org.joml.Vector3f Maven / Gradle / Ivy
/*
* The MIT License
*
* Copyright (c) 2015-2020 Richard Greenlees
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
package org.joml;
import java.io.Externalizable;
import java.io.IOException;
import java.io.ObjectInput;
import java.io.ObjectOutput;
import java.nio.ByteBuffer;
import java.nio.FloatBuffer;
import java.text.DecimalFormat;
import java.text.NumberFormat;
/**
* Contains the definition of a Vector comprising 3 floats and associated
* transformations.
*
* @author Richard Greenlees
* @author Kai Burjack
* @author F. Neurath
*/
public class Vector3f implements Externalizable, Vector3fc {
private static final long serialVersionUID = 1L;
/**
* The x component of the vector.
*/
public float x;
/**
* The y component of the vector.
*/
public float y;
/**
* The z component of the vector.
*/
public float z;
/**
* Create a new {@link Vector3f} of (0, 0, 0)
.
*/
public Vector3f() {
}
/**
* Create a new {@link Vector3f} and initialize all three components with the given value.
*
* @param d
* the value of all three components
*/
public Vector3f(float d) {
this.x = d;
this.y = d;
this.z = d;
}
/**
* Create a new {@link Vector3f} with the given component values.
*
* @param x
* the value of x
* @param y
* the value of y
* @param z
* the value of z
*/
public Vector3f(float x, float y, float z) {
this.x = x;
this.y = y;
this.z = z;
}
/**
* Create a new {@link Vector3f} with the same values as v
.
*
* @param v
* the {@link Vector3fc} to copy the values from
*/
public Vector3f(Vector3fc v) {
this.x = v.x();
this.y = v.y();
this.z = v.z();
}
/**
* Create a new {@link Vector3f} with the same values as v
.
*
* @param v
* the {@link Vector3ic} to copy the values from
*/
public Vector3f(Vector3ic v) {
this.x = v.x();
this.y = v.y();
this.z = v.z();
}
/**
* Create a new {@link Vector3f} with the first two components from the
* given v
and the given z
*
* @param v
* the {@link Vector2fc} to copy the values from
* @param z
* the z component
*/
public Vector3f(Vector2fc v, float z) {
this.x = v.x();
this.y = v.y();
this.z = z;
}
/**
* Create a new {@link Vector3f} with the first two components from the
* given v
and the given z
*
* @param v
* the {@link Vector2ic} to copy the values from
* @param z
* the z component
*/
public Vector3f(Vector2ic v, float z) {
this.x = v.x();
this.y = v.y();
this.z = z;
}
/**
* Create a new {@link Vector3f} and initialize its three components from the first
* three elements of the given array.
*
* @param xyz
* the array containing at least three elements
*/
public Vector3f(float[] xyz) {
this.x = xyz[0];
this.y = xyz[1];
this.z = xyz[2];
}
/**
* Create a new {@link Vector3f} and read this vector from the supplied {@link ByteBuffer}
* at the current buffer {@link ByteBuffer#position() position}.
*
* This method will not increment the position of the given ByteBuffer.
*
* In order to specify the offset into the ByteBuffer at which
* the vector is read, use {@link #Vector3f(int, ByteBuffer)}, taking
* the absolute position as parameter.
*
* @param buffer values will be read in x, y, z
order
* @see #Vector3f(int, ByteBuffer)
*/
public Vector3f(ByteBuffer buffer) {
MemUtil.INSTANCE.get(this, buffer.position(), buffer);
}
/**
* Create a new {@link Vector3f} and read this vector from the supplied {@link ByteBuffer}
* starting at the specified absolute buffer position/index.
*
* This method will not increment the position of the given ByteBuffer.
*
* @param index the absolute position into the ByteBuffer
* @param buffer values will be read in x, y, z
order
*/
public Vector3f(int index, ByteBuffer buffer) {
MemUtil.INSTANCE.get(this, index, buffer);
}
/**
* Create a new {@link Vector3f} and read this vector from the supplied {@link FloatBuffer}
* at the current buffer {@link FloatBuffer#position() position}.
*
* This method will not increment the position of the given FloatBuffer.
*
* In order to specify the offset into the FloatBuffer at which
* the vector is read, use {@link #Vector3f(int, FloatBuffer)}, taking
* the absolute position as parameter.
*
* @param buffer values will be read in x, y, z
order
* @see #Vector3f(int, FloatBuffer)
*/
public Vector3f(FloatBuffer buffer) {
MemUtil.INSTANCE.get(this, buffer.position(), buffer);
}
/**
* Create a new {@link Vector3f} and read this vector from the supplied {@link FloatBuffer}
* starting at the specified absolute buffer position/index.
*
* This method will not increment the position of the given FloatBuffer.
*
* @param index the absolute position into the FloatBuffer
* @param buffer values will be read in x, y, z
order
*/
public Vector3f(int index, FloatBuffer buffer) {
MemUtil.INSTANCE.get(this, index, buffer);
}
public float x() {
return this.x;
}
public float y() {
return this.y;
}
public float z() {
return this.z;
}
/**
* Set the x, y and z components to match the supplied vector.
*
* @param v
* contains the values of x, y and z to set
* @return this
*/
public Vector3f set(Vector3fc v) {
this.x = v.x();
this.y = v.y();
this.z = v.z();
return this;
}
/**
* Set the x, y and z components to match the supplied vector.
*
* Note that due to the given vector v
storing the components in double-precision,
* there is the possibility to lose precision.
*
* @param v
* contains the values of x, y and z to set
* @return this
*/
public Vector3f set(Vector3dc v) {
this.x = (float) v.x();
this.y = (float) v.y();
this.z = (float) v.z();
return this;
}
/**
* Set the x, y and z components to match the supplied vector.
*
* @param v
* contains the values of x, y and z to set
* @return this
*/
public Vector3f set(Vector3ic v) {
this.x = v.x();
this.y = v.y();
this.z = v.z();
return this;
}
/**
* Set the first two components from the given v
* and the z component from the given z
*
* @param v
* the {@link Vector2fc} to copy the values from
* @param z
* the z component
* @return this
*/
public Vector3f set(Vector2fc v, float z) {
this.x = v.x();
this.y = v.y();
this.z = z;
return this;
}
/**
* Set the first two components from the given v
* and the z component from the given z
*
* @param v
* the {@link Vector2dc} to copy the values from
* @param z
* the z component
* @return this
*/
public Vector3f set(Vector2dc v, float z) {
this.x = (float) v.x();
this.y = (float) v.y();
this.z = z;
return this;
}
/**
* Set the first two components from the given v
* and the z component from the given z
*
* @param v
* the {@link Vector2ic} to copy the values from
* @param z
* the z component
* @return this
*/
public Vector3f set(Vector2ic v, float z) {
this.x = v.x();
this.y = v.y();
this.z = z;
return this;
}
/**
* Set the x, y, and z components to the supplied value.
*
* @param d
* the value of all three components
* @return this
*/
public Vector3f set(float d) {
this.x = d;
this.y = d;
this.z = d;
return this;
}
/**
* Set the x, y and z components to the supplied values.
*
* @param x
* the x component
* @param y
* the y component
* @param z
* the z component
* @return this
*/
public Vector3f set(float x, float y, float z) {
this.x = x;
this.y = y;
this.z = z;
return this;
}
/**
* Set the x, y, and z components to the supplied value.
*
* @param d
* the value of all three components
* @return this
*/
public Vector3f set(double d) {
this.x = (float) d;
this.y = (float) d;
this.z = (float) d;
return this;
}
/**
* Set the x, y and z components to the supplied values.
*
* @param x
* the x component
* @param y
* the y component
* @param z
* the z component
* @return this
*/
public Vector3f set(double x, double y, double z) {
this.x = (float) x;
this.y = (float) y;
this.z = (float) z;
return this;
}
/**
* Set the three components of this vector to the first three elements of the given array.
*
* @param xyz
* the array containing at least three elements
* @return this
*/
public Vector3f set(float[] xyz) {
this.x = xyz[0];
this.y = xyz[1];
this.z = xyz[2];
return this;
}
/**
* Read this vector from the supplied {@link ByteBuffer} at the current
* buffer {@link ByteBuffer#position() position}.
*
* This method will not increment the position of the given ByteBuffer.
*
* In order to specify the offset into the ByteBuffer at which
* the vector is read, use {@link #set(int, ByteBuffer)}, taking
* the absolute position as parameter.
*
* @param buffer
* values will be read in x, y, z
order
* @return this
* @see #set(int, ByteBuffer)
*/
public Vector3f set(ByteBuffer buffer) {
MemUtil.INSTANCE.get(this, buffer.position(), buffer);
return this;
}
/**
* Read this vector from the supplied {@link ByteBuffer} starting at the specified
* absolute buffer position/index.
*
* This method will not increment the position of the given ByteBuffer.
*
* @param index
* the absolute position into the ByteBuffer
* @param buffer
* values will be read in x, y, z
order
* @return this
*/
public Vector3f set(int index, ByteBuffer buffer) {
MemUtil.INSTANCE.get(this, index, buffer);
return this;
}
/**
* Read this vector from the supplied {@link FloatBuffer} at the current
* buffer {@link FloatBuffer#position() position}.
*
* This method will not increment the position of the given FloatBuffer.
*
* In order to specify the offset into the FloatBuffer at which
* the vector is read, use {@link #set(int, FloatBuffer)}, taking
* the absolute position as parameter.
*
* @param buffer
* values will be read in x, y, z
order
* @return this
* @see #set(int, FloatBuffer)
*/
public Vector3f set(FloatBuffer buffer) {
MemUtil.INSTANCE.get(this, buffer.position(), buffer);
return this;
}
/**
* Read this vector from the supplied {@link FloatBuffer} starting at the specified
* absolute buffer position/index.
*
* This method will not increment the position of the given FloatBuffer.
*
* @param index
* the absolute position into the FloatBuffer
* @param buffer
* values will be read in x, y, z
order
* @return this
*/
public Vector3f set(int index, FloatBuffer buffer) {
MemUtil.INSTANCE.get(this, index, buffer);
return this;
}
/**
* Set the values of this vector by reading 3 float values from off-heap memory,
* starting at the given address.
*
* This method will throw an {@link UnsupportedOperationException} when JOML is used with `-Djoml.nounsafe`.
*
* This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process.
*
* @param address
* the off-heap memory address to read the vector values from
* @return this
*/
public Vector3f setFromAddress(long address) {
if (Options.NO_UNSAFE)
throw new UnsupportedOperationException("Not supported when using joml.nounsafe");
MemUtil.MemUtilUnsafe.get(this, address);
return this;
}
/**
* Set the value of the specified component of this vector.
*
* @param component
* the component whose value to set, within [0..2]
* @param value
* the value to set
* @return this
* @throws IllegalArgumentException if component
is not within [0..2]
*/
public Vector3f setComponent(int component, float value) throws IllegalArgumentException {
switch (component) {
case 0:
x = value;
break;
case 1:
y = value;
break;
case 2:
z = value;
break;
default:
throw new IllegalArgumentException();
}
return this;
}
public FloatBuffer get(FloatBuffer buffer) {
MemUtil.INSTANCE.put(this, buffer.position(), buffer);
return buffer;
}
public FloatBuffer get(int index, FloatBuffer buffer) {
MemUtil.INSTANCE.put(this, index, buffer);
return buffer;
}
public ByteBuffer get(ByteBuffer buffer) {
MemUtil.INSTANCE.put(this, buffer.position(), buffer);
return buffer;
}
public ByteBuffer get(int index, ByteBuffer buffer) {
MemUtil.INSTANCE.put(this, index, buffer);
return buffer;
}
public Vector3fc getToAddress(long address) {
if (Options.NO_UNSAFE)
throw new UnsupportedOperationException("Not supported when using joml.nounsafe");
MemUtil.MemUtilUnsafe.put(this, address);
return this;
}
/**
* Subtract the supplied vector from this one and store the result in this
.
*
* @param v
* the vector to subtract
* @return this
*/
public Vector3f sub(Vector3fc v) {
this.x = x - v.x();
this.y = y - v.y();
this.z = z - v.z();
return this;
}
public Vector3f sub(Vector3fc v, Vector3f dest) {
dest.x = x - v.x();
dest.y = y - v.y();
dest.z = z - v.z();
return dest;
}
/**
* Decrement the components of this vector by the given values.
*
* @param x
* the x component to subtract
* @param y
* the y component to subtract
* @param z
* the z component to subtract
* @return this
*/
public Vector3f sub(float x, float y, float z) {
this.x = this.x - x;
this.y = this.y - y;
this.z = this.z - z;
return this;
}
public Vector3f sub(float x, float y, float z, Vector3f dest) {
dest.x = this.x - x;
dest.y = this.y - y;
dest.z = this.z - z;
return dest;
}
/**
* Add the supplied vector to this one.
*
* @param v
* the vector to add
* @return this
*/
public Vector3f add(Vector3fc v) {
this.x = this.x + v.x();
this.y = this.y + v.y();
this.z = this.z + v.z();
return this;
}
public Vector3f add(Vector3fc v, Vector3f dest) {
dest.x = this.x + v.x();
dest.y = this.y + v.y();
dest.z = this.z + v.z();
return dest;
}
/**
* Increment the components of this vector by the given values.
*
* @param x
* the x component to add
* @param y
* the y component to add
* @param z
* the z component to add
* @return this
*/
public Vector3f add(float x, float y, float z) {
this.x = this.x + x;
this.y = this.y + y;
this.z = this.z + z;
return this;
}
public Vector3f add(float x, float y, float z, Vector3f dest) {
dest.x = this.x + x;
dest.y = this.y + y;
dest.z = this.z + z;
return dest;
}
/**
* Add the component-wise multiplication of a * b
to this vector.
*
* @param a
* the first multiplicand
* @param b
* the second multiplicand
* @return this
*/
public Vector3f fma(Vector3fc a, Vector3fc b) {
this.x = Math.fma(a.x(), b.x(), x);
this.y = Math.fma(a.y(), b.y(), y);
this.z = Math.fma(a.z(), b.z(), z);
return this;
}
/**
* Add the component-wise multiplication of a * b
to this vector.
*
* @param a
* the first multiplicand
* @param b
* the second multiplicand
* @return this
*/
public Vector3f fma(float a, Vector3fc b) {
this.x = Math.fma(a, b.x(), x);
this.y = Math.fma(a, b.y(), y);
this.z = Math.fma(a, b.z(), z);
return this;
}
public Vector3f fma(Vector3fc a, Vector3fc b, Vector3f dest) {
dest.x = Math.fma(a.x(), b.x(), x);
dest.y = Math.fma(a.y(), b.y(), y);
dest.z = Math.fma(a.z(), b.z(), z);
return dest;
}
public Vector3f fma(float a, Vector3fc b, Vector3f dest) {
dest.x = Math.fma(a, b.x(), x);
dest.y = Math.fma(a, b.y(), y);
dest.z = Math.fma(a, b.z(), z);
return dest;
}
/**
* Add the component-wise multiplication of a * b
to this vector.
*
* @param a
* the first multiplicand
* @param b
* the second multiplicand
* @return this
*/
public Vector3f mulAdd(Vector3fc a, Vector3fc b) {
this.x = Math.fma(x, a.x(), b.x());
this.y = Math.fma(y, a.y(), b.y());
this.z = Math.fma(z, a.z(), b.z());
return this;
}
/**
* Add the component-wise multiplication of a * b
to this vector.
*
* @param a
* the first multiplicand
* @param b
* the second multiplicand
* @return this
*/
public Vector3f mulAdd(float a, Vector3fc b) {
this.x = Math.fma(x, a, b.x());
this.y = Math.fma(y, a, b.y());
this.z = Math.fma(z, a, b.z());
return this;
}
public Vector3f mulAdd(Vector3fc a, Vector3fc b, Vector3f dest) {
dest.x = Math.fma(x, a.x(), b.x());
dest.y = Math.fma(y, a.y(), b.y());
dest.z = Math.fma(z, a.z(), b.z());
return dest;
}
public Vector3f mulAdd(float a, Vector3fc b, Vector3f dest) {
dest.x = Math.fma(x, a, b.x());
dest.y = Math.fma(y, a, b.y());
dest.z = Math.fma(z, a, b.z());
return dest;
}
/**
* Multiply this Vector3f component-wise by another Vector3fc.
*
* @param v
* the vector to multiply by
* @return this
*/
public Vector3f mul(Vector3fc v) {
this.x = x * v.x();
this.y = y * v.y();
this.z = z * v.z();
return this;
}
public Vector3f mul(Vector3fc v, Vector3f dest) {
dest.x = x * v.x();
dest.y = y * v.y();
dest.z = z * v.z();
return dest;
}
/**
* Divide this Vector3f component-wise by another Vector3fc.
*
* @param v
* the vector to divide by
* @return this
*/
public Vector3f div(Vector3fc v) {
this.x = this.x / v.x();
this.y = this.y / v.y();
this.z = this.z / v.z();
return this;
}
public Vector3f div(Vector3fc v, Vector3f dest) {
dest.x = x / v.x();
dest.y = y / v.y();
dest.z = z / v.z();
return dest;
}
public Vector3f mulProject(Matrix4fc mat, Vector3f dest) {
float x = this.x, y = this.y, z = this.z;
float invW = 1.0f / Math.fma(mat.m03(), x, Math.fma(mat.m13(), y, Math.fma(mat.m23(), z, mat.m33())));
dest.x = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30()))) * invW;
dest.y = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31()))) * invW;
dest.z = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32()))) * invW;
return dest;
}
public Vector3f mulProject(Matrix4fc mat, float w, Vector3f dest) {
float x = this.x, y = this.y, z = this.z;
float invW = 1.0f / Math.fma(mat.m03(), x, Math.fma(mat.m13(), y, Math.fma(mat.m23(), z, mat.m33() * w)));
dest.x = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30() * w))) * invW;
dest.y = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31() * w))) * invW;
dest.z = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32() * w))) * invW;
return dest;
}
/**
* Multiply the given matrix mat
with this Vector3f, perform perspective division.
*
* This method uses w=1.0
as the fourth vector component.
*
* @param mat
* the matrix to multiply this vector by
* @return this
*/
public Vector3f mulProject(Matrix4fc mat) {
float x = this.x, y = this.y, z = this.z;
float invW = 1.0f / Math.fma(mat.m03(), x, Math.fma(mat.m13(), y, Math.fma(mat.m23(), z, mat.m33())));
this.x = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30()))) * invW;
this.y = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31()))) * invW;
this.z = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32()))) * invW;
return this;
}
/**
* Multiply the given matrix with this Vector3f and store the result in this
.
*
* @param mat
* the matrix
* @return this
*/
public Vector3f mul(Matrix3fc mat) {
float lx = x, ly = y, lz = z;
this.x = Math.fma(mat.m00(), lx, Math.fma(mat.m10(), ly, mat.m20() * lz));
this.y = Math.fma(mat.m01(), lx, Math.fma(mat.m11(), ly, mat.m21() * lz));
this.z = Math.fma(mat.m02(), lx, Math.fma(mat.m12(), ly, mat.m22() * lz));
return this;
}
public Vector3f mul(Matrix3fc mat, Vector3f dest) {
float lx = x, ly = y, lz = z;
dest.x = Math.fma(mat.m00(), lx, Math.fma(mat.m10(), ly, mat.m20() * lz));
dest.y = Math.fma(mat.m01(), lx, Math.fma(mat.m11(), ly, mat.m21() * lz));
dest.z = Math.fma(mat.m02(), lx, Math.fma(mat.m12(), ly, mat.m22() * lz));
return dest;
}
/**
* Multiply the given matrix with this Vector3f and store the result in this
.
*
* @param mat
* the matrix
* @return this
*/
public Vector3f mul(Matrix3dc mat) {
float lx = x, ly = y, lz = z;
this.x = (float) Math.fma(mat.m00(), lx, Math.fma(mat.m10(), ly, mat.m20() * lz));
this.y = (float) Math.fma(mat.m01(), lx, Math.fma(mat.m11(), ly, mat.m21() * lz));
this.z = (float) Math.fma(mat.m02(), lx, Math.fma(mat.m12(), ly, mat.m22() * lz));
return this;
}
public Vector3f mul(Matrix3dc mat, Vector3f dest) {
float lx = x, ly = y, lz = z;
dest.x = (float) Math.fma(mat.m00(), lx, Math.fma(mat.m10(), ly, mat.m20() * lz));
dest.y = (float) Math.fma(mat.m01(), lx, Math.fma(mat.m11(), ly, mat.m21() * lz));
dest.z = (float) Math.fma(mat.m02(), lx, Math.fma(mat.m12(), ly, mat.m22() * lz));
return dest;
}
/**
* Multiply the given matrix with this Vector3f and store the result in this
.
*
* @param mat
* the matrix
* @return this
*/
public Vector3f mul(Matrix3x2fc mat) {
float x = this.x, y = this.y, z = this.z;
this.x = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, mat.m20() * z));
this.y = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, mat.m21() * z));
this.z = z;
return this;
}
public Vector3f mul(Matrix3x2fc mat, Vector3f dest) {
float x = this.x, y = this.y, z = this.z;
dest.x = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, mat.m20() * z));
dest.y = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, mat.m21() * z));
dest.z = z;
return dest;
}
/**
* Multiply the transpose of the given matrix with this Vector3f store the result in this
.
*
* @param mat
* the matrix
* @return this
*/
public Vector3f mulTranspose(Matrix3fc mat) {
float x = this.x, y = this.y, z = this.z;
this.x = Math.fma(mat.m00(), x, Math.fma(mat.m01(), y, mat.m02() * z));
this.y = Math.fma(mat.m10(), x, Math.fma(mat.m11(), y, mat.m12() * z));
this.z = Math.fma(mat.m20(), x, Math.fma(mat.m21(), y, mat.m22() * z));
return this;
}
public Vector3f mulTranspose(Matrix3fc mat, Vector3f dest) {
float x = this.x, y = this.y, z = this.z;
dest.x = Math.fma(mat.m00(), x, Math.fma(mat.m01(), y, mat.m02() * z));
dest.y = Math.fma(mat.m10(), x, Math.fma(mat.m11(), y, mat.m12() * z));
dest.z = Math.fma(mat.m20(), x, Math.fma(mat.m21(), y, mat.m22() * z));
return dest;
}
/**
* Multiply the given 4x4 matrix mat
with this
.
*
* This method assumes the w
component of this
to be 1.0
.
*
* @param mat
* the matrix to multiply this vector by
* @return this
*/
public Vector3f mulPosition(Matrix4fc mat) {
float x = this.x, y = this.y, z = this.z;
this.x = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30())));
this.y = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31())));
this.z = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32())));
return this;
}
/**
* Multiply the given 4x3 matrix mat
with this
.
*
* This method assumes the w
component of this
to be 1.0
.
*
* @param mat
* the matrix to multiply this vector by
* @return this
*/
public Vector3f mulPosition(Matrix4x3fc mat) {
float x = this.x, y = this.y, z = this.z;
this.x = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30())));
this.y = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31())));
this.z = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32())));
return this;
}
public Vector3f mulPosition(Matrix4fc mat, Vector3f dest) {
float x = this.x, y = this.y, z = this.z;
dest.x = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30())));
dest.y = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31())));
dest.z = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32())));
return dest;
}
public Vector3f mulPosition(Matrix4x3fc mat, Vector3f dest) {
float x = this.x, y = this.y, z = this.z;
dest.x = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30())));
dest.y = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31())));
dest.z = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32())));
return dest;
}
/**
* Multiply the transpose of the given 4x4 matrix mat
with this
.
*
* This method assumes the w
component of this
to be 1.0
.
*
* @param mat
* the matrix whose transpose to multiply this vector by
* @return this
*/
public Vector3f mulTransposePosition(Matrix4fc mat) {
float x = this.x, y = this.y, z = this.z;
this.x = Math.fma(mat.m00(), x, Math.fma(mat.m01(), y, Math.fma(mat.m02(), z, mat.m03())));
this.y = Math.fma(mat.m10(), x, Math.fma(mat.m11(), y, Math.fma(mat.m12(), z, mat.m13())));
this.z = Math.fma(mat.m20(), x, Math.fma(mat.m21(), y, Math.fma(mat.m22(), z, mat.m23())));
return this;
}
public Vector3f mulTransposePosition(Matrix4fc mat, Vector3f dest) {
float x = this.x, y = this.y, z = this.z;
dest.x = Math.fma(mat.m00(), x, Math.fma(mat.m01(), y, Math.fma(mat.m02(), z, mat.m03())));
dest.y = Math.fma(mat.m10(), x, Math.fma(mat.m11(), y, Math.fma(mat.m12(), z, mat.m13())));
dest.z = Math.fma(mat.m20(), x, Math.fma(mat.m21(), y, Math.fma(mat.m22(), z, mat.m23())));
return dest;
}
/**
* Multiply the given 4x4 matrix mat
with this
and return the w component
* of the resulting 4D vector.
*
* This method assumes the w
component of this
to be 1.0
.
*
* @param mat
* the matrix to multiply this vector by
* @return the w component of the resulting 4D vector after multiplication
*/
public float mulPositionW(Matrix4fc mat) {
float x = this.x, y = this.y, z = this.z;
float w = Math.fma(mat.m03(), x, Math.fma(mat.m13(), y, Math.fma(mat.m23(), z, mat.m33())));
this.x = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30())));
this.y = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31())));
this.z = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32())));
return w;
}
public float mulPositionW(Matrix4fc mat, Vector3f dest) {
float x = this.x, y = this.y, z = this.z;
float w = Math.fma(mat.m03(), x, Math.fma(mat.m13(), y, Math.fma(mat.m23(), z, mat.m33())));
dest.x = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30())));
dest.y = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31())));
dest.z = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32())));
return w;
}
/**
* Multiply the given 4x4 matrix mat
with this
.
*
* This method assumes the w
component of this
to be 0.0
.
*
* @param mat
* the matrix to multiply this vector by
* @return this
*/
public Vector3f mulDirection(Matrix4dc mat) {
float x = this.x, y = this.y, z = this.z;
this.x = (float) Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, mat.m20() * z));
this.y = (float) Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, mat.m21() * z));
this.z = (float) Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, mat.m22() * z));
return this;
}
/**
* Multiply the given 4x4 matrix mat
with this
.
*
* This method assumes the w
component of this
to be 0.0
.
*
* @param mat
* the matrix to multiply this vector by
* @return this
*/
public Vector3f mulDirection(Matrix4fc mat) {
float x = this.x, y = this.y, z = this.z;
this.x = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, mat.m20() * z));
this.y = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, mat.m21() * z));
this.z = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, mat.m22() * z));
return this;
}
/**
* Multiply the given 4x3 matrix mat
with this
.
*
* This method assumes the w
component of this
to be 0.0
.
*
* @param mat
* the matrix to multiply this vector by
* @return this
*/
public Vector3f mulDirection(Matrix4x3fc mat) {
float x = this.x, y = this.y, z = this.z;
this.x = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, mat.m20() * z));
this.y = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, mat.m21() * z));
this.z = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, mat.m22() * z));
return this;
}
public Vector3f mulDirection(Matrix4dc mat, Vector3f dest) {
float x = this.x, y = this.y, z = this.z;
dest.x = (float) Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, mat.m20() * z));
dest.y = (float) Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, mat.m21() * z));
dest.z = (float) Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, mat.m22() * z));
return dest;
}
public Vector3f mulDirection(Matrix4fc mat, Vector3f dest) {
float x = this.x, y = this.y, z = this.z;
dest.x = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, mat.m20() * z));
dest.y = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, mat.m21() * z));
dest.z = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, mat.m22() * z));
return dest;
}
public Vector3f mulDirection(Matrix4x3fc mat, Vector3f dest) {
float x = this.x, y = this.y, z = this.z;
dest.x = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, mat.m20() * z));
dest.y = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, mat.m21() * z));
dest.z = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, mat.m22() * z));
return dest;
}
/**
* Multiply the transpose of the given 4x4 matrix mat
with this
.
*
* This method assumes the w
component of this
to be 0.0
.
*
* @param mat
* the matrix whose transpose to multiply this vector by
* @return this
*/
public Vector3f mulTransposeDirection(Matrix4fc mat) {
float x = this.x, y = this.y, z = this.z;
this.x = Math.fma(mat.m00(), x, Math.fma(mat.m01(), y, mat.m02() * z));
this.y = Math.fma(mat.m10(), x, Math.fma(mat.m11(), y, mat.m12() * z));
this.z = Math.fma(mat.m20(), x, Math.fma(mat.m21(), y, mat.m22() * z));
return this;
}
public Vector3f mulTransposeDirection(Matrix4fc mat, Vector3f dest) {
float x = this.x, y = this.y, z = this.z;
dest.x = Math.fma(mat.m00(), x, Math.fma(mat.m01(), y, mat.m02() * z));
dest.y = Math.fma(mat.m10(), x, Math.fma(mat.m11(), y, mat.m12() * z));
dest.z = Math.fma(mat.m20(), x, Math.fma(mat.m21(), y, mat.m22() * z));
return dest;
}
/**
* Multiply all components of this {@link Vector3f} by the given scalar
* value.
*
* @param scalar
* the scalar to multiply this vector by
* @return this
*/
public Vector3f mul(float scalar) {
this.x = this.x * scalar;
this.y = this.y * scalar;
this.z = this.z * scalar;
return this;
}
public Vector3f mul(float scalar, Vector3f dest) {
dest.x = this.x * scalar;
dest.y = this.y * scalar;
dest.z = this.z * scalar;
return dest;
}
/**
* Multiply the components of this Vector3f by the given scalar values and store the result in this
.
*
* @param x
* the x component to multiply this vector by
* @param y
* the y component to multiply this vector by
* @param z
* the z component to multiply this vector by
* @return this
*/
public Vector3f mul(float x, float y, float z) {
this.x = this.x * x;
this.y = this.y * y;
this.z = this.z * z;
return this;
}
public Vector3f mul(float x, float y, float z, Vector3f dest) {
dest.x = this.x * x;
dest.y = this.y * y;
dest.z = this.z * z;
return dest;
}
/**
* Divide all components of this {@link Vector3f} by the given scalar
* value.
*
* @param scalar
* the scalar to divide by
* @return this
*/
public Vector3f div(float scalar) {
float inv = 1.0f / scalar;
this.x = this.x * inv;
this.y = this.y * inv;
this.z = this.z * inv;
return this;
}
public Vector3f div(float scalar, Vector3f dest) {
float inv = 1.0f / scalar;
dest.x = this.x * inv;
dest.y = this.y * inv;
dest.z = this.z * inv;
return dest;
}
/**
* Divide the components of this Vector3f by the given scalar values and store the result in this
.
*
* @param x
* the x component to divide this vector by
* @param y
* the y component to divide this vector by
* @param z
* the z component to divide this vector by
* @return this
*/
public Vector3f div(float x, float y, float z) {
this.x = this.x / x;
this.y = this.y / y;
this.z = this.z / z;
return this;
}
public Vector3f div(float x, float y, float z, Vector3f dest) {
dest.x = this.x / x;
dest.y = this.y / y;
dest.z = this.z / z;
return dest;
}
/**
* Rotate this vector by the given quaternion quat
and store the result in this
.
*
* @see Quaternionfc#transform(Vector3f)
*
* @param quat
* the quaternion to rotate this vector
* @return this
*/
public Vector3f rotate(Quaternionfc quat) {
return quat.transform(this, this);
}
public Vector3f rotate(Quaternionfc quat, Vector3f dest) {
return quat.transform(this, dest);
}
public Quaternionf rotationTo(Vector3fc toDir, Quaternionf dest) {
return dest.rotationTo(this, toDir);
}
public Quaternionf rotationTo(float toDirX, float toDirY, float toDirZ, Quaternionf dest) {
return dest.rotationTo(x, y, z, toDirX, toDirY, toDirZ);
}
/**
* Rotate this vector the specified radians around the given rotation axis.
*
* @param angle
* the angle in radians
* @param x
* the x component of the rotation axis
* @param y
* the y component of the rotation axis
* @param z
* the z component of the rotation axis
* @return this
*/
public Vector3f rotateAxis(float angle, float x, float y, float z) {
if (y == 0.0f && z == 0.0f && Math.absEqualsOne(x))
return rotateX(x * angle, this);
else if (x == 0.0f && z == 0.0f && Math.absEqualsOne(y))
return rotateY(y * angle, this);
else if (x == 0.0f && y == 0.0f && Math.absEqualsOne(z))
return rotateZ(z * angle, this);
return rotateAxisInternal(angle, x, y, z, this);
}
public Vector3f rotateAxis(float angle, float aX, float aY, float aZ, Vector3f dest) {
if (aY == 0.0f && aZ == 0.0f && Math.absEqualsOne(aX))
return rotateX(aX * angle, dest);
else if (aX == 0.0f && aZ == 0.0f && Math.absEqualsOne(aY))
return rotateY(aY * angle, dest);
else if (aX == 0.0f && aY == 0.0f && Math.absEqualsOne(aZ))
return rotateZ(aZ * angle, dest);
return rotateAxisInternal(angle, aX, aY, aZ, dest);
}
private Vector3f rotateAxisInternal(float angle, float aX, float aY, float aZ, Vector3f dest) {
float hangle = angle * 0.5f;
float sinAngle = Math.sin(hangle);
float qx = aX * sinAngle, qy = aY * sinAngle, qz = aZ * sinAngle;
float qw = Math.cosFromSin(sinAngle, hangle);
float w2 = qw * qw, x2 = qx * qx, y2 = qy * qy, z2 = qz * qz, zw = qz * qw;
float xy = qx * qy, xz = qx * qz, yw = qy * qw, yz = qy * qz, xw = qx * qw;
float x = this.x, y = this.y, z = this.z;
dest.x = (w2 + x2 - z2 - y2) * x + (-zw + xy - zw + xy) * y + (yw + xz + xz + yw) * z;
dest.y = (xy + zw + zw + xy) * x + ( y2 - z2 + w2 - x2) * y + (yz + yz - xw - xw) * z;
dest.z = (xz - yw + xz - yw) * x + ( yz + yz + xw + xw) * y + (z2 - y2 - x2 + w2) * z;
return dest;
}
/**
* Rotate this vector the specified radians around the X axis.
*
* @param angle
* the angle in radians
* @return this
*/
public Vector3f rotateX(float angle) {
float sin = Math.sin(angle), cos = Math.cosFromSin(sin, angle);
float y = this.y * cos - this.z * sin;
float z = this.y * sin + this.z * cos;
this.y = y;
this.z = z;
return this;
}
public Vector3f rotateX(float angle, Vector3f dest) {
float sin = Math.sin(angle), cos = Math.cosFromSin(sin, angle);
float y = this.y * cos - this.z * sin;
float z = this.y * sin + this.z * cos;
dest.x = this.x;
dest.y = y;
dest.z = z;
return dest;
}
/**
* Rotate this vector the specified radians around the Y axis.
*
* @param angle
* the angle in radians
* @return this
*/
public Vector3f rotateY(float angle) {
float sin = Math.sin(angle), cos = Math.cosFromSin(sin, angle);
float x = this.x * cos + this.z * sin;
float z = -this.x * sin + this.z * cos;
this.x = x;
this.z = z;
return this;
}
public Vector3f rotateY(float angle, Vector3f dest) {
float sin = Math.sin(angle), cos = Math.cosFromSin(sin, angle);
float x = this.x * cos + this.z * sin;
float z = -this.x * sin + this.z * cos;
dest.x = x;
dest.y = this.y;
dest.z = z;
return dest;
}
/**
* Rotate this vector the specified radians around the Z axis.
*
* @param angle
* the angle in radians
* @return this
*/
public Vector3f rotateZ(float angle) {
float sin = Math.sin(angle), cos = Math.cosFromSin(sin, angle);
float x = this.x * cos - this.y * sin;
float y = this.x * sin + this.y * cos;
this.x = x;
this.y = y;
return this;
}
public Vector3f rotateZ(float angle, Vector3f dest) {
float sin = Math.sin(angle), cos = Math.cosFromSin(sin, angle);
float x = this.x * cos - this.y * sin;
float y = this.x * sin + this.y * cos;
dest.x = x;
dest.y = y;
dest.z = this.z;
return dest;
}
public float lengthSquared() {
return Math.fma(x, x, Math.fma(y, y, z * z));
}
/**
* Get the length squared of a 3-dimensional single-precision vector.
*
* @param x The vector's x component
* @param y The vector's y component
* @param z The vector's z component
*
* @return the length squared of the given vector
*
* @author F. Neurath
*/
public static float lengthSquared(float x, float y, float z) {
return Math.fma(x, x, Math.fma(y, y, z * z));
}
public float length() {
return Math.sqrt(Math.fma(x, x, Math.fma(y, y, z * z)));
}
/**
* Get the length of a 3-dimensional single-precision vector.
*
* @param x The vector's x component
* @param y The vector's y component
* @param z The vector's z component
*
* @return the length of the given vector
*
* @author F. Neurath
*/
public static float length(float x, float y, float z) {
return Math.sqrt(Math.fma(x, x, Math.fma(y, y, z * z)));
}
/**
* Normalize this vector.
*
* @return this
*/
public Vector3f normalize() {
float scalar = Math.invsqrt(Math.fma(x, x, Math.fma(y, y, z * z)));
this.x = this.x * scalar;
this.y = this.y * scalar;
this.z = this.z * scalar;
return this;
}
public Vector3f normalize(Vector3f dest) {
float scalar = Math.invsqrt(Math.fma(x, x, Math.fma(y, y, z * z)));
dest.x = this.x * scalar;
dest.y = this.y * scalar;
dest.z = this.z * scalar;
return dest;
}
/**
* Scale this vector to have the given length.
*
* @param length
* the desired length
* @return this
*/
public Vector3f normalize(float length) {
float scalar = Math.invsqrt(Math.fma(x, x, Math.fma(y, y, z * z))) * length;
this.x = this.x * scalar;
this.y = this.y * scalar;
this.z = this.z * scalar;
return this;
}
public Vector3f normalize(float length, Vector3f dest) {
float scalar = Math.invsqrt(Math.fma(x, x, Math.fma(y, y, z * z))) * length;
dest.x = this.x * scalar;
dest.y = this.y * scalar;
dest.z = this.z * scalar;
return dest;
}
/**
* Set this vector to be the cross product of itself and v
.
*
* @param v
* the other vector
* @return this
*/
public Vector3f cross(Vector3fc v) {
float rx = Math.fma(y, v.z(), -z * v.y());
float ry = Math.fma(z, v.x(), -x * v.z());
float rz = Math.fma(x, v.y(), -y * v.x());
this.x = rx;
this.y = ry;
this.z = rz;
return this;
}
/**
* Set this vector to be the cross product of itself and (x, y, z)
.
*
* @param x
* the x component of the other vector
* @param y
* the y component of the other vector
* @param z
* the z component of the other vector
* @return this
*/
public Vector3f cross(float x, float y, float z) {
float rx = Math.fma(this.y, z, -this.z * y);
float ry = Math.fma(this.z, x, -this.x * z);
float rz = Math.fma(this.x, y, -this.y * x);
this.x = rx;
this.y = ry;
this.z = rz;
return this;
}
public Vector3f cross(Vector3fc v, Vector3f dest) {
float rx = Math.fma(y, v.z(), -z * v.y());
float ry = Math.fma(z, v.x(), -x * v.z());
float rz = Math.fma(x, v.y(), -y * v.x());
dest.x = rx;
dest.y = ry;
dest.z = rz;
return dest;
}
public Vector3f cross(float x, float y, float z, Vector3f dest) {
float rx = Math.fma(this.y, z, -this.z * y);
float ry = Math.fma(this.z, x, -this.x * z);
float rz = Math.fma(this.x, y, -this.y * x);
dest.x = rx;
dest.y = ry;
dest.z = rz;
return dest;
}
public float distance(Vector3fc v) {
float dx = this.x - v.x();
float dy = this.y - v.y();
float dz = this.z - v.z();
return Math.sqrt(Math.fma(dx, dx, Math.fma(dy, dy, dz * dz)));
}
public float distance(float x, float y, float z) {
float dx = this.x - x;
float dy = this.y - y;
float dz = this.z - z;
return Math.sqrt(Math.fma(dx, dx, Math.fma(dy, dy, dz * dz)));
}
public float distanceSquared(Vector3fc v) {
float dx = this.x - v.x();
float dy = this.y - v.y();
float dz = this.z - v.z();
return Math.fma(dx, dx, Math.fma(dy, dy, dz * dz));
}
public float distanceSquared(float x, float y, float z) {
float dx = this.x - x;
float dy = this.y - y;
float dz = this.z - z;
return Math.fma(dx, dx, Math.fma(dy, dy, dz * dz));
}
/**
* Return the distance between (x1, y1, z1)
and (x2, y2, z2)
.
*
* @param x1
* the x component of the first vector
* @param y1
* the y component of the first vector
* @param z1
* the z component of the first vector
* @param x2
* the x component of the second vector
* @param y2
* the y component of the second vector
* @param z2
* the z component of the second vector
* @return the euclidean distance
*/
public static float distance(float x1, float y1, float z1, float x2, float y2, float z2) {
return Math.sqrt(distanceSquared(x1, y1, z1, x2, y2, z2));
}
/**
* Return the squared distance between (x1, y1, z1)
and (x2, y2, z2)
.
*
* @param x1
* the x component of the first vector
* @param y1
* the y component of the first vector
* @param z1
* the z component of the first vector
* @param x2
* the x component of the second vector
* @param y2
* the y component of the second vector
* @param z2
* the z component of the second vector
* @return the euclidean distance squared
*/
public static float distanceSquared(float x1, float y1, float z1, float x2, float y2, float z2) {
float dx = x1 - x2;
float dy = y1 - y2;
float dz = z1 - z2;
return Math.fma(dx, dx, Math.fma(dy, dy, dz * dz));
}
public float dot(Vector3fc v) {
return Math.fma(this.x, v.x(), Math.fma(this.y, v.y(), this.z * v.z()));
}
public float dot(float x, float y, float z) {
return Math.fma(this.x, x, Math.fma(this.y, y, this.z * z));
}
public float angleCos(Vector3fc v) {
float x = this.x, y = this.y, z = this.z;
float length1Squared = Math.fma(x, x, Math.fma(y, y, z * z));
float length2Squared = Math.fma(v.x(), v.x(), Math.fma(v.y(), v.y(), v.z() * v.z()));
float dot = Math.fma(x, v.x(), Math.fma(y, v.y(), z * v.z()));
return dot / (float)Math.sqrt(length1Squared * length2Squared);
}
public float angle(Vector3fc v) {
float cos = angleCos(v);
// This is because sometimes cos goes above 1 or below -1 because of lost precision
cos = cos < 1 ? cos : 1;
cos = cos > -1 ? cos : -1;
return Math.acos(cos);
}
public float angleSigned(Vector3fc v, Vector3fc n) {
return angleSigned(v.x(), v.y(), v.z(), n.x(), n.y(), n.z());
}
public float angleSigned(float x, float y, float z, float nx, float ny, float nz) {
float tx = this.x, ty = this.y, tz = this.z;
return Math.atan2(
(ty * z - tz * y) * nx + (tz * x - tx * z) * ny + (tx * y - ty * x) * nz,
tx * x + ty * y + tz * z);
}
/**
* Set the components of this vector to be the component-wise minimum of this and the other vector.
*
* @param v
* the other vector
* @return this
*/
public Vector3f min(Vector3fc v) {
float x = this.x, y = this.y, z = this.z;
this.x = x < v.x() ? x : v.x();
this.y = y < v.y() ? y : v.y();
this.z = z < v.z() ? z : v.z();
return this;
}
public Vector3f min(Vector3fc v, Vector3f dest) {
float x = this.x, y = this.y, z = this.z;
dest.x = x < v.x() ? x : v.x();
dest.y = y < v.y() ? y : v.y();
dest.z = z < v.z() ? z : v.z();
return dest;
}
/**
* Set the components of this vector to be the component-wise maximum of this and the other vector.
*
* @param v
* the other vector
* @return this
*/
public Vector3f max(Vector3fc v) {
float x = this.x, y = this.y, z = this.z;
this.x = x > v.x() ? x : v.x();
this.y = y > v.y() ? y : v.y();
this.z = z > v.z() ? z : v.z();
return this;
}
public Vector3f max(Vector3fc v, Vector3f dest) {
float x = this.x, y = this.y, z = this.z;
dest.x = x > v.x() ? x : v.x();
dest.y = y > v.y() ? y : v.y();
dest.z = z > v.z() ? z : v.z();
return dest;
}
/**
* Set all components to zero.
*
* @return this
*/
public Vector3f zero() {
this.x = 0;
this.y = 0;
this.z = 0;
return this;
}
/**
* Return a string representation of this vector.
*
* This method creates a new {@link DecimalFormat} on every invocation with the format string "0.000E0;-
".
*
* @return the string representation
*/
public String toString() {
return Runtime.formatNumbers(toString(Options.NUMBER_FORMAT));
}
/**
* Return a string representation of this vector by formatting the vector components with the given {@link NumberFormat}.
*
* @param formatter
* the {@link NumberFormat} used to format the vector components with
* @return the string representation
*/
public String toString(NumberFormat formatter) {
return "(" + Runtime.format(x, formatter) + " " + Runtime.format(y, formatter) + " " + Runtime.format(z, formatter) + ")";
}
public void writeExternal(ObjectOutput out) throws IOException {
out.writeFloat(x);
out.writeFloat(y);
out.writeFloat(z);
}
public void readExternal(ObjectInput in) throws IOException,
ClassNotFoundException {
set(in.readFloat(), in.readFloat(), in.readFloat());
}
/**
* Negate this vector.
*
* @return this
*/
public Vector3f negate() {
this.x = -x;
this.y = -y;
this.z = -z;
return this;
}
public Vector3f negate(Vector3f dest) {
dest.x = -x;
dest.y = -y;
dest.z = -z;
return dest;
}
/**
* Set this
vector's components to their respective absolute values.
*
* @return this
*/
public Vector3f absolute() {
this.x = Math.abs(this.x);
this.y = Math.abs(this.y);
this.z = Math.abs(this.z);
return this;
}
public Vector3f absolute(Vector3f dest) {
dest.x = Math.abs(this.x);
dest.y = Math.abs(this.y);
dest.z = Math.abs(this.z);
return dest;
}
public int hashCode() {
final int prime = 31;
int result = 1;
result = prime * result + Float.floatToIntBits(x);
result = prime * result + Float.floatToIntBits(y);
result = prime * result + Float.floatToIntBits(z);
return result;
}
public boolean equals(Object obj) {
if (this == obj)
return true;
if (obj == null)
return false;
if (getClass() != obj.getClass())
return false;
Vector3f other = (Vector3f) obj;
if (Float.floatToIntBits(x) != Float.floatToIntBits(other.x))
return false;
if (Float.floatToIntBits(y) != Float.floatToIntBits(other.y))
return false;
if (Float.floatToIntBits(z) != Float.floatToIntBits(other.z))
return false;
return true;
}
public boolean equals(Vector3fc v, float delta) {
if (this == v)
return true;
if (v == null)
return false;
if (!(v instanceof Vector3fc))
return false;
if (!Runtime.equals(x, v.x(), delta))
return false;
if (!Runtime.equals(y, v.y(), delta))
return false;
if (!Runtime.equals(z, v.z(), delta))
return false;
return true;
}
public boolean equals(float x, float y, float z) {
if (Float.floatToIntBits(this.x) != Float.floatToIntBits(x))
return false;
if (Float.floatToIntBits(this.y) != Float.floatToIntBits(y))
return false;
if (Float.floatToIntBits(this.z) != Float.floatToIntBits(z))
return false;
return true;
}
/**
* Reflect this vector about the given normal
vector.
*
* @param normal
* the vector to reflect about
* @return this
*/
public Vector3f reflect(Vector3fc normal) {
float x = normal.x();
float y = normal.y();
float z = normal.z();
float dot = Math.fma(this.x, x, Math.fma(this.y, y, this.z * z));
this.x = this.x - (dot + dot) * x;
this.y = this.y - (dot + dot) * y;
this.z = this.z - (dot + dot) * z;
return this;
}
/**
* Reflect this vector about the given normal vector.
*
* @param x
* the x component of the normal
* @param y
* the y component of the normal
* @param z
* the z component of the normal
* @return this
*/
public Vector3f reflect(float x, float y, float z) {
float dot = Math.fma(this.x, x, Math.fma(this.y, y, this.z * z));
this.x = this.x - (dot + dot) * x;
this.y = this.y - (dot + dot) * y;
this.z = this.z - (dot + dot) * z;
return this;
}
public Vector3f reflect(Vector3fc normal, Vector3f dest) {
return reflect(normal.x(), normal.y(), normal.z(), dest);
}
public Vector3f reflect(float x, float y, float z, Vector3f dest) {
float dot = this.dot(x, y, z);
dest.x = this.x - (dot + dot) * x;
dest.y = this.y - (dot + dot) * y;
dest.z = this.z - (dot + dot) * z;
return dest;
}
/**
* Compute the half vector between this and the other vector.
*
* @param other
* the other vector
* @return this
*/
public Vector3f half(Vector3fc other) {
return this.set(this).add(other.x(), other.y(), other.z()).normalize();
}
/**
* Compute the half vector between this and the vector (x, y, z)
.
*
* @param x
* the x component of the other vector
* @param y
* the y component of the other vector
* @param z
* the z component of the other vector
* @return this
*/
public Vector3f half(float x, float y, float z) {
return half(x, y, z, this);
}
public Vector3f half(Vector3fc other, Vector3f dest) {
return half(other.x(), other.y(), other.z(), dest);
}
public Vector3f half(float x, float y, float z, Vector3f dest) {
return dest.set(this).add(x, y, z).normalize();
}
public Vector3f smoothStep(Vector3fc v, float t, Vector3f dest) {
float x = this.x, y = this.y, z = this.z;
float t2 = t * t;
float t3 = t2 * t;
dest.x = (x + x - v.x() - v.x()) * t3 + (3.0f * v.x() - 3.0f * x) * t2 + x * t + x;
dest.y = (y + y - v.y() - v.y()) * t3 + (3.0f * v.y() - 3.0f * y) * t2 + y * t + y;
dest.z = (z + z - v.z() - v.z()) * t3 + (3.0f * v.z() - 3.0f * z) * t2 + z * t + z;
return dest;
}
public Vector3f hermite(Vector3fc t0, Vector3fc v1, Vector3fc t1, float t, Vector3f dest) {
float x = this.x, y = this.y, z = this.z;
float t2 = t * t;
float t3 = t2 * t;
dest.x = (x + x - v1.x() - v1.x() + t1.x() + t0.x()) * t3 + (3.0f * v1.x() - 3.0f * x - t0.x() - t0.x() - t1.x()) * t2 + x * t + x;
dest.y = (y + y - v1.y() - v1.y() + t1.y() + t0.y()) * t3 + (3.0f * v1.y() - 3.0f * y - t0.y() - t0.y() - t1.y()) * t2 + y * t + y;
dest.z = (z + z - v1.z() - v1.z() + t1.z() + t0.z()) * t3 + (3.0f * v1.z() - 3.0f * z - t0.z() - t0.z() - t1.z()) * t2 + z * t + z;
return dest;
}
/**
* Linearly interpolate this
and other
using the given interpolation factor t
* and store the result in this
.
*
* If t
is 0.0
then the result is this
. If the interpolation factor is 1.0
* then the result is other
.
*
* @param other
* the other vector
* @param t
* the interpolation factor between 0.0 and 1.0
* @return this
*/
public Vector3f lerp(Vector3fc other, float t) {
return lerp(other, t, this);
}
public Vector3f lerp(Vector3fc other, float t, Vector3f dest) {
dest.x = Math.fma(other.x() - x, t, x);
dest.y = Math.fma(other.y() - y, t, y);
dest.z = Math.fma(other.z() - z, t, z);
return dest;
}
public float get(int component) throws IllegalArgumentException {
switch (component) {
case 0:
return x;
case 1:
return y;
case 2:
return z;
default:
throw new IllegalArgumentException();
}
}
public Vector3i get(int mode, Vector3i dest) {
dest.x = Math.roundUsing(this.x(), mode);
dest.y = Math.roundUsing(this.y(), mode);
dest.z = Math.roundUsing(this.z(), mode);
return dest;
}
public Vector3f get(Vector3f dest) {
dest.x = this.x();
dest.y = this.y();
dest.z = this.z();
return dest;
}
public Vector3d get(Vector3d dest) {
dest.x = this.x();
dest.y = this.y();
dest.z = this.z();
return dest;
}
public int maxComponent() {
float absX = Math.abs(x);
float absY = Math.abs(y);
float absZ = Math.abs(z);
if (absX >= absY && absX >= absZ) {
return 0;
} else if (absY >= absZ) {
return 1;
}
return 2;
}
public int minComponent() {
float absX = Math.abs(x);
float absY = Math.abs(y);
float absZ = Math.abs(z);
if (absX < absY && absX < absZ) {
return 0;
} else if (absY < absZ) {
return 1;
}
return 2;
}
public Vector3f orthogonalize(Vector3fc v, Vector3f dest) {
/*
* http://lolengine.net/blog/2013/09/21/picking-orthogonal-vector-combing-coconuts
*/
float rx, ry, rz;
if (Math.abs(v.x()) > Math.abs(v.z())) {
rx = -v.y();
ry = v.x();
rz = 0.0f;
} else {
rx = 0.0f;
ry = -v.z();
rz = v.y();
}
float invLen = Math.invsqrt(rx * rx + ry * ry + rz * rz);
dest.x = rx * invLen;
dest.y = ry * invLen;
dest.z = rz * invLen;
return dest;
}
/**
* Transform this
vector so that it is orthogonal to the given vector v
and normalize the result.
*
* Reference: Gram–Schmidt process
*
* @param v
* the reference vector which the result should be orthogonal to
* @return this
*/
public Vector3f orthogonalize(Vector3fc v) {
return orthogonalize(v, this);
}
public Vector3f orthogonalizeUnit(Vector3fc v, Vector3f dest) {
return orthogonalize(v, dest);
}
/**
* Transform this
vector so that it is orthogonal to the given unit vector v
and normalize the result.
*
* The vector v
is assumed to be a {@link #normalize() unit} vector.
*
* Reference: Gram–Schmidt process
*
* @param v
* the reference unit vector which the result should be orthogonal to
* @return this
*/
public Vector3f orthogonalizeUnit(Vector3fc v) {
return orthogonalizeUnit(v, this);
}
/**
* Set each component of this vector to the largest (closest to positive
* infinity) {@code float} value that is less than or equal to that
* component and is equal to a mathematical integer.
*
* @return this
*/
public Vector3f floor() {
return floor(this);
}
public Vector3f floor(Vector3f dest) {
dest.x = Math.floor(x);
dest.y = Math.floor(y);
dest.z = Math.floor(z);
return dest;
}
/**
* Set each component of this vector to the smallest (closest to negative
* infinity) {@code float} value that is greater than or equal to that
* component and is equal to a mathematical integer.
*
* @return this
*/
public Vector3f ceil() {
return ceil(this);
}
public Vector3f ceil(Vector3f dest) {
dest.x = Math.ceil(x);
dest.y = Math.ceil(y);
dest.z = Math.ceil(z);
return dest;
}
/**
* Set each component of this vector to the closest float that is equal to
* a mathematical integer, with ties rounding to positive infinity.
*
* @return this
*/
public Vector3f round() {
return round(this);
}
public Vector3f round(Vector3f dest) {
dest.x = Math.round(x);
dest.y = Math.round(y);
dest.z = Math.round(z);
return dest;
}
public boolean isFinite() {
return Math.isFinite(x) && Math.isFinite(y) && Math.isFinite(z);
}
}