All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.joml.Vector4fc Maven / Gradle / Ivy

There is a newer version: 1.10.1
Show newest version
/*
 * The MIT License
 *
 * Copyright (c) 2016-2020 JOML
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
package org.joml;

import java.nio.ByteBuffer;
import java.nio.FloatBuffer;
import java.util.*;

/**
 * Interface to a read-only view of a 4-dimensional vector of single-precision floats.
 * 
 * @author Kai Burjack
 */
public interface Vector4fc {

    /**
     * @return the value of the x component
     */
    float x();

    /**
     * @return the value of the y component
     */
    float y();

    /**
     * @return the value of the z component
     */
    float z();

    /**
     * @return the value of the w component
     */
    float w();

    /**
     * Store this vector into the supplied {@link FloatBuffer} at the current
     * buffer {@link FloatBuffer#position() position}.
     * 

* This method will not increment the position of the given FloatBuffer. *

* In order to specify the offset into the FloatBuffer at which * the vector is stored, use {@link #get(int, FloatBuffer)}, taking * the absolute position as parameter. * * @param buffer * will receive the values of this vector in x, y, z, w order * @return the passed in buffer * @see #get(int, FloatBuffer) */ FloatBuffer get(FloatBuffer buffer); /** * Store this vector into the supplied {@link FloatBuffer} starting at the specified * absolute buffer position/index. *

* This method will not increment the position of the given FloatBuffer. * * @param index * the absolute position into the FloatBuffer * @param buffer * will receive the values of this vector in x, y, z, w order * @return the passed in buffer */ FloatBuffer get(int index, FloatBuffer buffer); /** * Store this vector into the supplied {@link ByteBuffer} at the current * buffer {@link ByteBuffer#position() position}. *

* This method will not increment the position of the given ByteBuffer. *

* In order to specify the offset into the ByteBuffer at which * the vector is stored, use {@link #get(int, ByteBuffer)}, taking * the absolute position as parameter. * * @param buffer * will receive the values of this vector in x, y, z, w order * @return the passed in buffer * @see #get(int, ByteBuffer) */ ByteBuffer get(ByteBuffer buffer); /** * Store this vector into the supplied {@link ByteBuffer} starting at the specified * absolute buffer position/index. *

* This method will not increment the position of the given ByteBuffer. * * @param index * the absolute position into the ByteBuffer * @param buffer * will receive the values of this vector in x, y, z, w order * @return the passed in buffer */ ByteBuffer get(int index, ByteBuffer buffer); /** * Store this vector at the given off-heap memory address. *

* This method will throw an {@link UnsupportedOperationException} when JOML is used with `-Djoml.nounsafe`. *

* This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process. * * @param address * the off-heap address where to store this vector * @return this */ Vector4fc getToAddress(long address); /** * Subtract the supplied vector from this one and store the result in dest. * * @param v * the vector to subtract from this * @param dest * will hold the result * @return dest */ Vector4f sub(Vector4fc v, Vector4f dest); /** * Subtract (x, y, z, w) from this and store the result in dest. * * @param x * the x component to subtract * @param y * the y component to subtract * @param z * the z component to subtract * @param w * the w component to subtract * @param dest * will hold the result * @return dest */ Vector4f sub(float x, float y, float z, float w, Vector4f dest); /** * Add the supplied vector to this one and store the result in dest. * * @param v * the vector to add * @param dest * will hold the result * @return dest */ Vector4f add(Vector4fc v, Vector4f dest); /** * Increment the components of this vector by the given values and store the result in dest. * * @param x * the x component to add * @param y * the y component to add * @param z * the z component to add * @param w * the w component to add * @param dest * will hold the result * @return dest */ Vector4f add(float x, float y, float z, float w, Vector4f dest); /** * Add the component-wise multiplication of a * b to this vector * and store the result in dest. * * @param a * the first multiplicand * @param b * the second multiplicand * @param dest * will hold the result * @return dest */ Vector4f fma(Vector4fc a, Vector4fc b, Vector4f dest); /** * Add the component-wise multiplication of a * b to this vector * and store the result in dest. * * @param a * the first multiplicand * @param b * the second multiplicand * @param dest * will hold the result * @return dest */ Vector4f fma(float a, Vector4fc b, Vector4f dest); /** * Add the component-wise multiplication of this * a to b * and store the result in dest. * * @param a * the multiplicand * @param b * the addend * @param dest * will hold the result * @return dest */ Vector4f mulAdd(Vector4fc a, Vector4fc b, Vector4f dest); /** * Add the component-wise multiplication of this * a to b * and store the result in dest. * * @param a * the multiplicand * @param b * the addend * @param dest * will hold the result * @return dest */ Vector4f mulAdd(float a, Vector4fc b, Vector4f dest); /** * Multiply this Vector4f component-wise by another Vector4f and store the result in dest. * * @param v * the other vector * @param dest * will hold the result * @return dest */ Vector4f mul(Vector4fc v, Vector4f dest); /** * Divide this Vector4f component-wise by another Vector4f and store the result in dest. * * @param v * the vector to divide by * @param dest * will hold the result * @return dest */ Vector4f div(Vector4fc v, Vector4f dest); /** * Multiply the given matrix mat with this Vector4f and store the result in * dest. * * @param mat * the matrix to multiply the vector with * @param dest * the destination vector to hold the result * @return dest */ Vector4f mul(Matrix4fc mat, Vector4f dest); /** * Multiply the transpose of the given matrix mat with this Vector4f and store the result in * dest. * * @param mat * the matrix whose transpose to multiply the vector with * @param dest * the destination vector to hold the result * @return dest */ Vector4f mulTranspose(Matrix4fc mat, Vector4f dest); /** * Multiply the given affine matrix mat with this Vector4f and store the result in * dest. * * @param mat * the affine matrix to multiply the vector with * @param dest * the destination vector to hold the result * @return dest */ Vector4f mulAffine(Matrix4fc mat, Vector4f dest); /** * Multiply the transpose of the given affine matrix mat with this Vector4f and store the result in * dest. * * @param mat * the affine matrix whose transpose to multiply the vector with * @param dest * the destination vector to hold the result * @return dest */ Vector4f mulAffineTranspose(Matrix4fc mat, Vector4f dest); /** * Multiply the given matrix mat with this Vector4f and store the result in * dest. * * @param mat * the matrix to multiply the vector with * @param dest * the destination vector to hold the result * @return dest */ Vector4f mul(Matrix4x3fc mat, Vector4f dest); /** * Multiply the given matrix mat with this Vector4f, perform perspective division * and store the result in dest. * * @param mat * the matrix to multiply this vector by * @param dest * will hold the result * @return dest */ Vector4f mulProject(Matrix4fc mat, Vector4f dest); /** * Multiply the given matrix mat with this Vector4f, perform perspective division * and store the (x, y, z) result in dest. * * @param mat * the matrix to multiply this vector by * @param dest * will hold the result * @return dest */ Vector3f mulProject(Matrix4fc mat, Vector3f dest); /** * Multiply all components of this {@link Vector4f} by the given scalar * value and store the result in dest. * * @param scalar * the scalar to multiply by * @param dest * will hold the result * @return dest */ Vector4f mul(float scalar, Vector4f dest); /** * Multiply the components of this Vector4f by the given scalar values and store the result in dest. * * @param x * the x component to multiply by * @param y * the y component to multiply by * @param z * the z component to multiply by * @param w * the w component to multiply by * @param dest * will hold the result * @return dest */ Vector4f mul(float x, float y, float z, float w, Vector4f dest); /** * Divide all components of this {@link Vector4f} by the given scalar * value and store the result in dest. * * @param scalar * the scalar to divide by * @param dest * will hold the result * @return dest */ Vector4f div(float scalar, Vector4f dest); /** * Divide the components of this Vector4f by the given scalar values and store the result in dest. * * @param x * the x component to divide by * @param y * the y component to divide by * @param z * the z component to divide by * @param w * the w component to divide by * @param dest * will hold the result * @return dest */ Vector4f div(float x, float y, float z, float w, Vector4f dest); /** * Rotate this vector by the given quaternion quat and store the result in dest. * * @see Quaternionf#transform(Vector4f) * * @param quat * the quaternion to rotate this vector * @param dest * will hold the result * @return dest */ Vector4f rotate(Quaternionfc quat, Vector4f dest); /** * Rotate this vector the specified radians around the given rotation axis and store the result * into dest. * * @param angle * the angle in radians * @param aX * the x component of the rotation axis * @param aY * the y component of the rotation axis * @param aZ * the z component of the rotation axis * @param dest * will hold the result * @return dest */ Vector4f rotateAxis(float angle, float aX, float aY, float aZ, Vector4f dest); /** * Rotate this vector the specified radians around the X axis and store the result * into dest. * * @param angle * the angle in radians * @param dest * will hold the result * @return dest */ Vector4f rotateX(float angle, Vector4f dest); /** * Rotate this vector the specified radians around the Y axis and store the result * into dest. * * @param angle * the angle in radians * @param dest * will hold the result * @return dest */ Vector4f rotateY(float angle, Vector4f dest); /** * Rotate this vector the specified radians around the Z axis and store the result * into dest. * * @param angle * the angle in radians * @param dest * will hold the result * @return dest */ Vector4f rotateZ(float angle, Vector4f dest); /** * Return the length squared of this vector. * * @return the length squared */ float lengthSquared(); /** * Return the length of this vector. * * @return the length */ float length(); /** * Normalizes this vector and store the result in dest. * * @param dest * will hold the result * @return dest */ Vector4f normalize(Vector4f dest); /** * Scale this vector to have the given length and store the result in dest. * * @param length * the desired length * @param dest * will hold the result * @return dest */ Vector4f normalize(float length, Vector4f dest); /** * Normalize this vector by computing only the norm of (x, y, z) and store the result in dest. * * @param dest * will hold the result * @return dest */ Vector4f normalize3(Vector4f dest); /** * Return the distance between this Vector and v. * * @param v * the other vector * @return the distance */ float distance(Vector4fc v); /** * Return the distance between this vector and (x, y, z, w). * * @param x * the x component of the other vector * @param y * the y component of the other vector * @param z * the z component of the other vector * @param w * the w component of the other vector * @return the euclidean distance */ float distance(float x, float y, float z, float w); /** * Return the square of the distance between this vector and v. * * @param v * the other vector * @return the squared of the distance */ float distanceSquared(Vector4fc v); /** * Return the square of the distance between this vector and * (x, y, z, w). * * @param x * the x component of the other vector * @param y * the y component of the other vector * @param z * the z component of the other vector * @param w * the w component of the other vector * @return the square of the distance */ float distanceSquared(float x, float y, float z, float w); /** * Compute the dot product (inner product) of this vector and v * . * * @param v * the other vector * @return the dot product */ float dot(Vector4fc v); /** * Compute the dot product (inner product) of this vector and (x, y, z, w). * * @param x * the x component of the other vector * @param y * the y component of the other vector * @param z * the z component of the other vector * @param w * the w component of the other vector * @return the dot product */ float dot(float x, float y, float z, float w); /** * Return the cosine of the angle between this vector and the supplied vector. Use this instead of Math.cos(angle(v)). * * @see #angle(Vector4fc) * * @param v * the other vector * @return the cosine of the angle */ float angleCos(Vector4fc v); /** * Return the angle between this vector and the supplied vector. * * @see #angleCos(Vector4fc) * * @param v * the other vector * @return the angle, in radians */ float angle(Vector4fc v); /** * Negate this vector and store the result in dest. * * @param dest * will hold the result * @return dest */ Vector4f negate(Vector4f dest); /** * Set the components of dest to be the component-wise minimum of this and the other vector. * * @param v * the other vector * @param dest * will hold the result * @return dest */ Vector4f min(Vector4fc v, Vector4f dest); /** * Set the components of dest to be the component-wise maximum of this and the other vector. * * @param v * the other vector * @param dest * will hold the result * @return dest */ Vector4f max(Vector4fc v, Vector4f dest); /** * Linearly interpolate this and other using the given interpolation factor t * and store the result in dest. *

* If t is 0.0 then the result is this. If the interpolation factor is 1.0 * then the result is other. * * @param other * the other vector * @param t * the interpolation factor between 0.0 and 1.0 * @param dest * will hold the result * @return dest */ Vector4f lerp(Vector4fc other, float t, Vector4f dest); /** * Compute a smooth-step (i.e. hermite with zero tangents) interpolation * between this vector and the given vector v and * store the result in dest. * * @param v * the other vector * @param t * the interpolation factor, within [0..1] * @param dest * will hold the result * @return dest */ Vector4f smoothStep(Vector4fc v, float t, Vector4f dest); /** * Compute a hermite interpolation between this vector and its * associated tangent t0 and the given vector v * with its tangent t1 and store the result in * dest. * * @param t0 * the tangent of this vector * @param v1 * the other vector * @param t1 * the tangent of the other vector * @param t * the interpolation factor, within [0..1] * @param dest * will hold the result * @return dest */ Vector4f hermite(Vector4fc t0, Vector4fc v1, Vector4fc t1, float t, Vector4f dest); /** * Get the value of the specified component of this vector. * * @param component * the component, within [0..3] * @return the value * @throws IllegalArgumentException if component is not within [0..3] */ float get(int component) throws IllegalArgumentException; /** * Set the components of the given vector dest to those of this vector * using the given {@link RoundingMode}. * * @param mode * the {@link RoundingMode} to use * @param dest * will hold the result * @return dest */ Vector4i get(int mode, Vector4i dest); /** * Set the components of the given vector dest to those of this vector. * * @param dest * will hold the result * @return dest */ Vector4f get(Vector4f dest); /** * Set the components of the given vector dest to those of this vector. * * @param dest * will hold the result * @return dest */ Vector4d get(Vector4d dest); /** * Determine the component with the biggest absolute value. * * @return the component index, within [0..3] */ int maxComponent(); /** * Determine the component with the smallest (towards zero) absolute value. * * @return the component index, within [0..3] */ int minComponent(); /** * Compute for each component of this vector the largest (closest to positive * infinity) {@code float} value that is less than or equal to that * component and is equal to a mathematical integer and store the result in * dest. * * @param dest * will hold the result * @return dest */ Vector4f floor(Vector4f dest); /** * Compute for each component of this vector the smallest (closest to negative * infinity) {@code float} value that is greater than or equal to that * component and is equal to a mathematical integer and store the result in * dest. * * @param dest * will hold the result * @return dest */ Vector4f ceil(Vector4f dest); /** * Compute for each component of this vector the closest float that is equal to * a mathematical integer, with ties rounding to positive infinity and store * the result in dest. * * @param dest * will hold the result * @return dest */ Vector4f round(Vector4f dest); /** * Determine whether all components are finite floating-point values, that * is, they are not {@link Float#isNaN() NaN} and not * {@link Float#isInfinite() infinity}. * * @return {@code true} if all components are finite floating-point values; * {@code false} otherwise */ boolean isFinite(); /** * Compute the absolute of each of this vector's components * and store the result into dest. * * @param dest * will hold the result * @return dest */ Vector4f absolute(Vector4f dest); /** * Compare the vector components of this vector with the given vector using the given delta * and return whether all of them are equal within a maximum difference of delta. *

* Please note that this method is not used by any data structure such as {@link ArrayList} {@link HashSet} or {@link HashMap} * and their operations, such as {@link ArrayList#contains(Object)} or {@link HashSet#remove(Object)}, since those * data structures only use the {@link Object#equals(Object)} and {@link Object#hashCode()} methods. * * @param v * the other vector * @param delta * the allowed maximum difference * @return true whether all of the vector components are equal; false otherwise */ boolean equals(Vector4fc v, float delta); /** * Compare the vector components of this vector with the given (x, y, z, w) * and return whether all of them are equal. * * @param x * the x component to compare to * @param y * the y component to compare to * @param z * the z component to compare to * @param w * the w component to compare to * @return true if all the vector components are equal */ boolean equals(float x, float y, float z, float w); }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy