @return the string representation
*/
public String toString() {
return Runtime.formatNumbers(toString(Options.NUMBER_FORMAT));
}
/**
* Return a string representation of this vector by formatting the vector components with the given {@link NumberFormat}.
*
* @param formatter
* the {@link NumberFormat} used to format the vector components with
* @return the string representation
*/
public String toString(NumberFormat formatter) {
return "(" + Runtime.format(x, formatter) + " " + Runtime.format(y, formatter) + ")";
}
/**
* Add the component-wise multiplication of a * b
to this vector.
*
* @param a
* the first multiplicand
* @param b
* the second multiplicand
* @return this
*/
public Vector2f fma(Vector2fc a, Vector2fc b) {
this.x = x + a.x() * b.x();
this.y = y + a.y() * b.y();
return this;
}
/**
* Add the component-wise multiplication of a * b
to this vector.
*
* @param a
* the first multiplicand
* @param b
* the second multiplicand
* @return this
*/
public Vector2f fma(float a, Vector2fc b) {
this.x = x + a * b.x();
this.y = y + a * b.y();
return this;
}
public Vector2f fma(Vector2fc a, Vector2fc b, Vector2f dest) {
dest.x = x + a.x() * b.x();
dest.y = y + a.y() * b.y();
return dest;
}
public Vector2f fma(float a, Vector2fc b, Vector2f dest) {
dest.x = x + a * b.x();
dest.y = y + a * b.y();
return dest;
}
/**
* Set the components of this vector to be the component-wise minimum of this and the other vector.
*
* @param v
* the other vector
* @return this
*/
public Vector2f min(Vector2fc v) {
this.x = x < v.x() ? x : v.x();
this.y = y < v.y() ? y : v.y();
return this;
}
public Vector2f min(Vector2fc v, Vector2f dest) {
dest.x = x < v.x() ? x : v.x();
dest.y = y < v.y() ? y : v.y();
return dest;
}
/**
* Set the components of this vector to be the component-wise maximum of this and the other vector.
*
* @param v
* the other vector
* @return this
*/
public Vector2f max(Vector2fc v) {
this.x = x > v.x() ? x : v.x();
this.y = y > v.y() ? y : v.y();
return this;
}
public Vector2f max(Vector2fc v, Vector2f dest) {
dest.x = x > v.x() ? x : v.x();
dest.y = y > v.y() ? y : v.y();
return dest;
}
public int maxComponent() {
float absX = Math.abs(x);
float absY = Math.abs(y);
if (absX >= absY)
return 0;
return 1;
}
public int minComponent() {
float absX = Math.abs(x);
float absY = Math.abs(y);
if (absX < absY)
return 0;
return 1;
}
/**
* Set each component of this vector to the largest (closest to positive
* infinity) {@code float} value that is less than or equal to that
* component and is equal to a mathematical integer.
*
* @return this
*/
public Vector2f floor() {
this.x = Math.floor(x);
this.y = Math.floor(y);
return this;
}
public Vector2f floor(Vector2f dest) {
dest.x = Math.floor(x);
dest.y = Math.floor(y);
return dest;
}
/**
* Ceil each component of this vector
*
* @return this
*/
public Vector2f ceil() {
this.x = Math.ceil(x);
this.y = Math.ceil(y);
return this;
}
public Vector2f ceil(Vector2f dest) {
dest.x = Math.ceil(x);
dest.y = Math.ceil(y);
return dest;
}
/**
* Set each component of this vector to the closest float that is equal to
* a mathematical integer, with ties rounding to positive infinity.
*
* @return this
*/
public Vector2f round() {
this.x = Math.ceil(x);
this.y = Math.ceil(y);
return this;
}
public Vector2f round(Vector2f dest) {
dest.x = Math.round(x);
dest.y = Math.round(y);
return dest;
}
public boolean isFinite() {
return Math.isFinite(x) && Math.isFinite(y);
}
/**
* Set this
vector's components to their respective absolute values.
*
* @return this
*/
public Vector2f absolute() {
this.x = Math.abs(this.x);
this.y = Math.abs(this.y);
return this;
}
public Vector2f absolute(Vector2f dest) {
dest.x = Math.abs(this.x);
dest.y = Math.abs(this.y);
return dest;
}
}