All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.joml.Matrix4d Maven / Gradle / Ivy

There is a newer version: 1.10.8
Show newest version
/*
 * The MIT License
 *
 * Copyright (c) 2015-2021 Richard Greenlees
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
package org.joml;

import java.io.Externalizable;
import java.io.IOException;
import java.io.ObjectInput;
import java.io.ObjectOutput;
import java.nio.ByteBuffer;
import java.nio.DoubleBuffer;
import java.nio.FloatBuffer;
import java.text.DecimalFormat;
import java.text.NumberFormat;

/**
 * Contains the definition of a 4x4 Matrix of doubles, and associated functions to transform
 * it. The matrix is column-major to match OpenGL's interpretation, and it looks like this:
 * 

* m00 m10 m20 m30
* m01 m11 m21 m31
* m02 m12 m22 m32
* m03 m13 m23 m33
* * @author Richard Greenlees * @author Kai Burjack */ public class Matrix4d implements Externalizable, Cloneable, Matrix4dc { private static final long serialVersionUID = 1L; double m00, m01, m02, m03; double m10, m11, m12, m13; double m20, m21, m22, m23; double m30, m31, m32, m33; int properties; /** * Create a new {@link Matrix4d} and set it to {@link #identity() identity}. */ public Matrix4d() { _m00(1.0). _m11(1.0). _m22(1.0). _m33(1.0). properties = PROPERTY_IDENTITY | PROPERTY_AFFINE | PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL; } /** * Create a new {@link Matrix4d} and make it a copy of the given matrix. * * @param mat * the {@link Matrix4dc} to copy the values from */ public Matrix4d(Matrix4dc mat) { set(mat); } /** * Create a new {@link Matrix4d} and make it a copy of the given matrix. * * @param mat * the {@link Matrix4fc} to copy the values from */ public Matrix4d(Matrix4fc mat) { set(mat); } /** * Create a new {@link Matrix4d} and set its upper 4x3 submatrix to the given matrix mat * and all other elements to identity. * * @param mat * the {@link Matrix4x3dc} to copy the values from */ public Matrix4d(Matrix4x3dc mat) { set(mat); } /** * Create a new {@link Matrix4d} and set its upper 4x3 submatrix to the given matrix mat * and all other elements to identity. * * @param mat * the {@link Matrix4x3fc} to copy the values from */ public Matrix4d(Matrix4x3fc mat) { set(mat); } /** * Create a new {@link Matrix4d} by setting its uppper left 3x3 submatrix to the values of the given {@link Matrix3dc} * and the rest to identity. * * @param mat * the {@link Matrix3dc} */ public Matrix4d(Matrix3dc mat) { set(mat); } /** * Create a new 4x4 matrix using the supplied double values. *

* The matrix layout will be:

* m00, m10, m20, m30
* m01, m11, m21, m31
* m02, m12, m22, m32
* m03, m13, m23, m33 * * @param m00 * the value of m00 * @param m01 * the value of m01 * @param m02 * the value of m02 * @param m03 * the value of m03 * @param m10 * the value of m10 * @param m11 * the value of m11 * @param m12 * the value of m12 * @param m13 * the value of m13 * @param m20 * the value of m20 * @param m21 * the value of m21 * @param m22 * the value of m22 * @param m23 * the value of m23 * @param m30 * the value of m30 * @param m31 * the value of m31 * @param m32 * the value of m32 * @param m33 * the value of m33 */ public Matrix4d(double m00, double m01, double m02, double m03, double m10, double m11, double m12, double m13, double m20, double m21, double m22, double m23, double m30, double m31, double m32, double m33) { this.m00 = m00; this.m01 = m01; this.m02 = m02; this.m03 = m03; this.m10 = m10; this.m11 = m11; this.m12 = m12; this.m13 = m13; this.m20 = m20; this.m21 = m21; this.m22 = m22; this.m23 = m23; this.m30 = m30; this.m31 = m31; this.m32 = m32; this.m33 = m33; determineProperties(); } /** * Create a new {@link Matrix4d} by reading its 16 double components from the given {@link DoubleBuffer} * at the buffer's current position. *

* That DoubleBuffer is expected to hold the values in column-major order. *

* The buffer's position will not be changed by this method. * * @param buffer * the {@link DoubleBuffer} to read the matrix values from */ public Matrix4d(DoubleBuffer buffer) { MemUtil.INSTANCE.get(this, buffer.position(), buffer); determineProperties(); } /** * Create a new {@link Matrix4d} and initialize its four columns using the supplied vectors. * * @param col0 * the first column * @param col1 * the second column * @param col2 * the third column * @param col3 * the fourth column */ public Matrix4d(Vector4d col0, Vector4d col1, Vector4d col2, Vector4d col3) { set(col0, col1, col2, col3); } /** * Assume the given properties about this matrix. *

* Use one or multiple of 0, {@link Matrix4dc#PROPERTY_IDENTITY}, * {@link Matrix4dc#PROPERTY_TRANSLATION}, {@link Matrix4dc#PROPERTY_AFFINE}, * {@link Matrix4dc#PROPERTY_PERSPECTIVE}, {@link Matrix4fc#PROPERTY_ORTHONORMAL}. * * @param properties * bitset of the properties to assume about this matrix * @return this */ public Matrix4d assume(int properties) { this.properties = (byte) properties; return this; } /** * Compute and set the matrix properties returned by {@link #properties()} based * on the current matrix element values. * * @return this */ public Matrix4d determineProperties() { int properties = 0; if (m03 == 0.0 && m13 == 0.0) { if (m23 == 0.0 && m33 == 1.0) { properties |= PROPERTY_AFFINE; if (m00 == 1.0 && m01 == 0.0 && m02 == 0.0 && m10 == 0.0 && m11 == 1.0 && m12 == 0.0 && m20 == 0.0 && m21 == 0.0 && m22 == 1.0) { properties |= PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL; if (m30 == 0.0 && m31 == 0.0 && m32 == 0.0) properties |= PROPERTY_IDENTITY; } /* * We do not determine orthogonality, since it would require arbitrary epsilons * and is rather expensive (6 dot products) in the worst case. */ } else if (m01 == 0.0 && m02 == 0.0 && m10 == 0.0 && m12 == 0.0 && m20 == 0.0 && m21 == 0.0 && m30 == 0.0 && m31 == 0.0 && m33 == 0.0) { properties |= PROPERTY_PERSPECTIVE; } } this.properties = properties; return this; } public int properties() { return properties; } public double m00() { return m00; } public double m01() { return m01; } public double m02() { return m02; } public double m03() { return m03; } public double m10() { return m10; } public double m11() { return m11; } public double m12() { return m12; } public double m13() { return m13; } public double m20() { return m20; } public double m21() { return m21; } public double m22() { return m22; } public double m23() { return m23; } public double m30() { return m30; } public double m31() { return m31; } public double m32() { return m32; } public double m33() { return m33; } /** * Set the value of the matrix element at column 0 and row 0. * * @param m00 * the new value * @return this */ public Matrix4d m00(double m00) { this.m00 = m00; properties &= ~PROPERTY_ORTHONORMAL; if (m00 != 1.0) properties &= ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION); return this; } /** * Set the value of the matrix element at column 0 and row 1. * * @param m01 * the new value * @return this */ public Matrix4d m01(double m01) { this.m01 = m01; properties &= ~PROPERTY_ORTHONORMAL; if (m01 != 0.0) properties &= ~(PROPERTY_IDENTITY | PROPERTY_PERSPECTIVE | PROPERTY_TRANSLATION); return this; } /** * Set the value of the matrix element at column 0 and row 2. * * @param m02 * the new value * @return this */ public Matrix4d m02(double m02) { this.m02 = m02; properties &= ~PROPERTY_ORTHONORMAL; if (m02 != 0.0) properties &= ~(PROPERTY_IDENTITY | PROPERTY_PERSPECTIVE | PROPERTY_TRANSLATION); return this; } /** * Set the value of the matrix element at column 0 and row 3. * * @param m03 * the new value * @return this */ public Matrix4d m03(double m03) { this.m03 = m03; if (m03 != 0.0) properties = 0; return this; } /** * Set the value of the matrix element at column 1 and row 0. * * @param m10 * the new value * @return this */ public Matrix4d m10(double m10) { this.m10 = m10; properties &= ~PROPERTY_ORTHONORMAL; if (m10 != 0.0) properties &= ~(PROPERTY_IDENTITY | PROPERTY_PERSPECTIVE | PROPERTY_TRANSLATION); return this; } /** * Set the value of the matrix element at column 1 and row 1. * * @param m11 * the new value * @return this */ public Matrix4d m11(double m11) { this.m11 = m11; properties &= ~PROPERTY_ORTHONORMAL; if (m11 != 1.0) properties &= ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION); return this; } /** * Set the value of the matrix element at column 1 and row 2. * * @param m12 * the new value * @return this */ public Matrix4d m12(double m12) { this.m12 = m12; properties &= ~PROPERTY_ORTHONORMAL; if (m12 != 0.0) properties &= ~(PROPERTY_IDENTITY | PROPERTY_PERSPECTIVE | PROPERTY_TRANSLATION); return this; } /** * Set the value of the matrix element at column 1 and row 3. * * @param m13 * the new value * @return this */ public Matrix4d m13(double m13) { this.m13 = m13; if (m03 != 0.0) properties = 0; return this; } /** * Set the value of the matrix element at column 2 and row 0. * * @param m20 * the new value * @return this */ public Matrix4d m20(double m20) { this.m20 = m20; properties &= ~PROPERTY_ORTHONORMAL; if (m20 != 0.0) properties &= ~(PROPERTY_IDENTITY | PROPERTY_PERSPECTIVE | PROPERTY_TRANSLATION); return this; } /** * Set the value of the matrix element at column 2 and row 1. * * @param m21 * the new value * @return this */ public Matrix4d m21(double m21) { this.m21 = m21; properties &= ~PROPERTY_ORTHONORMAL; if (m21 != 0.0) properties &= ~(PROPERTY_IDENTITY | PROPERTY_PERSPECTIVE | PROPERTY_TRANSLATION); return this; } /** * Set the value of the matrix element at column 2 and row 2. * * @param m22 * the new value * @return this */ public Matrix4d m22(double m22) { this.m22 = m22; properties &= ~PROPERTY_ORTHONORMAL; if (m22 != 1.0) properties &= ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION); return this; } /** * Set the value of the matrix element at column 2 and row 3. * * @param m23 * the new value * @return this */ public Matrix4d m23(double m23) { this.m23 = m23; if (m23 != 0.0) properties &= ~(PROPERTY_IDENTITY | PROPERTY_AFFINE | PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL); return this; } /** * Set the value of the matrix element at column 3 and row 0. * * @param m30 * the new value * @return this */ public Matrix4d m30(double m30) { this.m30 = m30; if (m30 != 0.0) properties &= ~(PROPERTY_IDENTITY | PROPERTY_PERSPECTIVE); return this; } /** * Set the value of the matrix element at column 3 and row 1. * * @param m31 * the new value * @return this */ public Matrix4d m31(double m31) { this.m31 = m31; if (m31 != 0.0) properties &= ~(PROPERTY_IDENTITY | PROPERTY_PERSPECTIVE); return this; } /** * Set the value of the matrix element at column 3 and row 2. * * @param m32 * the new value * @return this */ public Matrix4d m32(double m32) { this.m32 = m32; if (m32 != 0.0) properties &= ~(PROPERTY_IDENTITY | PROPERTY_PERSPECTIVE); return this; } /** * Set the value of the matrix element at column 3 and row 3. * * @param m33 * the new value * @return this */ public Matrix4d m33(double m33) { this.m33 = m33; if (m33 != 0.0) properties &= ~(PROPERTY_PERSPECTIVE); if (m33 != 1.0) properties &= ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL | PROPERTY_AFFINE); return this; } Matrix4d _properties(int properties) { this.properties = properties; return this; } /** * Set the value of the matrix element at column 0 and row 0 without updating the properties of the matrix. * * @param m00 * the new value * @return this */ Matrix4d _m00(double m00) { this.m00 = m00; return this; } /** * Set the value of the matrix element at column 0 and row 1 without updating the properties of the matrix. * * @param m01 * the new value * @return this */ Matrix4d _m01(double m01) { this.m01 = m01; return this; } /** * Set the value of the matrix element at column 0 and row 2 without updating the properties of the matrix. * * @param m02 * the new value * @return this */ Matrix4d _m02(double m02) { this.m02 = m02; return this; } /** * Set the value of the matrix element at column 0 and row 3 without updating the properties of the matrix. * * @param m03 * the new value * @return this */ Matrix4d _m03(double m03) { this.m03 = m03; return this; } /** * Set the value of the matrix element at column 1 and row 0 without updating the properties of the matrix. * * @param m10 * the new value * @return this */ Matrix4d _m10(double m10) { this.m10 = m10; return this; } /** * Set the value of the matrix element at column 1 and row 1 without updating the properties of the matrix. * * @param m11 * the new value * @return this */ Matrix4d _m11(double m11) { this.m11 = m11; return this; } /** * Set the value of the matrix element at column 1 and row 2 without updating the properties of the matrix. * * @param m12 * the new value * @return this */ Matrix4d _m12(double m12) { this.m12 = m12; return this; } /** * Set the value of the matrix element at column 1 and row 3 without updating the properties of the matrix. * * @param m13 * the new value * @return this */ Matrix4d _m13(double m13) { this.m13 = m13; return this; } /** * Set the value of the matrix element at column 2 and row 0 without updating the properties of the matrix. * * @param m20 * the new value * @return this */ Matrix4d _m20(double m20) { this.m20 = m20; return this; } /** * Set the value of the matrix element at column 2 and row 1 without updating the properties of the matrix. * * @param m21 * the new value * @return this */ Matrix4d _m21(double m21) { this.m21 = m21; return this; } /** * Set the value of the matrix element at column 2 and row 2 without updating the properties of the matrix. * * @param m22 * the new value * @return this */ Matrix4d _m22(double m22) { this.m22 = m22; return this; } /** * Set the value of the matrix element at column 2 and row 3 without updating the properties of the matrix. * * @param m23 * the new value * @return this */ Matrix4d _m23(double m23) { this.m23 = m23; return this; } /** * Set the value of the matrix element at column 3 and row 0 without updating the properties of the matrix. * * @param m30 * the new value * @return this */ Matrix4d _m30(double m30) { this.m30 = m30; return this; } /** * Set the value of the matrix element at column 3 and row 1 without updating the properties of the matrix. * * @param m31 * the new value * @return this */ Matrix4d _m31(double m31) { this.m31 = m31; return this; } /** * Set the value of the matrix element at column 3 and row 2 without updating the properties of the matrix. * * @param m32 * the new value * @return this */ Matrix4d _m32(double m32) { this.m32 = m32; return this; } /** * Set the value of the matrix element at column 3 and row 3 without updating the properties of the matrix. * * @param m33 * the new value * @return this */ Matrix4d _m33(double m33) { this.m33 = m33; return this; } /** * Reset this matrix to the identity. *

* Please note that if a call to {@link #identity()} is immediately followed by a call to: * {@link #translate(double, double, double) translate}, * {@link #rotate(double, double, double, double) rotate}, * {@link #scale(double, double, double) scale}, * {@link #perspective(double, double, double, double) perspective}, * {@link #frustum(double, double, double, double, double, double) frustum}, * {@link #ortho(double, double, double, double, double, double) ortho}, * {@link #ortho2D(double, double, double, double) ortho2D}, * {@link #lookAt(double, double, double, double, double, double, double, double, double) lookAt}, * {@link #lookAlong(double, double, double, double, double, double) lookAlong}, * or any of their overloads, then the call to {@link #identity()} can be omitted and the subsequent call replaced with: * {@link #translation(double, double, double) translation}, * {@link #rotation(double, double, double, double) rotation}, * {@link #scaling(double, double, double) scaling}, * {@link #setPerspective(double, double, double, double) setPerspective}, * {@link #setFrustum(double, double, double, double, double, double) setFrustum}, * {@link #setOrtho(double, double, double, double, double, double) setOrtho}, * {@link #setOrtho2D(double, double, double, double) setOrtho2D}, * {@link #setLookAt(double, double, double, double, double, double, double, double, double) setLookAt}, * {@link #setLookAlong(double, double, double, double, double, double) setLookAlong}, * or any of their overloads. * * @return this */ public Matrix4d identity() { if ((properties & PROPERTY_IDENTITY) != 0) return this; _identity(); properties = PROPERTY_IDENTITY | PROPERTY_AFFINE | PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL; return this; } private void _identity() { _m00(1.0). _m10(0.0). _m20(0.0). _m30(0.0). _m01(0.0). _m11(1.0). _m21(0.0). _m31(0.0). _m02(0.0). _m12(0.0). _m22(1.0). _m32(0.0). _m03(0.0). _m13(0.0). _m23(0.0). _m33(1.0); } /** * Store the values of the given matrix m into this matrix. * * @see #Matrix4d(Matrix4dc) * @see #get(Matrix4d) * * @param m * the matrix to copy the values from * @return this */ public Matrix4d set(Matrix4dc m) { return _m00(m.m00()). _m01(m.m01()). _m02(m.m02()). _m03(m.m03()). _m10(m.m10()). _m11(m.m11()). _m12(m.m12()). _m13(m.m13()). _m20(m.m20()). _m21(m.m21()). _m22(m.m22()). _m23(m.m23()). _m30(m.m30()). _m31(m.m31()). _m32(m.m32()). _m33(m.m33()). _properties(m.properties()); } /** * Store the values of the given matrix m into this matrix. * * @see #Matrix4d(Matrix4fc) * * @param m * the matrix to copy the values from * @return this */ public Matrix4d set(Matrix4fc m) { return _m00(m.m00()). _m01(m.m01()). _m02(m.m02()). _m03(m.m03()). _m10(m.m10()). _m11(m.m11()). _m12(m.m12()). _m13(m.m13()). _m20(m.m20()). _m21(m.m21()). _m22(m.m22()). _m23(m.m23()). _m30(m.m30()). _m31(m.m31()). _m32(m.m32()). _m33(m.m33()). _properties(m.properties()); } /** * Store the values of the transpose of the given matrix m into this matrix. * * @param m * the matrix to copy the transposed values from * @return this */ public Matrix4d setTransposed(Matrix4dc m) { if ((m.properties() & PROPERTY_IDENTITY) != 0) return this.identity(); return setTransposedInternal(m); } private Matrix4d setTransposedInternal(Matrix4dc m) { double nm10 = m.m01(), nm12 = m.m21(), nm13 = m.m31(); double nm20 = m.m02(), nm21 = m.m12(), nm30 = m.m03(); double nm31 = m.m13(), nm32 = m.m23(); return this ._m00(m.m00())._m01(m.m10())._m02(m.m20())._m03(m.m30()) ._m10(nm10)._m11(m.m11())._m12(nm12)._m13(nm13) ._m20(nm20)._m21(nm21)._m22(m.m22())._m23(m.m32()) ._m30(nm30)._m31(nm31)._m32(nm32)._m33(m.m33()) ._properties(m.properties() & PROPERTY_IDENTITY); } /** * Store the values of the given matrix m into this matrix * and set the other matrix elements to identity. * * @see #Matrix4d(Matrix4x3dc) * * @param m * the matrix to copy the values from * @return this */ public Matrix4d set(Matrix4x3dc m) { return _m00(m.m00()). _m01(m.m01()). _m02(m.m02()). _m03(0.0). _m10(m.m10()). _m11(m.m11()). _m12(m.m12()). _m13(0.0). _m20(m.m20()). _m21(m.m21()). _m22(m.m22()). _m23(0.0). _m30(m.m30()). _m31(m.m31()). _m32(m.m32()). _m33(1.0). _properties(m.properties() | PROPERTY_AFFINE); } /** * Store the values of the given matrix m into this matrix * and set the other matrix elements to identity. * * @see #Matrix4d(Matrix4x3fc) * * @param m * the matrix to copy the values from * @return this */ public Matrix4d set(Matrix4x3fc m) { return _m00(m.m00()). _m01(m.m01()). _m02(m.m02()). _m03(0.0). _m10(m.m10()). _m11(m.m11()). _m12(m.m12()). _m13(0.0). _m20(m.m20()). _m21(m.m21()). _m22(m.m22()). _m23(0.0). _m30(m.m30()). _m31(m.m31()). _m32(m.m32()). _m33(1.0). _properties(m.properties() | PROPERTY_AFFINE); } /** * Set the upper left 3x3 submatrix of this {@link Matrix4d} to the given {@link Matrix3dc} * and the rest to identity. * * @see #Matrix4d(Matrix3dc) * * @param mat * the {@link Matrix3dc} * @return this */ public Matrix4d set(Matrix3dc mat) { return _m00(mat.m00()). _m01(mat.m01()). _m02(mat.m02()). _m03(0.0). _m10(mat.m10()). _m11(mat.m11()). _m12(mat.m12()). _m13(0.0). _m20(mat.m20()). _m21(mat.m21()). _m22(mat.m22()). _m23(0.0). _m30(0.0). _m31(0.0). _m32(0.0). _m33(1.0). _properties(PROPERTY_AFFINE); } /** * Set the upper left 3x3 submatrix of this {@link Matrix4d} to that of the given {@link Matrix4dc} * and don't change the other elements. * * @param mat * the {@link Matrix4dc} * @return this */ public Matrix4d set3x3(Matrix4dc mat) { return _m00(mat.m00()). _m01(mat.m01()). _m02(mat.m02()). _m10(mat.m10()). _m11(mat.m11()). _m12(mat.m12()). _m20(mat.m20()). _m21(mat.m21()). _m22(mat.m22()). _properties(properties & mat.properties() & ~(PROPERTY_PERSPECTIVE)); } /** * Set the upper 4x3 submatrix of this {@link Matrix4d} to the given {@link Matrix4x3dc} * and don't change the other elements. * * @see Matrix4x3dc#get(Matrix4d) * * @param mat * the {@link Matrix4x3dc} * @return this */ public Matrix4d set4x3(Matrix4x3dc mat) { return _m00(mat.m00()). _m01(mat.m01()). _m02(mat.m02()). _m10(mat.m10()). _m11(mat.m11()). _m12(mat.m12()). _m20(mat.m20()). _m21(mat.m21()). _m22(mat.m22()). _m30(mat.m30()). _m31(mat.m31()). _m32(mat.m32()). _properties(properties & mat.properties() & ~(PROPERTY_PERSPECTIVE)); } /** * Set the upper 4x3 submatrix of this {@link Matrix4d} to the given {@link Matrix4x3fc} * and don't change the other elements. * * @see Matrix4x3fc#get(Matrix4d) * * @param mat * the {@link Matrix4x3fc} * @return this */ public Matrix4d set4x3(Matrix4x3fc mat) { return _m00(mat.m00()). _m01(mat.m01()). _m02(mat.m02()). _m10(mat.m10()). _m11(mat.m11()). _m12(mat.m12()). _m20(mat.m20()). _m21(mat.m21()). _m22(mat.m22()). _m30(mat.m30()). _m31(mat.m31()). _m32(mat.m32()). _properties(properties & mat.properties() & ~(PROPERTY_PERSPECTIVE)); } /** * Set the upper 4x3 submatrix of this {@link Matrix4d} to the upper 4x3 submatrix of the given {@link Matrix4dc} * and don't change the other elements. * * @param mat * the {@link Matrix4dc} * @return this */ public Matrix4d set4x3(Matrix4dc mat) { return _m00(mat.m00()). _m01(mat.m01()). _m02(mat.m02()). _m10(mat.m10()). _m11(mat.m11()). _m12(mat.m12()). _m20(mat.m20()). _m21(mat.m21()). _m22(mat.m22()). _m30(mat.m30()). _m31(mat.m31()). _m32(mat.m32()). _properties(properties & mat.properties() & ~(PROPERTY_PERSPECTIVE)); } /** * Set this matrix to be equivalent to the rotation specified by the given {@link AxisAngle4f}. * * @param axisAngle * the {@link AxisAngle4f} * @return this */ public Matrix4d set(AxisAngle4f axisAngle) { double x = axisAngle.x; double y = axisAngle.y; double z = axisAngle.z; double angle = axisAngle.angle; double invLength = Math.invsqrt(x*x + y*y + z*z); x *= invLength; y *= invLength; z *= invLength; double s = Math.sin(angle); double c = Math.cosFromSin(s, angle); double omc = 1.0 - c; _m00(c + x*x*omc). _m11(c + y*y*omc). _m22(c + z*z*omc); double tmp1 = x*y*omc; double tmp2 = z*s; _m10(tmp1 - tmp2). _m01(tmp1 + tmp2); tmp1 = x*z*omc; tmp2 = y*s; _m20(tmp1 + tmp2). _m02(tmp1 - tmp2); tmp1 = y*z*omc; tmp2 = x*s; _m21(tmp1 - tmp2). _m12(tmp1 + tmp2). _m03(0.0). _m13(0.0). _m23(0.0). _m30(0.0). _m31(0.0). _m32(0.0). _m33(1.0). properties = PROPERTY_AFFINE | PROPERTY_ORTHONORMAL; return this; } /** * Set this matrix to be equivalent to the rotation specified by the given {@link AxisAngle4d}. * * @param axisAngle * the {@link AxisAngle4d} * @return this */ public Matrix4d set(AxisAngle4d axisAngle) { double x = axisAngle.x; double y = axisAngle.y; double z = axisAngle.z; double angle = axisAngle.angle; double invLength = Math.invsqrt(x*x + y*y + z*z); x *= invLength; y *= invLength; z *= invLength; double s = Math.sin(angle); double c = Math.cosFromSin(s, angle); double omc = 1.0 - c; _m00(c + x*x*omc). _m11(c + y*y*omc). _m22(c + z*z*omc); double tmp1 = x*y*omc; double tmp2 = z*s; _m10(tmp1 - tmp2). _m01(tmp1 + tmp2); tmp1 = x*z*omc; tmp2 = y*s; _m20(tmp1 + tmp2). _m02(tmp1 - tmp2); tmp1 = y*z*omc; tmp2 = x*s; _m21(tmp1 - tmp2). _m12(tmp1 + tmp2). _m03(0.0). _m13(0.0). _m23(0.0). _m30(0.0). _m31(0.0). _m32(0.0). _m33(1.0). properties = PROPERTY_AFFINE | PROPERTY_ORTHONORMAL; return this; } /** * Set this matrix to be equivalent to the rotation - and possibly scaling - specified by the given {@link Quaternionfc}. *

* This method is equivalent to calling: rotation(q) *

* Reference: http://www.euclideanspace.com/ * * @see #rotation(Quaternionfc) * * @param q * the {@link Quaternionfc} * @return this */ public Matrix4d set(Quaternionfc q) { return rotation(q); } /** * Set this matrix to be equivalent to the rotation - and possibly scaling - specified by the given {@link Quaterniondc}. *

* This method is equivalent to calling: rotation(q) *

* Reference: http://www.euclideanspace.com/ * * @see #rotation(Quaterniondc) * * @param q * the {@link Quaterniondc} * @return this */ public Matrix4d set(Quaterniondc q) { return rotation(q); } /** * Multiply this matrix by the supplied right matrix. *

* If M is this matrix and R the right matrix, * then the new matrix will be M * R. So when transforming a * vector v with the new matrix by using M * R * v, the * transformation of the right matrix will be applied first! * * @param right * the right operand of the multiplication * @return this */ public Matrix4d mul(Matrix4dc right) { return mul(right, this); } public Matrix4d mul(Matrix4dc right, Matrix4d dest) { if ((properties & PROPERTY_IDENTITY) != 0) return dest.set(right); else if ((right.properties() & PROPERTY_IDENTITY) != 0) return dest.set(this); else if ((properties & PROPERTY_TRANSLATION) != 0 && (right.properties() & PROPERTY_AFFINE) != 0) return mulTranslationAffine(right, dest); else if ((properties & PROPERTY_AFFINE) != 0 && (right.properties() & PROPERTY_AFFINE) != 0) return mulAffine(right, dest); else if ((properties & PROPERTY_PERSPECTIVE) != 0 && (right.properties() & PROPERTY_AFFINE) != 0) return mulPerspectiveAffine(right, dest); else if ((right.properties() & PROPERTY_AFFINE) != 0) return mulAffineR(right, dest); return mul0(right, dest); } /** * Multiply this matrix by the supplied right matrix. *

* If M is this matrix and R the right matrix, * then the new matrix will be M * R. So when transforming a * vector v with the new matrix by using M * R * v, the * transformation of the right matrix will be applied first! *

* This method neither assumes nor checks for any matrix properties of this or right * and will always perform a complete 4x4 matrix multiplication. This method should only be used whenever the * multiplied matrices do not have any properties for which there are optimized multiplication methods available. * * @param right * the right operand of the matrix multiplication * @return this */ public Matrix4d mul0(Matrix4dc right) { return mul0(right, this); } public Matrix4d mul0(Matrix4dc right, Matrix4d dest) { double nm00 = Math.fma(m00, right.m00(), Math.fma(m10, right.m01(), Math.fma(m20, right.m02(), m30 * right.m03()))); double nm01 = Math.fma(m01, right.m00(), Math.fma(m11, right.m01(), Math.fma(m21, right.m02(), m31 * right.m03()))); double nm02 = Math.fma(m02, right.m00(), Math.fma(m12, right.m01(), Math.fma(m22, right.m02(), m32 * right.m03()))); double nm03 = Math.fma(m03, right.m00(), Math.fma(m13, right.m01(), Math.fma(m23, right.m02(), m33 * right.m03()))); double nm10 = Math.fma(m00, right.m10(), Math.fma(m10, right.m11(), Math.fma(m20, right.m12(), m30 * right.m13()))); double nm11 = Math.fma(m01, right.m10(), Math.fma(m11, right.m11(), Math.fma(m21, right.m12(), m31 * right.m13()))); double nm12 = Math.fma(m02, right.m10(), Math.fma(m12, right.m11(), Math.fma(m22, right.m12(), m32 * right.m13()))); double nm13 = Math.fma(m03, right.m10(), Math.fma(m13, right.m11(), Math.fma(m23, right.m12(), m33 * right.m13()))); double nm20 = Math.fma(m00, right.m20(), Math.fma(m10, right.m21(), Math.fma(m20, right.m22(), m30 * right.m23()))); double nm21 = Math.fma(m01, right.m20(), Math.fma(m11, right.m21(), Math.fma(m21, right.m22(), m31 * right.m23()))); double nm22 = Math.fma(m02, right.m20(), Math.fma(m12, right.m21(), Math.fma(m22, right.m22(), m32 * right.m23()))); double nm23 = Math.fma(m03, right.m20(), Math.fma(m13, right.m21(), Math.fma(m23, right.m22(), m33 * right.m23()))); double nm30 = Math.fma(m00, right.m30(), Math.fma(m10, right.m31(), Math.fma(m20, right.m32(), m30 * right.m33()))); double nm31 = Math.fma(m01, right.m30(), Math.fma(m11, right.m31(), Math.fma(m21, right.m32(), m31 * right.m33()))); double nm32 = Math.fma(m02, right.m30(), Math.fma(m12, right.m31(), Math.fma(m22, right.m32(), m32 * right.m33()))); double nm33 = Math.fma(m03, right.m30(), Math.fma(m13, right.m31(), Math.fma(m23, right.m32(), m33 * right.m33()))); return dest ._m00(nm00) ._m01(nm01) ._m02(nm02) ._m03(nm03) ._m10(nm10) ._m11(nm11) ._m12(nm12) ._m13(nm13) ._m20(nm20) ._m21(nm21) ._m22(nm22) ._m23(nm23) ._m30(nm30) ._m31(nm31) ._m32(nm32) ._m33(nm33) ._properties(0); } /** * Multiply this matrix by the matrix with the supplied elements. *

* If M is this matrix and R the right matrix whose * elements are supplied via the parameters, then the new matrix will be M * R. * So when transforming a vector v with the new matrix by using M * R * v, the * transformation of the right matrix will be applied first! * * @param r00 * the m00 element of the right matrix * @param r01 * the m01 element of the right matrix * @param r02 * the m02 element of the right matrix * @param r03 * the m03 element of the right matrix * @param r10 * the m10 element of the right matrix * @param r11 * the m11 element of the right matrix * @param r12 * the m12 element of the right matrix * @param r13 * the m13 element of the right matrix * @param r20 * the m20 element of the right matrix * @param r21 * the m21 element of the right matrix * @param r22 * the m22 element of the right matrix * @param r23 * the m23 element of the right matrix * @param r30 * the m30 element of the right matrix * @param r31 * the m31 element of the right matrix * @param r32 * the m32 element of the right matrix * @param r33 * the m33 element of the right matrix * @return this */ public Matrix4d mul( double r00, double r01, double r02, double r03, double r10, double r11, double r12, double r13, double r20, double r21, double r22, double r23, double r30, double r31, double r32, double r33) { return mul(r00, r01, r02, r03, r10, r11, r12, r13, r20, r21, r22, r23, r30, r31, r32, r33, this); } public Matrix4d mul( double r00, double r01, double r02, double r03, double r10, double r11, double r12, double r13, double r20, double r21, double r22, double r23, double r30, double r31, double r32, double r33, Matrix4d dest) { if ((properties & PROPERTY_IDENTITY) != 0) return dest.set(r00, r01, r02, r03, r10, r11, r12, r13, r20, r21, r22, r23, r30, r31, r32, r33); else if ((properties & PROPERTY_AFFINE) != 0) return mulAffineL(r00, r01, r02, r03, r10, r11, r12, r13, r20, r21, r22, r23, r30, r31, r32, r33, dest); return mulGeneric(r00, r01, r02, r03, r10, r11, r12, r13, r20, r21, r22, r23, r30, r31, r32, r33, dest); } private Matrix4d mulAffineL( double r00, double r01, double r02, double r03, double r10, double r11, double r12, double r13, double r20, double r21, double r22, double r23, double r30, double r31, double r32, double r33, Matrix4d dest) { double nm00 = Math.fma(m00, r00, Math.fma(m10, r01, Math.fma(m20, r02, m30 * r03))); double nm01 = Math.fma(m01, r00, Math.fma(m11, r01, Math.fma(m21, r02, m31 * r03))); double nm02 = Math.fma(m02, r00, Math.fma(m12, r01, Math.fma(m22, r02, m32 * r03))); double nm03 = r03; double nm10 = Math.fma(m00, r10, Math.fma(m10, r11, Math.fma(m20, r12, m30 * r13))); double nm11 = Math.fma(m01, r10, Math.fma(m11, r11, Math.fma(m21, r12, m31 * r13))); double nm12 = Math.fma(m02, r10, Math.fma(m12, r11, Math.fma(m22, r12, m32 * r13))); double nm13 = r13; double nm20 = Math.fma(m00, r20, Math.fma(m10, r21, Math.fma(m20, r22, m30 * r23))); double nm21 = Math.fma(m01, r20, Math.fma(m11, r21, Math.fma(m21, r22, m31 * r23))); double nm22 = Math.fma(m02, r20, Math.fma(m12, r21, Math.fma(m22, r22, m32 * r23))); double nm23 = r23; double nm30 = Math.fma(m00, r30, Math.fma(m10, r31, Math.fma(m20, r32, m30 * r33))); double nm31 = Math.fma(m01, r30, Math.fma(m11, r31, Math.fma(m21, r32, m31 * r33))); double nm32 = Math.fma(m02, r30, Math.fma(m12, r31, Math.fma(m22, r32, m32 * r33))); double nm33 = r33; return dest ._m00(nm00) ._m01(nm01) ._m02(nm02) ._m03(nm03) ._m10(nm10) ._m11(nm11) ._m12(nm12) ._m13(nm13) ._m20(nm20) ._m21(nm21) ._m22(nm22) ._m23(nm23) ._m30(nm30) ._m31(nm31) ._m32(nm32) ._m33(nm33) ._properties(PROPERTY_AFFINE); } private Matrix4d mulGeneric( double r00, double r01, double r02, double r03, double r10, double r11, double r12, double r13, double r20, double r21, double r22, double r23, double r30, double r31, double r32, double r33, Matrix4d dest) { double nm00 = Math.fma(m00, r00, Math.fma(m10, r01, Math.fma(m20, r02, m30 * r03))); double nm01 = Math.fma(m01, r00, Math.fma(m11, r01, Math.fma(m21, r02, m31 * r03))); double nm02 = Math.fma(m02, r00, Math.fma(m12, r01, Math.fma(m22, r02, m32 * r03))); double nm03 = Math.fma(m03, r00, Math.fma(m13, r01, Math.fma(m23, r02, m33 * r03))); double nm10 = Math.fma(m00, r10, Math.fma(m10, r11, Math.fma(m20, r12, m30 * r13))); double nm11 = Math.fma(m01, r10, Math.fma(m11, r11, Math.fma(m21, r12, m31 * r13))); double nm12 = Math.fma(m02, r10, Math.fma(m12, r11, Math.fma(m22, r12, m32 * r13))); double nm13 = Math.fma(m03, r10, Math.fma(m13, r11, Math.fma(m23, r12, m33 * r13))); double nm20 = Math.fma(m00, r20, Math.fma(m10, r21, Math.fma(m20, r22, m30 * r23))); double nm21 = Math.fma(m01, r20, Math.fma(m11, r21, Math.fma(m21, r22, m31 * r23))); double nm22 = Math.fma(m02, r20, Math.fma(m12, r21, Math.fma(m22, r22, m32 * r23))); double nm23 = Math.fma(m03, r20, Math.fma(m13, r21, Math.fma(m23, r22, m33 * r23))); double nm30 = Math.fma(m00, r30, Math.fma(m10, r31, Math.fma(m20, r32, m30 * r33))); double nm31 = Math.fma(m01, r30, Math.fma(m11, r31, Math.fma(m21, r32, m31 * r33))); double nm32 = Math.fma(m02, r30, Math.fma(m12, r31, Math.fma(m22, r32, m32 * r33))); double nm33 = Math.fma(m03, r30, Math.fma(m13, r31, Math.fma(m23, r32, m33 * r33))); return dest ._m00(nm00) ._m01(nm01) ._m02(nm02) ._m03(nm03) ._m10(nm10) ._m11(nm11) ._m12(nm12) ._m13(nm13) ._m20(nm20) ._m21(nm21) ._m22(nm22) ._m23(nm23) ._m30(nm30) ._m31(nm31) ._m32(nm32) ._m33(nm33) ._properties(0); } /** * Multiply this matrix by the 3x3 matrix with the supplied elements expanded to a 4x4 matrix with * all other matrix elements set to identity. *

* If M is this matrix and R the right matrix whose * elements are supplied via the parameters, then the new matrix will be M * R. * So when transforming a vector v with the new matrix by using M * R * v, the * transformation of the right matrix will be applied first! * * @param r00 * the m00 element of the right matrix * @param r01 * the m01 element of the right matrix * @param r02 * the m02 element of the right matrix * @param r10 * the m10 element of the right matrix * @param r11 * the m11 element of the right matrix * @param r12 * the m12 element of the right matrix * @param r20 * the m20 element of the right matrix * @param r21 * the m21 element of the right matrix * @param r22 * the m22 element of the right matrix * @return this */ public Matrix4d mul3x3( double r00, double r01, double r02, double r10, double r11, double r12, double r20, double r21, double r22) { return mul3x3(r00, r01, r02, r10, r11, r12, r20, r21, r22, this); } public Matrix4d mul3x3( double r00, double r01, double r02, double r10, double r11, double r12, double r20, double r21, double r22, Matrix4d dest) { if ((properties & PROPERTY_IDENTITY) != 0) return dest.set(r00, r01, r02, 0, r10, r11, r12, 0, r20, r21, r22, 0, 0, 0, 0, 1); return mulGeneric3x3(r00, r01, r02, r10, r11, r12, r20, r21, r22, dest); } private Matrix4d mulGeneric3x3( double r00, double r01, double r02, double r10, double r11, double r12, double r20, double r21, double r22, Matrix4d dest) { double nm00 = Math.fma(m00, r00, Math.fma(m10, r01, m20 * r02)); double nm01 = Math.fma(m01, r00, Math.fma(m11, r01, m21 * r02)); double nm02 = Math.fma(m02, r00, Math.fma(m12, r01, m22 * r02)); double nm03 = Math.fma(m03, r00, Math.fma(m13, r01, m23 * r02)); double nm10 = Math.fma(m00, r10, Math.fma(m10, r11, m20 * r12)); double nm11 = Math.fma(m01, r10, Math.fma(m11, r11, m21 * r12)); double nm12 = Math.fma(m02, r10, Math.fma(m12, r11, m22 * r12)); double nm13 = Math.fma(m03, r10, Math.fma(m13, r11, m23 * r12)); double nm20 = Math.fma(m00, r20, Math.fma(m10, r21, m20 * r22)); double nm21 = Math.fma(m01, r20, Math.fma(m11, r21, m21 * r22)); double nm22 = Math.fma(m02, r20, Math.fma(m12, r21, m22 * r22)); double nm23 = Math.fma(m03, r20, Math.fma(m13, r21, m23 * r22)); return dest ._m00(nm00) ._m01(nm01) ._m02(nm02) ._m03(nm03) ._m10(nm10) ._m11(nm11) ._m12(nm12) ._m13(nm13) ._m20(nm20) ._m21(nm21) ._m22(nm22) ._m23(nm23) ._m30(m30) ._m31(m31) ._m32(m32) ._m33(m33) ._properties(this.properties & PROPERTY_AFFINE); } /** * Pre-multiply this matrix by the supplied left matrix and store the result in this. *

* If M is this matrix and L the left matrix, * then the new matrix will be L * M. So when transforming a * vector v with the new matrix by using L * M * v, the * transformation of this matrix will be applied first! * * @param left * the left operand of the matrix multiplication * @return this */ public Matrix4d mulLocal(Matrix4dc left) { return mulLocal(left, this); } public Matrix4d mulLocal(Matrix4dc left, Matrix4d dest) { if ((properties & PROPERTY_IDENTITY) != 0) return dest.set(left); else if ((left.properties() & PROPERTY_IDENTITY) != 0) return dest.set(this); else if ((properties & PROPERTY_AFFINE) != 0 && (left.properties() & PROPERTY_AFFINE) != 0) return mulLocalAffine(left, dest); return mulLocalGeneric(left, dest); } private Matrix4d mulLocalGeneric(Matrix4dc left, Matrix4d dest) { double nm00 = Math.fma(left.m00(), m00, Math.fma(left.m10(), m01, Math.fma(left.m20(), m02, left.m30() * m03))); double nm01 = Math.fma(left.m01(), m00, Math.fma(left.m11(), m01, Math.fma(left.m21(), m02, left.m31() * m03))); double nm02 = Math.fma(left.m02(), m00, Math.fma(left.m12(), m01, Math.fma(left.m22(), m02, left.m32() * m03))); double nm03 = Math.fma(left.m03(), m00, Math.fma(left.m13(), m01, Math.fma(left.m23(), m02, left.m33() * m03))); double nm10 = Math.fma(left.m00(), m10, Math.fma(left.m10(), m11, Math.fma(left.m20(), m12, left.m30() * m13))); double nm11 = Math.fma(left.m01(), m10, Math.fma(left.m11(), m11, Math.fma(left.m21(), m12, left.m31() * m13))); double nm12 = Math.fma(left.m02(), m10, Math.fma(left.m12(), m11, Math.fma(left.m22(), m12, left.m32() * m13))); double nm13 = Math.fma(left.m03(), m10, Math.fma(left.m13(), m11, Math.fma(left.m23(), m12, left.m33() * m13))); double nm20 = Math.fma(left.m00(), m20, Math.fma(left.m10(), m21, Math.fma(left.m20(), m22, left.m30() * m23))); double nm21 = Math.fma(left.m01(), m20, Math.fma(left.m11(), m21, Math.fma(left.m21(), m22, left.m31() * m23))); double nm22 = Math.fma(left.m02(), m20, Math.fma(left.m12(), m21, Math.fma(left.m22(), m22, left.m32() * m23))); double nm23 = Math.fma(left.m03(), m20, Math.fma(left.m13(), m21, Math.fma(left.m23(), m22, left.m33() * m23))); double nm30 = Math.fma(left.m00(), m30, Math.fma(left.m10(), m31, Math.fma(left.m20(), m32, left.m30() * m33))); double nm31 = Math.fma(left.m01(), m30, Math.fma(left.m11(), m31, Math.fma(left.m21(), m32, left.m31() * m33))); double nm32 = Math.fma(left.m02(), m30, Math.fma(left.m12(), m31, Math.fma(left.m22(), m32, left.m32() * m33))); double nm33 = Math.fma(left.m03(), m30, Math.fma(left.m13(), m31, Math.fma(left.m23(), m32, left.m33() * m33))); return dest ._m00(nm00) ._m01(nm01) ._m02(nm02) ._m03(nm03) ._m10(nm10) ._m11(nm11) ._m12(nm12) ._m13(nm13) ._m20(nm20) ._m21(nm21) ._m22(nm22) ._m23(nm23) ._m30(nm30) ._m31(nm31) ._m32(nm32) ._m33(nm33) ._properties(0); } /** * Pre-multiply this matrix by the supplied left matrix, both of which are assumed to be {@link #isAffine() affine}, and store the result in this. *

* This method assumes that this matrix and the given left matrix both represent an {@link #isAffine() affine} transformation * (i.e. their last rows are equal to (0, 0, 0, 1)) * and can be used to speed up matrix multiplication if the matrices only represent affine transformations, such as translation, rotation, scaling and shearing (in any combination). *

* This method will not modify either the last row of this or the last row of left. *

* If M is this matrix and L the left matrix, * then the new matrix will be L * M. So when transforming a * vector v with the new matrix by using L * M * v, the * transformation of this matrix will be applied first! * * @param left * the left operand of the matrix multiplication (the last row is assumed to be (0, 0, 0, 1)) * @return this */ public Matrix4d mulLocalAffine(Matrix4dc left) { return mulLocalAffine(left, this); } public Matrix4d mulLocalAffine(Matrix4dc left, Matrix4d dest) { double nm00 = left.m00() * m00 + left.m10() * m01 + left.m20() * m02; double nm01 = left.m01() * m00 + left.m11() * m01 + left.m21() * m02; double nm02 = left.m02() * m00 + left.m12() * m01 + left.m22() * m02; double nm03 = left.m03(); double nm10 = left.m00() * m10 + left.m10() * m11 + left.m20() * m12; double nm11 = left.m01() * m10 + left.m11() * m11 + left.m21() * m12; double nm12 = left.m02() * m10 + left.m12() * m11 + left.m22() * m12; double nm13 = left.m13(); double nm20 = left.m00() * m20 + left.m10() * m21 + left.m20() * m22; double nm21 = left.m01() * m20 + left.m11() * m21 + left.m21() * m22; double nm22 = left.m02() * m20 + left.m12() * m21 + left.m22() * m22; double nm23 = left.m23(); double nm30 = left.m00() * m30 + left.m10() * m31 + left.m20() * m32 + left.m30(); double nm31 = left.m01() * m30 + left.m11() * m31 + left.m21() * m32 + left.m31(); double nm32 = left.m02() * m30 + left.m12() * m31 + left.m22() * m32 + left.m32(); double nm33 = left.m33(); dest._m00(nm00) ._m01(nm01) ._m02(nm02) ._m03(nm03) ._m10(nm10) ._m11(nm11) ._m12(nm12) ._m13(nm13) ._m20(nm20) ._m21(nm21) ._m22(nm22) ._m23(nm23) ._m30(nm30) ._m31(nm31) ._m32(nm32) ._m33(nm33) ._properties(PROPERTY_AFFINE); return dest; } /** * Multiply this matrix by the supplied right matrix. *

* The last row of the right matrix is assumed to be (0, 0, 0, 1). *

* If M is this matrix and R the right matrix, * then the new matrix will be M * R. So when transforming a * vector v with the new matrix by using M * R * v, the * transformation of the right matrix will be applied first! * * @param right * the right operand of the matrix multiplication * @return this */ public Matrix4d mul(Matrix4x3dc right) { return mul(right, this); } public Matrix4d mul(Matrix4x3dc right, Matrix4d dest) { if ((properties & PROPERTY_IDENTITY) != 0) return dest.set(right); else if ((right.properties() & PROPERTY_IDENTITY) != 0) return dest.set(this); else if ((properties & PROPERTY_TRANSLATION) != 0) return mulTranslation(right, dest); else if ((properties & PROPERTY_AFFINE) != 0) return mulAffine(right, dest); else if ((properties & PROPERTY_PERSPECTIVE) != 0) return mulPerspectiveAffine(right, dest); return mulGeneric(right, dest); } private Matrix4d mulTranslation(Matrix4x3dc right, Matrix4d dest) { return dest ._m00(right.m00()) ._m01(right.m01()) ._m02(right.m02()) ._m03(m03) ._m10(right.m10()) ._m11(right.m11()) ._m12(right.m12()) ._m13(m13) ._m20(right.m20()) ._m21(right.m21()) ._m22(right.m22()) ._m23(m23) ._m30(right.m30() + m30) ._m31(right.m31() + m31) ._m32(right.m32() + m32) ._m33(m33) ._properties(PROPERTY_AFFINE | (right.properties() & PROPERTY_ORTHONORMAL)); } private Matrix4d mulAffine(Matrix4x3dc right, Matrix4d dest) { double m00 = this.m00, m01 = this.m01, m02 = this.m02; double m10 = this.m10, m11 = this.m11, m12 = this.m12; double m20 = this.m20, m21 = this.m21, m22 = this.m22; double rm00 = right.m00(), rm01 = right.m01(), rm02 = right.m02(); double rm10 = right.m10(), rm11 = right.m11(), rm12 = right.m12(); double rm20 = right.m20(), rm21 = right.m21(), rm22 = right.m22(); double rm30 = right.m30(), rm31 = right.m31(), rm32 = right.m32(); return dest ._m00(Math.fma(m00, rm00, Math.fma(m10, rm01, m20 * rm02))) ._m01(Math.fma(m01, rm00, Math.fma(m11, rm01, m21 * rm02))) ._m02(Math.fma(m02, rm00, Math.fma(m12, rm01, m22 * rm02))) ._m03(m03) ._m10(Math.fma(m00, rm10, Math.fma(m10, rm11, m20 * rm12))) ._m11(Math.fma(m01, rm10, Math.fma(m11, rm11, m21 * rm12))) ._m12(Math.fma(m02, rm10, Math.fma(m12, rm11, m22 * rm12))) ._m13(m13) ._m20(Math.fma(m00, rm20, Math.fma(m10, rm21, m20 * rm22))) ._m21(Math.fma(m01, rm20, Math.fma(m11, rm21, m21 * rm22))) ._m22(Math.fma(m02, rm20, Math.fma(m12, rm21, m22 * rm22))) ._m23(m23) ._m30(Math.fma(m00, rm30, Math.fma(m10, rm31, Math.fma(m20, rm32, m30)))) ._m31(Math.fma(m01, rm30, Math.fma(m11, rm31, Math.fma(m21, rm32, m31)))) ._m32(Math.fma(m02, rm30, Math.fma(m12, rm31, Math.fma(m22, rm32, m32)))) ._m33(m33) ._properties(PROPERTY_AFFINE | (this.properties & right.properties() & PROPERTY_ORTHONORMAL)); } private Matrix4d mulGeneric(Matrix4x3dc right, Matrix4d dest) { double nm00 = Math.fma(m00, right.m00(), Math.fma(m10, right.m01(), m20 * right.m02())); double nm01 = Math.fma(m01, right.m00(), Math.fma(m11, right.m01(), m21 * right.m02())); double nm02 = Math.fma(m02, right.m00(), Math.fma(m12, right.m01(), m22 * right.m02())); double nm03 = Math.fma(m03, right.m00(), Math.fma(m13, right.m01(), m23 * right.m02())); double nm10 = Math.fma(m00, right.m10(), Math.fma(m10, right.m11(), m20 * right.m12())); double nm11 = Math.fma(m01, right.m10(), Math.fma(m11, right.m11(), m21 * right.m12())); double nm12 = Math.fma(m02, right.m10(), Math.fma(m12, right.m11(), m22 * right.m12())); double nm13 = Math.fma(m03, right.m10(), Math.fma(m13, right.m11(), m23 * right.m12())); double nm20 = Math.fma(m00, right.m20(), Math.fma(m10, right.m21(), m20 * right.m22())); double nm21 = Math.fma(m01, right.m20(), Math.fma(m11, right.m21(), m21 * right.m22())); double nm22 = Math.fma(m02, right.m20(), Math.fma(m12, right.m21(), m22 * right.m22())); double nm23 = Math.fma(m03, right.m20(), Math.fma(m13, right.m21(), m23 * right.m22())); double nm30 = Math.fma(m00, right.m30(), Math.fma(m10, right.m31(), Math.fma(m20, right.m32(), m30))); double nm31 = Math.fma(m01, right.m30(), Math.fma(m11, right.m31(), Math.fma(m21, right.m32(), m31))); double nm32 = Math.fma(m02, right.m30(), Math.fma(m12, right.m31(), Math.fma(m22, right.m32(), m32))); double nm33 = Math.fma(m03, right.m30(), Math.fma(m13, right.m31(), Math.fma(m23, right.m32(), m33))); dest._m00(nm00) ._m01(nm01) ._m02(nm02) ._m03(nm03) ._m10(nm10) ._m11(nm11) ._m12(nm12) ._m13(nm13) ._m20(nm20) ._m21(nm21) ._m22(nm22) ._m23(nm23) ._m30(nm30) ._m31(nm31) ._m32(nm32) ._m33(nm33) ._properties(properties & ~(PROPERTY_IDENTITY | PROPERTY_PERSPECTIVE | PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL)); return dest; } public Matrix4d mulPerspectiveAffine(Matrix4x3dc view, Matrix4d dest) { double lm00 = m00, lm11 = m11, lm22 = m22, lm23 = m23; dest._m00(lm00 * view.m00())._m01(lm11 * view.m01())._m02(lm22 * view.m02())._m03(lm23 * view.m02()). _m10(lm00 * view.m10())._m11(lm11 * view.m11())._m12(lm22 * view.m12())._m13(lm23 * view.m12()). _m20(lm00 * view.m20())._m21(lm11 * view.m21())._m22(lm22 * view.m22())._m23(lm23 * view.m22()). _m30(lm00 * view.m30())._m31(lm11 * view.m31())._m32(lm22 * view.m32() + m32)._m33(lm23 * view.m32()) ._properties(0); return dest; } public Matrix4d mul(Matrix4x3fc right, Matrix4d dest) { if ((properties & PROPERTY_IDENTITY) != 0) return dest.set(right); else if ((right.properties() & PROPERTY_IDENTITY) != 0) return dest.set(this); return mulGeneric(right, dest); } private Matrix4d mulGeneric(Matrix4x3fc right, Matrix4d dest) { double nm00 = Math.fma(m00, right.m00(), Math.fma(m10, right.m01(), m20 * right.m02())); double nm01 = Math.fma(m01, right.m00(), Math.fma(m11, right.m01(), m21 * right.m02())); double nm02 = Math.fma(m02, right.m00(), Math.fma(m12, right.m01(), m22 * right.m02())); double nm03 = Math.fma(m03, right.m00(), Math.fma(m13, right.m01(), m23 * right.m02())); double nm10 = Math.fma(m00, right.m10(), Math.fma(m10, right.m11(), m20 * right.m12())); double nm11 = Math.fma(m01, right.m10(), Math.fma(m11, right.m11(), m21 * right.m12())); double nm12 = Math.fma(m02, right.m10(), Math.fma(m12, right.m11(), m22 * right.m12())); double nm13 = Math.fma(m03, right.m10(), Math.fma(m13, right.m11(), m23 * right.m12())); double nm20 = Math.fma(m00, right.m20(), Math.fma(m10, right.m21(), m20 * right.m22())); double nm21 = Math.fma(m01, right.m20(), Math.fma(m11, right.m21(), m21 * right.m22())); double nm22 = Math.fma(m02, right.m20(), Math.fma(m12, right.m21(), m22 * right.m22())); double nm23 = Math.fma(m03, right.m20(), Math.fma(m13, right.m21(), m23 * right.m22())); double nm30 = Math.fma(m00, right.m30(), Math.fma(m10, right.m31(), Math.fma(m20, right.m32(), m30))); double nm31 = Math.fma(m01, right.m30(), Math.fma(m11, right.m31(), Math.fma(m21, right.m32(), m31))); double nm32 = Math.fma(m02, right.m30(), Math.fma(m12, right.m31(), Math.fma(m22, right.m32(), m32))); double nm33 = Math.fma(m03, right.m30(), Math.fma(m13, right.m31(), Math.fma(m23, right.m32(), m33))); dest._m00(nm00) ._m01(nm01) ._m02(nm02) ._m03(nm03) ._m10(nm10) ._m11(nm11) ._m12(nm12) ._m13(nm13) ._m20(nm20) ._m21(nm21) ._m22(nm22) ._m23(nm23) ._m30(nm30) ._m31(nm31) ._m32(nm32) ._m33(nm33) ._properties(properties & ~(PROPERTY_IDENTITY | PROPERTY_PERSPECTIVE | PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL)); return dest; } /** * Multiply this matrix by the supplied right matrix and store the result in this. *

* If M is this matrix and R the right matrix, * then the new matrix will be M * R. So when transforming a * vector v with the new matrix by using M * R * v, the * transformation of the right matrix will be applied first! * * @param right * the right operand of the matrix multiplication * @return this */ public Matrix4d mul(Matrix3x2dc right) { return mul(right, this); } public Matrix4d mul(Matrix3x2dc right, Matrix4d dest) { double nm00 = m00 * right.m00() + m10 * right.m01(); double nm01 = m01 * right.m00() + m11 * right.m01(); double nm02 = m02 * right.m00() + m12 * right.m01(); double nm03 = m03 * right.m00() + m13 * right.m01(); double nm10 = m00 * right.m10() + m10 * right.m11(); double nm11 = m01 * right.m10() + m11 * right.m11(); double nm12 = m02 * right.m10() + m12 * right.m11(); double nm13 = m03 * right.m10() + m13 * right.m11(); double nm30 = m00 * right.m20() + m10 * right.m21() + m30; double nm31 = m01 * right.m20() + m11 * right.m21() + m31; double nm32 = m02 * right.m20() + m12 * right.m21() + m32; double nm33 = m03 * right.m20() + m13 * right.m21() + m33; dest._m00(nm00) ._m01(nm01) ._m02(nm02) ._m03(nm03) ._m10(nm10) ._m11(nm11) ._m12(nm12) ._m13(nm13) ._m20(m20) ._m21(m21) ._m22(m22) ._m23(m23) ._m30(nm30) ._m31(nm31) ._m32(nm32) ._m33(nm33) ._properties(properties & ~(PROPERTY_IDENTITY | PROPERTY_PERSPECTIVE | PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL)); return dest; } /** * Multiply this matrix by the supplied right matrix and store the result in this. *

* If M is this matrix and R the right matrix, * then the new matrix will be M * R. So when transforming a * vector v with the new matrix by using M * R * v, the * transformation of the right matrix will be applied first! * * @param right * the right operand of the matrix multiplication * @return this */ public Matrix4d mul(Matrix3x2fc right) { return mul(right, this); } public Matrix4d mul(Matrix3x2fc right, Matrix4d dest) { double nm00 = m00 * right.m00() + m10 * right.m01(); double nm01 = m01 * right.m00() + m11 * right.m01(); double nm02 = m02 * right.m00() + m12 * right.m01(); double nm03 = m03 * right.m00() + m13 * right.m01(); double nm10 = m00 * right.m10() + m10 * right.m11(); double nm11 = m01 * right.m10() + m11 * right.m11(); double nm12 = m02 * right.m10() + m12 * right.m11(); double nm13 = m03 * right.m10() + m13 * right.m11(); double nm30 = m00 * right.m20() + m10 * right.m21() + m30; double nm31 = m01 * right.m20() + m11 * right.m21() + m31; double nm32 = m02 * right.m20() + m12 * right.m21() + m32; double nm33 = m03 * right.m20() + m13 * right.m21() + m33; dest._m00(nm00) ._m01(nm01) ._m02(nm02) ._m03(nm03) ._m10(nm10) ._m11(nm11) ._m12(nm12) ._m13(nm13) ._m20(m20) ._m21(m21) ._m22(m22) ._m23(m23) ._m30(nm30) ._m31(nm31) ._m32(nm32) ._m33(nm33) ._properties(properties & ~(PROPERTY_IDENTITY | PROPERTY_PERSPECTIVE | PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL)); return dest; } /** * Multiply this matrix by the supplied parameter matrix. *

* If M is this matrix and R the right matrix, * then the new matrix will be M * R. So when transforming a * vector v with the new matrix by using M * R * v, the * transformation of the right matrix will be applied first! * * @param right * the right operand of the multiplication * @return this */ public Matrix4d mul(Matrix4f right) { return mul(right, this); } public Matrix4d mul(Matrix4fc right, Matrix4d dest) { if ((properties & PROPERTY_IDENTITY) != 0) return dest.set(right); else if ((right.properties() & PROPERTY_IDENTITY) != 0) return dest.set(this); return mulGeneric(right, dest); } private Matrix4d mulGeneric(Matrix4fc right, Matrix4d dest) { double nm00 = m00 * right.m00() + m10 * right.m01() + m20 * right.m02() + m30 * right.m03(); double nm01 = m01 * right.m00() + m11 * right.m01() + m21 * right.m02() + m31 * right.m03(); double nm02 = m02 * right.m00() + m12 * right.m01() + m22 * right.m02() + m32 * right.m03(); double nm03 = m03 * right.m00() + m13 * right.m01() + m23 * right.m02() + m33 * right.m03(); double nm10 = m00 * right.m10() + m10 * right.m11() + m20 * right.m12() + m30 * right.m13(); double nm11 = m01 * right.m10() + m11 * right.m11() + m21 * right.m12() + m31 * right.m13(); double nm12 = m02 * right.m10() + m12 * right.m11() + m22 * right.m12() + m32 * right.m13(); double nm13 = m03 * right.m10() + m13 * right.m11() + m23 * right.m12() + m33 * right.m13(); double nm20 = m00 * right.m20() + m10 * right.m21() + m20 * right.m22() + m30 * right.m23(); double nm21 = m01 * right.m20() + m11 * right.m21() + m21 * right.m22() + m31 * right.m23(); double nm22 = m02 * right.m20() + m12 * right.m21() + m22 * right.m22() + m32 * right.m23(); double nm23 = m03 * right.m20() + m13 * right.m21() + m23 * right.m22() + m33 * right.m23(); double nm30 = m00 * right.m30() + m10 * right.m31() + m20 * right.m32() + m30 * right.m33(); double nm31 = m01 * right.m30() + m11 * right.m31() + m21 * right.m32() + m31 * right.m33(); double nm32 = m02 * right.m30() + m12 * right.m31() + m22 * right.m32() + m32 * right.m33(); double nm33 = m03 * right.m30() + m13 * right.m31() + m23 * right.m32() + m33 * right.m33(); dest._m00(nm00) ._m01(nm01) ._m02(nm02) ._m03(nm03) ._m10(nm10) ._m11(nm11) ._m12(nm12) ._m13(nm13) ._m20(nm20) ._m21(nm21) ._m22(nm22) ._m23(nm23) ._m30(nm30) ._m31(nm31) ._m32(nm32) ._m33(nm33) ._properties(0); return dest; } /** * Multiply this symmetric perspective projection matrix by the supplied {@link #isAffine() affine} view matrix. *

* If P is this matrix and V the view matrix, * then the new matrix will be P * V. So when transforming a * vector v with the new matrix by using P * V * v, the * transformation of the view matrix will be applied first! * * @param view * the {@link #isAffine() affine} matrix to multiply this symmetric perspective projection matrix by * @return this */ public Matrix4d mulPerspectiveAffine(Matrix4dc view) { return mulPerspectiveAffine(view, this); } public Matrix4d mulPerspectiveAffine(Matrix4dc view, Matrix4d dest) { double nm00 = m00 * view.m00(), nm01 = m11 * view.m01(), nm02 = m22 * view.m02(), nm03 = m23 * view.m02(); double nm10 = m00 * view.m10(), nm11 = m11 * view.m11(), nm12 = m22 * view.m12(), nm13 = m23 * view.m12(); double nm20 = m00 * view.m20(), nm21 = m11 * view.m21(), nm22 = m22 * view.m22(), nm23 = m23 * view.m22(); double nm30 = m00 * view.m30(), nm31 = m11 * view.m31(), nm32 = m22 * view.m32() + m32, nm33 = m23 * view.m32(); return dest ._m00(nm00)._m01(nm01)._m02(nm02)._m03(nm03) ._m10(nm10)._m11(nm11)._m12(nm12)._m13(nm13) ._m20(nm20)._m21(nm21)._m22(nm22)._m23(nm23) ._m30(nm30)._m31(nm31)._m32(nm32)._m33(nm33) ._properties(0); } /** * Multiply this matrix by the supplied right matrix, which is assumed to be {@link #isAffine() affine}, and store the result in this. *

* This method assumes that the given right matrix represents an {@link #isAffine() affine} transformation (i.e. its last row is equal to (0, 0, 0, 1)) * and can be used to speed up matrix multiplication if the matrix only represents affine transformations, such as translation, rotation, scaling and shearing (in any combination). *

* If M is this matrix and R the right matrix, * then the new matrix will be M * R. So when transforming a * vector v with the new matrix by using M * R * v, the * transformation of the right matrix will be applied first! * * @param right * the right operand of the matrix multiplication (the last row is assumed to be (0, 0, 0, 1)) * @return this */ public Matrix4d mulAffineR(Matrix4dc right) { return mulAffineR(right, this); } public Matrix4d mulAffineR(Matrix4dc right, Matrix4d dest) { double nm00 = Math.fma(m00, right.m00(), Math.fma(m10, right.m01(), m20 * right.m02())); double nm01 = Math.fma(m01, right.m00(), Math.fma(m11, right.m01(), m21 * right.m02())); double nm02 = Math.fma(m02, right.m00(), Math.fma(m12, right.m01(), m22 * right.m02())); double nm03 = Math.fma(m03, right.m00(), Math.fma(m13, right.m01(), m23 * right.m02())); double nm10 = Math.fma(m00, right.m10(), Math.fma(m10, right.m11(), m20 * right.m12())); double nm11 = Math.fma(m01, right.m10(), Math.fma(m11, right.m11(), m21 * right.m12())); double nm12 = Math.fma(m02, right.m10(), Math.fma(m12, right.m11(), m22 * right.m12())); double nm13 = Math.fma(m03, right.m10(), Math.fma(m13, right.m11(), m23 * right.m12())); double nm20 = Math.fma(m00, right.m20(), Math.fma(m10, right.m21(), m20 * right.m22())); double nm21 = Math.fma(m01, right.m20(), Math.fma(m11, right.m21(), m21 * right.m22())); double nm22 = Math.fma(m02, right.m20(), Math.fma(m12, right.m21(), m22 * right.m22())); double nm23 = Math.fma(m03, right.m20(), Math.fma(m13, right.m21(), m23 * right.m22())); double nm30 = Math.fma(m00, right.m30(), Math.fma(m10, right.m31(), Math.fma(m20, right.m32(), m30))); double nm31 = Math.fma(m01, right.m30(), Math.fma(m11, right.m31(), Math.fma(m21, right.m32(), m31))); double nm32 = Math.fma(m02, right.m30(), Math.fma(m12, right.m31(), Math.fma(m22, right.m32(), m32))); double nm33 = Math.fma(m03, right.m30(), Math.fma(m13, right.m31(), Math.fma(m23, right.m32(), m33))); dest._m00(nm00) ._m01(nm01) ._m02(nm02) ._m03(nm03) ._m10(nm10) ._m11(nm11) ._m12(nm12) ._m13(nm13) ._m20(nm20) ._m21(nm21) ._m22(nm22) ._m23(nm23) ._m30(nm30) ._m31(nm31) ._m32(nm32) ._m33(nm33) ._properties(properties & ~(PROPERTY_IDENTITY | PROPERTY_PERSPECTIVE | PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL)); return dest; } /** * Multiply this matrix by the supplied right matrix, both of which are assumed to be {@link #isAffine() affine}, and store the result in this. *

* This method assumes that this matrix and the given right matrix both represent an {@link #isAffine() affine} transformation * (i.e. their last rows are equal to (0, 0, 0, 1)) * and can be used to speed up matrix multiplication if the matrices only represent affine transformations, such as translation, rotation, scaling and shearing (in any combination). *

* This method will not modify either the last row of this or the last row of right. *

* If M is this matrix and R the right matrix, * then the new matrix will be M * R. So when transforming a * vector v with the new matrix by using M * R * v, the * transformation of the right matrix will be applied first! * * @param right * the right operand of the matrix multiplication (the last row is assumed to be (0, 0, 0, 1)) * @return this */ public Matrix4d mulAffine(Matrix4dc right) { return mulAffine(right, this); } public Matrix4d mulAffine(Matrix4dc right, Matrix4d dest) { double m00 = this.m00, m01 = this.m01, m02 = this.m02; double m10 = this.m10, m11 = this.m11, m12 = this.m12; double m20 = this.m20, m21 = this.m21, m22 = this.m22; double rm00 = right.m00(), rm01 = right.m01(), rm02 = right.m02(); double rm10 = right.m10(), rm11 = right.m11(), rm12 = right.m12(); double rm20 = right.m20(), rm21 = right.m21(), rm22 = right.m22(); double rm30 = right.m30(), rm31 = right.m31(), rm32 = right.m32(); return dest ._m00(Math.fma(m00, rm00, Math.fma(m10, rm01, m20 * rm02))) ._m01(Math.fma(m01, rm00, Math.fma(m11, rm01, m21 * rm02))) ._m02(Math.fma(m02, rm00, Math.fma(m12, rm01, m22 * rm02))) ._m03(m03) ._m10(Math.fma(m00, rm10, Math.fma(m10, rm11, m20 * rm12))) ._m11(Math.fma(m01, rm10, Math.fma(m11, rm11, m21 * rm12))) ._m12(Math.fma(m02, rm10, Math.fma(m12, rm11, m22 * rm12))) ._m13(m13) ._m20(Math.fma(m00, rm20, Math.fma(m10, rm21, m20 * rm22))) ._m21(Math.fma(m01, rm20, Math.fma(m11, rm21, m21 * rm22))) ._m22(Math.fma(m02, rm20, Math.fma(m12, rm21, m22 * rm22))) ._m23(m23) ._m30(Math.fma(m00, rm30, Math.fma(m10, rm31, Math.fma(m20, rm32, m30)))) ._m31(Math.fma(m01, rm30, Math.fma(m11, rm31, Math.fma(m21, rm32, m31)))) ._m32(Math.fma(m02, rm30, Math.fma(m12, rm31, Math.fma(m22, rm32, m32)))) ._m33(m33) ._properties(PROPERTY_AFFINE | (this.properties & right.properties() & PROPERTY_ORTHONORMAL)); } public Matrix4d mulTranslationAffine(Matrix4dc right, Matrix4d dest) { return dest ._m00(right.m00()) ._m01(right.m01()) ._m02(right.m02()) ._m03(m03) ._m10(right.m10()) ._m11(right.m11()) ._m12(right.m12()) ._m13(m13) ._m20(right.m20()) ._m21(right.m21()) ._m22(right.m22()) ._m23(m23) ._m30(right.m30() + m30) ._m31(right.m31() + m31) ._m32(right.m32() + m32) ._m33(m33) ._properties(PROPERTY_AFFINE | (right.properties() & PROPERTY_ORTHONORMAL)); } /** * Multiply this orthographic projection matrix by the supplied {@link #isAffine() affine} view matrix. *

* If M is this matrix and V the view matrix, * then the new matrix will be M * V. So when transforming a * vector v with the new matrix by using M * V * v, the * transformation of the view matrix will be applied first! * * @param view * the affine matrix which to multiply this with * @return this */ public Matrix4d mulOrthoAffine(Matrix4dc view) { return mulOrthoAffine(view, this); } public Matrix4d mulOrthoAffine(Matrix4dc view, Matrix4d dest) { double nm00 = m00 * view.m00(); double nm01 = m11 * view.m01(); double nm02 = m22 * view.m02(); double nm03 = 0.0; double nm10 = m00 * view.m10(); double nm11 = m11 * view.m11(); double nm12 = m22 * view.m12(); double nm13 = 0.0; double nm20 = m00 * view.m20(); double nm21 = m11 * view.m21(); double nm22 = m22 * view.m22(); double nm23 = 0.0; double nm30 = m00 * view.m30() + m30; double nm31 = m11 * view.m31() + m31; double nm32 = m22 * view.m32() + m32; double nm33 = 1.0; dest._m00(nm00) ._m01(nm01) ._m02(nm02) ._m03(nm03) ._m10(nm10) ._m11(nm11) ._m12(nm12) ._m13(nm13) ._m20(nm20) ._m21(nm21) ._m22(nm22) ._m23(nm23) ._m30(nm30) ._m31(nm31) ._m32(nm32) ._m33(nm33) ._properties(PROPERTY_AFFINE); return dest; } /** * Component-wise add the upper 4x3 submatrices of this and other * by first multiplying each component of other's 4x3 submatrix by otherFactor and * adding that result to this. *

* The matrix other will not be changed. * * @param other * the other matrix * @param otherFactor * the factor to multiply each of the other matrix's 4x3 components * @return this */ public Matrix4d fma4x3(Matrix4dc other, double otherFactor) { return fma4x3(other, otherFactor, this); } public Matrix4d fma4x3(Matrix4dc other, double otherFactor, Matrix4d dest) { dest._m00(Math.fma(other.m00(), otherFactor, m00)) ._m01(Math.fma(other.m01(), otherFactor, m01)) ._m02(Math.fma(other.m02(), otherFactor, m02)) ._m03(m03) ._m10(Math.fma(other.m10(), otherFactor, m10)) ._m11(Math.fma(other.m11(), otherFactor, m11)) ._m12(Math.fma(other.m12(), otherFactor, m12)) ._m13(m13) ._m20(Math.fma(other.m20(), otherFactor, m20)) ._m21(Math.fma(other.m21(), otherFactor, m21)) ._m22(Math.fma(other.m22(), otherFactor, m22)) ._m23(m23) ._m30(Math.fma(other.m30(), otherFactor, m30)) ._m31(Math.fma(other.m31(), otherFactor, m31)) ._m32(Math.fma(other.m32(), otherFactor, m32)) ._m33(m33) ._properties(0); return dest; } /** * Component-wise add this and other. * * @param other * the other addend * @return this */ public Matrix4d add(Matrix4dc other) { return add(other, this); } public Matrix4d add(Matrix4dc other, Matrix4d dest) { dest._m00(m00 + other.m00()) ._m01(m01 + other.m01()) ._m02(m02 + other.m02()) ._m03(m03 + other.m03()) ._m10(m10 + other.m10()) ._m11(m11 + other.m11()) ._m12(m12 + other.m12()) ._m13(m13 + other.m13()) ._m20(m20 + other.m20()) ._m21(m21 + other.m21()) ._m22(m22 + other.m22()) ._m23(m23 + other.m23()) ._m30(m30 + other.m30()) ._m31(m31 + other.m31()) ._m32(m32 + other.m32()) ._m33(m33 + other.m33()) ._properties(0); return dest; } /** * Component-wise subtract subtrahend from this. * * @param subtrahend * the subtrahend * @return this */ public Matrix4d sub(Matrix4dc subtrahend) { return sub(subtrahend, this); } public Matrix4d sub(Matrix4dc subtrahend, Matrix4d dest) { dest._m00(m00 - subtrahend.m00()) ._m01(m01 - subtrahend.m01()) ._m02(m02 - subtrahend.m02()) ._m03(m03 - subtrahend.m03()) ._m10(m10 - subtrahend.m10()) ._m11(m11 - subtrahend.m11()) ._m12(m12 - subtrahend.m12()) ._m13(m13 - subtrahend.m13()) ._m20(m20 - subtrahend.m20()) ._m21(m21 - subtrahend.m21()) ._m22(m22 - subtrahend.m22()) ._m23(m23 - subtrahend.m23()) ._m30(m30 - subtrahend.m30()) ._m31(m31 - subtrahend.m31()) ._m32(m32 - subtrahend.m32()) ._m33(m33 - subtrahend.m33()) ._properties(0); return dest; } /** * Component-wise multiply this by other. * * @param other * the other matrix * @return this */ public Matrix4d mulComponentWise(Matrix4dc other) { return mulComponentWise(other, this); } public Matrix4d mulComponentWise(Matrix4dc other, Matrix4d dest) { dest._m00(m00 * other.m00()) ._m01(m01 * other.m01()) ._m02(m02 * other.m02()) ._m03(m03 * other.m03()) ._m10(m10 * other.m10()) ._m11(m11 * other.m11()) ._m12(m12 * other.m12()) ._m13(m13 * other.m13()) ._m20(m20 * other.m20()) ._m21(m21 * other.m21()) ._m22(m22 * other.m22()) ._m23(m23 * other.m23()) ._m30(m30 * other.m30()) ._m31(m31 * other.m31()) ._m32(m32 * other.m32()) ._m33(m33 * other.m33()) ._properties(0); return dest; } /** * Component-wise add the upper 4x3 submatrices of this and other. * * @param other * the other addend * @return this */ public Matrix4d add4x3(Matrix4dc other) { return add4x3(other, this); } public Matrix4d add4x3(Matrix4dc other, Matrix4d dest) { dest._m00(m00 + other.m00()) ._m01(m01 + other.m01()) ._m02(m02 + other.m02()) ._m03(m03) ._m10(m10 + other.m10()) ._m11(m11 + other.m11()) ._m12(m12 + other.m12()) ._m13(m13) ._m20(m20 + other.m20()) ._m21(m21 + other.m21()) ._m22(m22 + other.m22()) ._m23(m23) ._m30(m30 + other.m30()) ._m31(m31 + other.m31()) ._m32(m32 + other.m32()) ._m33(m33) ._properties(0); return dest; } /** * Component-wise add the upper 4x3 submatrices of this and other. * * @param other * the other addend * @return this */ public Matrix4d add4x3(Matrix4fc other) { return add4x3(other, this); } public Matrix4d add4x3(Matrix4fc other, Matrix4d dest) { dest._m00(m00 + other.m00()) ._m01(m01 + other.m01()) ._m02(m02 + other.m02()) ._m03(m03) ._m10(m10 + other.m10()) ._m11(m11 + other.m11()) ._m12(m12 + other.m12()) ._m13(m13) ._m20(m20 + other.m20()) ._m21(m21 + other.m21()) ._m22(m22 + other.m22()) ._m23(m23) ._m30(m30 + other.m30()) ._m31(m31 + other.m31()) ._m32(m32 + other.m32()) ._m33(m33) ._properties(0); return dest; } /** * Component-wise subtract the upper 4x3 submatrices of subtrahend from this. * * @param subtrahend * the subtrahend * @return this */ public Matrix4d sub4x3(Matrix4dc subtrahend) { return sub4x3(subtrahend, this); } public Matrix4d sub4x3(Matrix4dc subtrahend, Matrix4d dest) { dest._m00(m00 - subtrahend.m00()) ._m01(m01 - subtrahend.m01()) ._m02(m02 - subtrahend.m02()) ._m03(m03) ._m10(m10 - subtrahend.m10()) ._m11(m11 - subtrahend.m11()) ._m12(m12 - subtrahend.m12()) ._m13(m13) ._m20(m20 - subtrahend.m20()) ._m21(m21 - subtrahend.m21()) ._m22(m22 - subtrahend.m22()) ._m23(m23) ._m30(m30 - subtrahend.m30()) ._m31(m31 - subtrahend.m31()) ._m32(m32 - subtrahend.m32()) ._m33(m33) ._properties(0); return dest; } /** * Component-wise multiply the upper 4x3 submatrices of this by other. * * @param other * the other matrix * @return this */ public Matrix4d mul4x3ComponentWise(Matrix4dc other) { return mul4x3ComponentWise(other, this); } public Matrix4d mul4x3ComponentWise(Matrix4dc other, Matrix4d dest) { dest._m00(m00 * other.m00()) ._m01(m01 * other.m01()) ._m02(m02 * other.m02()) ._m03(m03) ._m10(m10 * other.m10()) ._m11(m11 * other.m11()) ._m12(m12 * other.m12()) ._m13(m13) ._m20(m20 * other.m20()) ._m21(m21 * other.m21()) ._m22(m22 * other.m22()) ._m23(m23) ._m30(m30 * other.m30()) ._m31(m31 * other.m31()) ._m32(m32 * other.m32()) ._m33(m33) ._properties(0); return dest; } /** Set the values within this matrix to the supplied double values. The matrix will look like this:

* * m00, m10, m20, m30
* m01, m11, m21, m31
* m02, m12, m22, m32
* m03, m13, m23, m33 * * @param m00 * the new value of m00 * @param m01 * the new value of m01 * @param m02 * the new value of m02 * @param m03 * the new value of m03 * @param m10 * the new value of m10 * @param m11 * the new value of m11 * @param m12 * the new value of m12 * @param m13 * the new value of m13 * @param m20 * the new value of m20 * @param m21 * the new value of m21 * @param m22 * the new value of m22 * @param m23 * the new value of m23 * @param m30 * the new value of m30 * @param m31 * the new value of m31 * @param m32 * the new value of m32 * @param m33 * the new value of m33 * @return this */ public Matrix4d set(double m00, double m01, double m02,double m03, double m10, double m11, double m12, double m13, double m20, double m21, double m22, double m23, double m30, double m31, double m32, double m33) { this.m00 = m00; this.m10 = m10; this.m20 = m20; this.m30 = m30; this.m01 = m01; this.m11 = m11; this.m21 = m21; this.m31 = m31; this.m02 = m02; this.m12 = m12; this.m22 = m22; this.m32 = m32; this.m03 = m03; this.m13 = m13; this.m23 = m23; this.m33 = m33; return determineProperties(); } /** * Set the values in the matrix using a double array that contains the matrix elements in column-major order. *

* The results will look like this:

* * 0, 4, 8, 12
* 1, 5, 9, 13
* 2, 6, 10, 14
* 3, 7, 11, 15
* * @see #set(double[]) * * @param m * the array to read the matrix values from * @param off * the offset into the array * @return this */ public Matrix4d set(double m[], int off) { return _m00(m[off+0]). _m01(m[off+1]). _m02(m[off+2]). _m03(m[off+3]). _m10(m[off+4]). _m11(m[off+5]). _m12(m[off+6]). _m13(m[off+7]). _m20(m[off+8]). _m21(m[off+9]). _m22(m[off+10]). _m23(m[off+11]). _m30(m[off+12]). _m31(m[off+13]). _m32(m[off+14]). _m33(m[off+15]). determineProperties(); } /** * Set the values in the matrix using a double array that contains the matrix elements in column-major order. *

* The results will look like this:

* * 0, 4, 8, 12
* 1, 5, 9, 13
* 2, 6, 10, 14
* 3, 7, 11, 15
* * @see #set(double[], int) * * @param m * the array to read the matrix values from * @return this */ public Matrix4d set(double m[]) { return set(m, 0); } /** * Set the values in the matrix using a float array that contains the matrix elements in column-major order. *

* The results will look like this:

* * 0, 4, 8, 12
* 1, 5, 9, 13
* 2, 6, 10, 14
* 3, 7, 11, 15
* * @see #set(float[]) * * @param m * the array to read the matrix values from * @param off * the offset into the array * @return this */ public Matrix4d set(float m[], int off) { return _m00(m[off+0]). _m01(m[off+1]). _m02(m[off+2]). _m03(m[off+3]). _m10(m[off+4]). _m11(m[off+5]). _m12(m[off+6]). _m13(m[off+7]). _m20(m[off+8]). _m21(m[off+9]). _m22(m[off+10]). _m23(m[off+11]). _m30(m[off+12]). _m31(m[off+13]). _m32(m[off+14]). _m33(m[off+15]). determineProperties(); } /** * Set the values in the matrix using a float array that contains the matrix elements in column-major order. *

* The results will look like this:

* * 0, 4, 8, 12
* 1, 5, 9, 13
* 2, 6, 10, 14
* 3, 7, 11, 15
* * @see #set(float[], int) * * @param m * the array to read the matrix values from * @return this */ public Matrix4d set(float m[]) { return set(m, 0); } /** * Set the values of this matrix by reading 16 double values from the given {@link DoubleBuffer} in column-major order, * starting at its current position. *

* The DoubleBuffer is expected to contain the values in column-major order. *

* The position of the DoubleBuffer will not be changed by this method. * * @param buffer * the DoubleBuffer to read the matrix values from in column-major order * @return this */ public Matrix4d set(DoubleBuffer buffer) { MemUtil.INSTANCE.get(this, buffer.position(), buffer); return determineProperties(); } /** * Set the values of this matrix by reading 16 float values from the given {@link FloatBuffer} in column-major order, * starting at its current position. *

* The FloatBuffer is expected to contain the values in column-major order. *

* The position of the FloatBuffer will not be changed by this method. * * @param buffer * the FloatBuffer to read the matrix values from in column-major order * @return this */ public Matrix4d set(FloatBuffer buffer) { MemUtil.INSTANCE.getf(this, buffer.position(), buffer); return determineProperties(); } /** * Set the values of this matrix by reading 16 double values from the given {@link ByteBuffer} in column-major order, * starting at its current position. *

* The ByteBuffer is expected to contain the values in column-major order. *

* The position of the ByteBuffer will not be changed by this method. * * @param buffer * the ByteBuffer to read the matrix values from in column-major order * @return this */ public Matrix4d set(ByteBuffer buffer) { MemUtil.INSTANCE.get(this, buffer.position(), buffer); return determineProperties(); } /** * Set the values of this matrix by reading 16 double values from the given {@link DoubleBuffer} in column-major order, * starting at the specified absolute buffer position/index. *

* The DoubleBuffer is expected to contain the values in column-major order. *

* The position of the DoubleBuffer will not be changed by this method. * * @param index * the absolute position into the DoubleBuffer * @param buffer * the DoubleBuffer to read the matrix values from in column-major order * @return this */ public Matrix4d set(int index, DoubleBuffer buffer) { MemUtil.INSTANCE.get(this, index, buffer); return determineProperties(); } /** * Set the values of this matrix by reading 16 float values from the given {@link FloatBuffer} in column-major order, * starting at the specified absolute buffer position/index. *

* The FloatBuffer is expected to contain the values in column-major order. *

* The position of the FloatBuffer will not be changed by this method. * * @param index * the absolute position into the FloatBuffer * @param buffer * the FloatBuffer to read the matrix values from in column-major order * @return this */ public Matrix4d set(int index, FloatBuffer buffer) { MemUtil.INSTANCE.getf(this, index, buffer); return determineProperties(); } /** * Set the values of this matrix by reading 16 double values from the given {@link ByteBuffer} in column-major order, * starting at the specified absolute buffer position/index. *

* The ByteBuffer is expected to contain the values in column-major order. *

* The position of the ByteBuffer will not be changed by this method. * * @param index * the absolute position into the ByteBuffer * @param buffer * the ByteBuffer to read the matrix values from in column-major order * @return this */ public Matrix4d set(int index, ByteBuffer buffer) { MemUtil.INSTANCE.get(this, index, buffer); return determineProperties(); } /** * Set the values of this matrix by reading 16 float values from the given {@link ByteBuffer} in column-major order, * starting at its current position. *

* The ByteBuffer is expected to contain the values in column-major order. *

* The position of the ByteBuffer will not be changed by this method. * * @param buffer * the ByteBuffer to read the matrix values from in column-major order * @return this */ public Matrix4d setFloats(ByteBuffer buffer) { MemUtil.INSTANCE.getf(this, buffer.position(), buffer); return determineProperties(); } /** * Set the values of this matrix by reading 16 float values from the given {@link ByteBuffer} in column-major order, * starting at the specified absolute buffer position/index. *

* The ByteBuffer is expected to contain the values in column-major order. *

* The position of the ByteBuffer will not be changed by this method. * * @param index * the absolute position into the ByteBuffer * @param buffer * the ByteBuffer to read the matrix values from in column-major order * @return this */ public Matrix4d setFloats(int index, ByteBuffer buffer) { MemUtil.INSTANCE.getf(this, index, buffer); return determineProperties(); } /** * Set the values of this matrix by reading 16 double values from off-heap memory in column-major order, * starting at the given address. *

* This method will throw an {@link UnsupportedOperationException} when JOML is used with `-Djoml.nounsafe`. *

* This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process. * * @param address * the off-heap memory address to read the matrix values from in column-major order * @return this */ public Matrix4d setFromAddress(long address) { if (Options.NO_UNSAFE) throw new UnsupportedOperationException("Not supported when using joml.nounsafe"); MemUtil.MemUtilUnsafe.get(this, address); return determineProperties(); } /** * Set the four columns of this matrix to the supplied vectors, respectively. * * @param col0 * the first column * @param col1 * the second column * @param col2 * the third column * @param col3 * the fourth column * @return this */ public Matrix4d set(Vector4d col0, Vector4d col1, Vector4d col2, Vector4d col3) { return _m00(col0.x()). _m01(col0.y()). _m02(col0.z()). _m03(col0.w()). _m10(col1.x()). _m11(col1.y()). _m12(col1.z()). _m13(col1.w()). _m20(col2.x()). _m21(col2.y()). _m22(col2.z()). _m23(col2.w()). _m30(col3.x()). _m31(col3.y()). _m32(col3.z()). _m33(col3.w()). determineProperties(); } public double determinant() { if ((properties & PROPERTY_AFFINE) != 0) return determinantAffine(); return (m00 * m11 - m01 * m10) * (m22 * m33 - m23 * m32) + (m02 * m10 - m00 * m12) * (m21 * m33 - m23 * m31) + (m00 * m13 - m03 * m10) * (m21 * m32 - m22 * m31) + (m01 * m12 - m02 * m11) * (m20 * m33 - m23 * m30) + (m03 * m11 - m01 * m13) * (m20 * m32 - m22 * m30) + (m02 * m13 - m03 * m12) * (m20 * m31 - m21 * m30); } public double determinant3x3() { return (m00 * m11 - m01 * m10) * m22 + (m02 * m10 - m00 * m12) * m21 + (m01 * m12 - m02 * m11) * m20; } public double determinantAffine() { return (m00 * m11 - m01 * m10) * m22 + (m02 * m10 - m00 * m12) * m21 + (m01 * m12 - m02 * m11) * m20; } /** * Invert this matrix. *

* If this matrix represents an {@link #isAffine() affine} transformation, such as translation, rotation, scaling and shearing, * and thus its last row is equal to (0, 0, 0, 1), then {@link #invertAffine()} can be used instead of this method. * * @see #invertAffine() * * @return this */ public Matrix4d invert() { return invert(this); } public Matrix4d invert(Matrix4d dest) { if ((properties & PROPERTY_IDENTITY) != 0) return dest.identity(); else if ((properties & PROPERTY_TRANSLATION) != 0) return invertTranslation(dest); else if ((properties & PROPERTY_ORTHONORMAL) != 0) return invertOrthonormal(dest); else if ((properties & PROPERTY_AFFINE) != 0) return invertAffine(dest); else if ((properties & PROPERTY_PERSPECTIVE) != 0) return invertPerspective(dest); return invertGeneric(dest); } private Matrix4d invertTranslation(Matrix4d dest) { if (dest != this) dest.set(this); dest._m30(-m30) ._m31(-m31) ._m32(-m32) ._properties(PROPERTY_AFFINE | PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL); return dest; } private Matrix4d invertOrthonormal(Matrix4d dest) { double nm30 = -(m00 * m30 + m01 * m31 + m02 * m32); double nm31 = -(m10 * m30 + m11 * m31 + m12 * m32); double nm32 = -(m20 * m30 + m21 * m31 + m22 * m32); double m01 = this.m01; double m02 = this.m02; double m12 = this.m12; dest._m00(m00) ._m01(m10) ._m02(m20) ._m03(0.0) ._m10(m01) ._m11(m11) ._m12(m21) ._m13(0.0) ._m20(m02) ._m21(m12) ._m22(m22) ._m23(0.0) ._m30(nm30) ._m31(nm31) ._m32(nm32) ._m33(1.0) ._properties(PROPERTY_AFFINE | PROPERTY_ORTHONORMAL); return dest; } private Matrix4d invertGeneric(Matrix4d dest) { if (this != dest) return invertGenericNonThis(dest); return invertGenericThis(dest); } private Matrix4d invertGenericNonThis(Matrix4d dest) { double a = m00 * m11 - m01 * m10; double b = m00 * m12 - m02 * m10; double c = m00 * m13 - m03 * m10; double d = m01 * m12 - m02 * m11; double e = m01 * m13 - m03 * m11; double f = m02 * m13 - m03 * m12; double g = m20 * m31 - m21 * m30; double h = m20 * m32 - m22 * m30; double i = m20 * m33 - m23 * m30; double j = m21 * m32 - m22 * m31; double k = m21 * m33 - m23 * m31; double l = m22 * m33 - m23 * m32; double det = a * l - b * k + c * j + d * i - e * h + f * g; det = 1.0 / det; return dest ._m00(Math.fma( m11, l, Math.fma(-m12, k, m13 * j)) * det) ._m01(Math.fma(-m01, l, Math.fma( m02, k, -m03 * j)) * det) ._m02(Math.fma( m31, f, Math.fma(-m32, e, m33 * d)) * det) ._m03(Math.fma(-m21, f, Math.fma( m22, e, -m23 * d)) * det) ._m10(Math.fma(-m10, l, Math.fma( m12, i, -m13 * h)) * det) ._m11(Math.fma( m00, l, Math.fma(-m02, i, m03 * h)) * det) ._m12(Math.fma(-m30, f, Math.fma( m32, c, -m33 * b)) * det) ._m13(Math.fma( m20, f, Math.fma(-m22, c, m23 * b)) * det) ._m20(Math.fma( m10, k, Math.fma(-m11, i, m13 * g)) * det) ._m21(Math.fma(-m00, k, Math.fma( m01, i, -m03 * g)) * det) ._m22(Math.fma( m30, e, Math.fma(-m31, c, m33 * a)) * det) ._m23(Math.fma(-m20, e, Math.fma( m21, c, -m23 * a)) * det) ._m30(Math.fma(-m10, j, Math.fma( m11, h, -m12 * g)) * det) ._m31(Math.fma( m00, j, Math.fma(-m01, h, m02 * g)) * det) ._m32(Math.fma(-m30, d, Math.fma( m31, b, -m32 * a)) * det) ._m33(Math.fma( m20, d, Math.fma(-m21, b, m22 * a)) * det) ._properties(0); } private Matrix4d invertGenericThis(Matrix4d dest) { double a = m00 * m11 - m01 * m10; double b = m00 * m12 - m02 * m10; double c = m00 * m13 - m03 * m10; double d = m01 * m12 - m02 * m11; double e = m01 * m13 - m03 * m11; double f = m02 * m13 - m03 * m12; double g = m20 * m31 - m21 * m30; double h = m20 * m32 - m22 * m30; double i = m20 * m33 - m23 * m30; double j = m21 * m32 - m22 * m31; double k = m21 * m33 - m23 * m31; double l = m22 * m33 - m23 * m32; double det = a * l - b * k + c * j + d * i - e * h + f * g; det = 1.0 / det; double nm00 = Math.fma( m11, l, Math.fma(-m12, k, m13 * j)) * det; double nm01 = Math.fma(-m01, l, Math.fma( m02, k, -m03 * j)) * det; double nm02 = Math.fma( m31, f, Math.fma(-m32, e, m33 * d)) * det; double nm03 = Math.fma(-m21, f, Math.fma( m22, e, -m23 * d)) * det; double nm10 = Math.fma(-m10, l, Math.fma( m12, i, -m13 * h)) * det; double nm11 = Math.fma( m00, l, Math.fma(-m02, i, m03 * h)) * det; double nm12 = Math.fma(-m30, f, Math.fma( m32, c, -m33 * b)) * det; double nm13 = Math.fma( m20, f, Math.fma(-m22, c, m23 * b)) * det; double nm20 = Math.fma( m10, k, Math.fma(-m11, i, m13 * g)) * det; double nm21 = Math.fma(-m00, k, Math.fma( m01, i, -m03 * g)) * det; double nm22 = Math.fma( m30, e, Math.fma(-m31, c, m33 * a)) * det; double nm23 = Math.fma(-m20, e, Math.fma( m21, c, -m23 * a)) * det; double nm30 = Math.fma(-m10, j, Math.fma( m11, h, -m12 * g)) * det; double nm31 = Math.fma( m00, j, Math.fma(-m01, h, m02 * g)) * det; double nm32 = Math.fma(-m30, d, Math.fma( m31, b, -m32 * a)) * det; double nm33 = Math.fma( m20, d, Math.fma(-m21, b, m22 * a)) * det; return dest ._m00(nm00) ._m01(nm01) ._m02(nm02) ._m03(nm03) ._m10(nm10) ._m11(nm11) ._m12(nm12) ._m13(nm13) ._m20(nm20) ._m21(nm21) ._m22(nm22) ._m23(nm23) ._m30(nm30) ._m31(nm31) ._m32(nm32) ._m33(nm33) ._properties(0); } public Matrix4d invertPerspective(Matrix4d dest) { double a = 1.0 / (m00 * m11); double l = -1.0 / (m23 * m32); dest.set(m11 * a, 0, 0, 0, 0, m00 * a, 0, 0, 0, 0, 0, -m23 * l, 0, 0, -m32 * l, m22 * l); return dest; } /** * If this is a perspective projection matrix obtained via one of the {@link #perspective(double, double, double, double) perspective()} methods * or via {@link #setPerspective(double, double, double, double) setPerspective()}, that is, if this is a symmetrical perspective frustum transformation, * then this method builds the inverse of this. *

* This method can be used to quickly obtain the inverse of a perspective projection matrix when being obtained via {@link #perspective(double, double, double, double) perspective()}. * * @see #perspective(double, double, double, double) * * @return this */ public Matrix4d invertPerspective() { return invertPerspective(this); } public Matrix4d invertFrustum(Matrix4d dest) { double invM00 = 1.0 / m00; double invM11 = 1.0 / m11; double invM23 = 1.0 / m23; double invM32 = 1.0 / m32; dest.set(invM00, 0, 0, 0, 0, invM11, 0, 0, 0, 0, 0, invM32, -m20 * invM00 * invM23, -m21 * invM11 * invM23, invM23, -m22 * invM23 * invM32); return dest; } /** * If this is an arbitrary perspective projection matrix obtained via one of the {@link #frustum(double, double, double, double, double, double) frustum()} methods * or via {@link #setFrustum(double, double, double, double, double, double) setFrustum()}, * then this method builds the inverse of this. *

* This method can be used to quickly obtain the inverse of a perspective projection matrix. *

* If this matrix represents a symmetric perspective frustum transformation, as obtained via {@link #perspective(double, double, double, double) perspective()}, then * {@link #invertPerspective()} should be used instead. * * @see #frustum(double, double, double, double, double, double) * @see #invertPerspective() * * @return this */ public Matrix4d invertFrustum() { return invertFrustum(this); } public Matrix4d invertOrtho(Matrix4d dest) { double invM00 = 1.0 / m00; double invM11 = 1.0 / m11; double invM22 = 1.0 / m22; dest.set(invM00, 0, 0, 0, 0, invM11, 0, 0, 0, 0, invM22, 0, -m30 * invM00, -m31 * invM11, -m32 * invM22, 1) ._properties(PROPERTY_AFFINE | (this.properties & PROPERTY_ORTHONORMAL)); return dest; } /** * Invert this orthographic projection matrix. *

* This method can be used to quickly obtain the inverse of an orthographic projection matrix. * * @return this */ public Matrix4d invertOrtho() { return invertOrtho(this); } public Matrix4d invertPerspectiveView(Matrix4dc view, Matrix4d dest) { double a = 1.0 / (m00 * m11); double l = -1.0 / (m23 * m32); double pm00 = m11 * a; double pm11 = m00 * a; double pm23 = -m23 * l; double pm32 = -m32 * l; double pm33 = m22 * l; double vm30 = -view.m00() * view.m30() - view.m01() * view.m31() - view.m02() * view.m32(); double vm31 = -view.m10() * view.m30() - view.m11() * view.m31() - view.m12() * view.m32(); double vm32 = -view.m20() * view.m30() - view.m21() * view.m31() - view.m22() * view.m32(); double nm10 = view.m01() * pm11; double nm30 = view.m02() * pm32 + vm30 * pm33; double nm31 = view.m12() * pm32 + vm31 * pm33; double nm32 = view.m22() * pm32 + vm32 * pm33; return dest ._m00(view.m00() * pm00) ._m01(view.m10() * pm00) ._m02(view.m20() * pm00) ._m03(0.0) ._m10(nm10) ._m11(view.m11() * pm11) ._m12(view.m21() * pm11) ._m13(0.0) ._m20(vm30 * pm23) ._m21(vm31 * pm23) ._m22(vm32 * pm23) ._m23(pm23) ._m30(nm30) ._m31(nm31) ._m32(nm32) ._m33(pm33) ._properties(0); } public Matrix4d invertPerspectiveView(Matrix4x3dc view, Matrix4d dest) { double a = 1.0 / (m00 * m11); double l = -1.0 / (m23 * m32); double pm00 = m11 * a; double pm11 = m00 * a; double pm23 = -m23 * l; double pm32 = -m32 * l; double pm33 = m22 * l; double vm30 = -view.m00() * view.m30() - view.m01() * view.m31() - view.m02() * view.m32(); double vm31 = -view.m10() * view.m30() - view.m11() * view.m31() - view.m12() * view.m32(); double vm32 = -view.m20() * view.m30() - view.m21() * view.m31() - view.m22() * view.m32(); return dest ._m00(view.m00() * pm00) ._m01(view.m10() * pm00) ._m02(view.m20() * pm00) ._m03(0.0) ._m10(view.m01() * pm11) ._m11(view.m11() * pm11) ._m12(view.m21() * pm11) ._m13(0.0) ._m20(vm30 * pm23) ._m21(vm31 * pm23) ._m22(vm32 * pm23) ._m23(pm23) ._m30(view.m02() * pm32 + vm30 * pm33) ._m31(view.m12() * pm32 + vm31 * pm33) ._m32(view.m22() * pm32 + vm32 * pm33) ._m33(pm33) ._properties(0); } public Matrix4d invertAffine(Matrix4d dest) { double m11m00 = m00 * m11, m10m01 = m01 * m10, m10m02 = m02 * m10; double m12m00 = m00 * m12, m12m01 = m01 * m12, m11m02 = m02 * m11; double s = 1.0 / ((m11m00 - m10m01) * m22 + (m10m02 - m12m00) * m21 + (m12m01 - m11m02) * m20); double m10m22 = m10 * m22, m10m21 = m10 * m21, m11m22 = m11 * m22; double m11m20 = m11 * m20, m12m21 = m12 * m21, m12m20 = m12 * m20; double m20m02 = m20 * m02, m20m01 = m20 * m01, m21m02 = m21 * m02; double m21m00 = m21 * m00, m22m01 = m22 * m01, m22m00 = m22 * m00; double nm00 = (m11m22 - m12m21) * s; double nm01 = (m21m02 - m22m01) * s; double nm02 = (m12m01 - m11m02) * s; double nm10 = (m12m20 - m10m22) * s; double nm11 = (m22m00 - m20m02) * s; double nm12 = (m10m02 - m12m00) * s; double nm20 = (m10m21 - m11m20) * s; double nm21 = (m20m01 - m21m00) * s; double nm22 = (m11m00 - m10m01) * s; double nm30 = (m10m22 * m31 - m10m21 * m32 + m11m20 * m32 - m11m22 * m30 + m12m21 * m30 - m12m20 * m31) * s; double nm31 = (m20m02 * m31 - m20m01 * m32 + m21m00 * m32 - m21m02 * m30 + m22m01 * m30 - m22m00 * m31) * s; double nm32 = (m11m02 * m30 - m12m01 * m30 + m12m00 * m31 - m10m02 * m31 + m10m01 * m32 - m11m00 * m32) * s; dest._m00(nm00) ._m01(nm01) ._m02(nm02) ._m03(0.0) ._m10(nm10) ._m11(nm11) ._m12(nm12) ._m13(0.0) ._m20(nm20) ._m21(nm21) ._m22(nm22) ._m23(0.0) ._m30(nm30) ._m31(nm31) ._m32(nm32) ._m33(1.0) ._properties(PROPERTY_AFFINE); return dest; } /** * Invert this matrix by assuming that it is an {@link #isAffine() affine} transformation (i.e. its last row is equal to (0, 0, 0, 1)). * * @return this */ public Matrix4d invertAffine() { return invertAffine(this); } /** * Transpose this matrix. * * @return this */ public Matrix4d transpose() { return transpose(this); } public Matrix4d transpose(Matrix4d dest) { if ((properties & PROPERTY_IDENTITY) != 0) return dest.identity(); else if (this != dest) return transposeNonThisGeneric(dest); return transposeThisGeneric(dest); } private Matrix4d transposeNonThisGeneric(Matrix4d dest) { return dest ._m00(m00) ._m01(m10) ._m02(m20) ._m03(m30) ._m10(m01) ._m11(m11) ._m12(m21) ._m13(m31) ._m20(m02) ._m21(m12) ._m22(m22) ._m23(m32) ._m30(m03) ._m31(m13) ._m32(m23) ._m33(m33) ._properties(0); } private Matrix4d transposeThisGeneric(Matrix4d dest) { double nm10 = m01; double nm20 = m02; double nm21 = m12; double nm30 = m03; double nm31 = m13; double nm32 = m23; return dest ._m01(m10) ._m02(m20) ._m03(m30) ._m10(nm10) ._m12(m21) ._m13(m31) ._m20(nm20) ._m21(nm21) ._m23(m32) ._m30(nm30) ._m31(nm31) ._m32(nm32) ._properties(0); } /** * Transpose only the upper left 3x3 submatrix of this matrix. *

* All other matrix elements are left unchanged. * * @return this */ public Matrix4d transpose3x3() { return transpose3x3(this); } public Matrix4d transpose3x3(Matrix4d dest) { double nm10 = m01, nm20 = m02, nm21 = m12; return dest ._m00(m00) ._m01(m10) ._m02(m20) ._m10(nm10) ._m11(m11) ._m12(m21) ._m20(nm20) ._m21(nm21) ._m22(m22) ._properties(this.properties & (PROPERTY_AFFINE | PROPERTY_ORTHONORMAL | PROPERTY_IDENTITY | PROPERTY_TRANSLATION)); } public Matrix3d transpose3x3(Matrix3d dest) { return dest ._m00(m00) ._m01(m10) ._m02(m20) ._m10(m01) ._m11(m11) ._m12(m21) ._m20(m02) ._m21(m12) ._m22(m22); } /** * Set this matrix to be a simple translation matrix. *

* The resulting matrix can be multiplied against another transformation * matrix to obtain an additional translation. * * @param x * the offset to translate in x * @param y * the offset to translate in y * @param z * the offset to translate in z * @return this */ public Matrix4d translation(double x, double y, double z) { if ((properties & PROPERTY_IDENTITY) == 0) this._identity(); return this. _m30(x). _m31(y). _m32(z). _m33(1.0). _properties(PROPERTY_AFFINE | PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL); } /** * Set this matrix to be a simple translation matrix. *

* The resulting matrix can be multiplied against another transformation * matrix to obtain an additional translation. * * @param offset * the offsets in x, y and z to translate * @return this */ public Matrix4d translation(Vector3fc offset) { return translation(offset.x(), offset.y(), offset.z()); } /** * Set this matrix to be a simple translation matrix. *

* The resulting matrix can be multiplied against another transformation * matrix to obtain an additional translation. * * @param offset * the offsets in x, y and z to translate * @return this */ public Matrix4d translation(Vector3dc offset) { return translation(offset.x(), offset.y(), offset.z()); } /** * Set only the translation components (m30, m31, m32) of this matrix to the given values (x, y, z). *

* To build a translation matrix instead, use {@link #translation(double, double, double)}. * To apply a translation, use {@link #translate(double, double, double)}. * * @see #translation(double, double, double) * @see #translate(double, double, double) * * @param x * the units to translate in x * @param y * the units to translate in y * @param z * the units to translate in z * @return this */ public Matrix4d setTranslation(double x, double y, double z) { _m30(x). _m31(y). _m32(z). properties &= ~(PROPERTY_PERSPECTIVE | PROPERTY_IDENTITY); return this; } /** * Set only the translation components (m30, m31, m32) of this matrix to the given values (xyz.x, xyz.y, xyz.z). *

* To build a translation matrix instead, use {@link #translation(Vector3dc)}. * To apply a translation, use {@link #translate(Vector3dc)}. * * @see #translation(Vector3dc) * @see #translate(Vector3dc) * * @param xyz * the units to translate in (x, y, z) * @return this */ public Matrix4d setTranslation(Vector3dc xyz) { return setTranslation(xyz.x(), xyz.y(), xyz.z()); } public Vector3d getTranslation(Vector3d dest) { dest.x = m30; dest.y = m31; dest.z = m32; return dest; } public Vector3d getScale(Vector3d dest) { dest.x = Math.sqrt(m00 * m00 + m01 * m01 + m02 * m02); dest.y = Math.sqrt(m10 * m10 + m11 * m11 + m12 * m12); dest.z = Math.sqrt(m20 * m20 + m21 * m21 + m22 * m22); return dest; } /** * Return a string representation of this matrix. *

* This method creates a new {@link DecimalFormat} on every invocation with the format string "0.000E0;-". * * @return the string representation */ public String toString() { String str = toString(Options.NUMBER_FORMAT); StringBuffer res = new StringBuffer(); int eIndex = Integer.MIN_VALUE; for (int i = 0; i < str.length(); i++) { char c = str.charAt(i); if (c == 'E') { eIndex = i; } else if (c == ' ' && eIndex == i - 1) { // workaround Java 1.4 DecimalFormat bug res.append('+'); continue; } else if (Character.isDigit(c) && eIndex == i - 1) { res.append('+'); } res.append(c); } return res.toString(); } /** * Return a string representation of this matrix by formatting the matrix elements with the given {@link NumberFormat}. * * @param formatter * the {@link NumberFormat} used to format the matrix values with * @return the string representation */ public String toString(NumberFormat formatter) { return Runtime.format(m00, formatter) + " " + Runtime.format(m10, formatter) + " " + Runtime.format(m20, formatter) + " " + Runtime.format(m30, formatter) + "\n" + Runtime.format(m01, formatter) + " " + Runtime.format(m11, formatter) + " " + Runtime.format(m21, formatter) + " " + Runtime.format(m31, formatter) + "\n" + Runtime.format(m02, formatter) + " " + Runtime.format(m12, formatter) + " " + Runtime.format(m22, formatter) + " " + Runtime.format(m32, formatter) + "\n" + Runtime.format(m03, formatter) + " " + Runtime.format(m13, formatter) + " " + Runtime.format(m23, formatter) + " " + Runtime.format(m33, formatter) + "\n"; } public Matrix4d get(Matrix4d dest) { return dest.set(this); } public Matrix4x3d get4x3(Matrix4x3d dest) { return dest.set(this); } public Matrix3d get3x3(Matrix3d dest) { return dest.set(this); } public Quaternionf getUnnormalizedRotation(Quaternionf dest) { return dest.setFromUnnormalized(this); } public Quaternionf getNormalizedRotation(Quaternionf dest) { return dest.setFromNormalized(this); } public Quaterniond getUnnormalizedRotation(Quaterniond dest) { return dest.setFromUnnormalized(this); } public Quaterniond getNormalizedRotation(Quaterniond dest) { return dest.setFromNormalized(this); } public DoubleBuffer get(DoubleBuffer dest) { MemUtil.INSTANCE.put(this, dest.position(), dest); return dest; } public DoubleBuffer get(int index, DoubleBuffer dest) { MemUtil.INSTANCE.put(this, index, dest); return dest; } public FloatBuffer get(FloatBuffer dest) { MemUtil.INSTANCE.putf(this, dest.position(), dest); return dest; } public FloatBuffer get(int index, FloatBuffer dest) { MemUtil.INSTANCE.putf(this, index, dest); return dest; } public ByteBuffer get(ByteBuffer dest) { MemUtil.INSTANCE.put(this, dest.position(), dest); return dest; } public ByteBuffer get(int index, ByteBuffer dest) { MemUtil.INSTANCE.put(this, index, dest); return dest; } public ByteBuffer getFloats(ByteBuffer dest) { MemUtil.INSTANCE.putf(this, dest.position(), dest); return dest; } public ByteBuffer getFloats(int index, ByteBuffer dest) { MemUtil.INSTANCE.putf(this, index, dest); return dest; } public Matrix4dc getToAddress(long address) { if (Options.NO_UNSAFE) throw new UnsupportedOperationException("Not supported when using joml.nounsafe"); MemUtil.MemUtilUnsafe.put(this, address); return this; } public double[] get(double[] dest, int offset) { dest[offset+0] = m00; dest[offset+1] = m01; dest[offset+2] = m02; dest[offset+3] = m03; dest[offset+4] = m10; dest[offset+5] = m11; dest[offset+6] = m12; dest[offset+7] = m13; dest[offset+8] = m20; dest[offset+9] = m21; dest[offset+10] = m22; dest[offset+11] = m23; dest[offset+12] = m30; dest[offset+13] = m31; dest[offset+14] = m32; dest[offset+15] = m33; return dest; } public double[] get(double[] dest) { return get(dest, 0); } public float[] get(float[] dest, int offset) { dest[offset+0] = (float)m00; dest[offset+1] = (float)m01; dest[offset+2] = (float)m02; dest[offset+3] = (float)m03; dest[offset+4] = (float)m10; dest[offset+5] = (float)m11; dest[offset+6] = (float)m12; dest[offset+7] = (float)m13; dest[offset+8] = (float)m20; dest[offset+9] = (float)m21; dest[offset+10] = (float)m22; dest[offset+11] = (float)m23; dest[offset+12] = (float)m30; dest[offset+13] = (float)m31; dest[offset+14] = (float)m32; dest[offset+15] = (float)m33; return dest; } public float[] get(float[] dest) { return get(dest, 0); } public DoubleBuffer getTransposed(DoubleBuffer dest) { MemUtil.INSTANCE.putTransposed(this, dest.position(), dest); return dest; } public DoubleBuffer getTransposed(int index, DoubleBuffer dest) { MemUtil.INSTANCE.putTransposed(this, index, dest); return dest; } public ByteBuffer getTransposed(ByteBuffer dest) { MemUtil.INSTANCE.putTransposed(this, dest.position(), dest); return dest; } public ByteBuffer getTransposed(int index, ByteBuffer dest) { MemUtil.INSTANCE.putTransposed(this, index, dest); return dest; } public DoubleBuffer get4x3Transposed(DoubleBuffer dest) { MemUtil.INSTANCE.put4x3Transposed(this, dest.position(), dest); return dest; } public DoubleBuffer get4x3Transposed(int index, DoubleBuffer dest) { MemUtil.INSTANCE.put4x3Transposed(this, index, dest); return dest; } public ByteBuffer get4x3Transposed(ByteBuffer dest) { MemUtil.INSTANCE.put4x3Transposed(this, dest.position(), dest); return dest; } public ByteBuffer get4x3Transposed(int index, ByteBuffer dest) { MemUtil.INSTANCE.put4x3Transposed(this, index, dest); return dest; } /** * Set all the values within this matrix to 0. * * @return this */ public Matrix4d zero() { return _m00(0.0). _m01(0.0). _m02(0.0). _m03(0.0). _m10(0.0). _m11(0.0). _m12(0.0). _m13(0.0). _m20(0.0). _m21(0.0). _m22(0.0). _m23(0.0). _m30(0.0). _m31(0.0). _m32(0.0). _m33(0.0). _properties(0); } /** * Set this matrix to be a simple scale matrix, which scales all axes uniformly by the given factor. *

* The resulting matrix can be multiplied against another transformation * matrix to obtain an additional scaling. *

* In order to post-multiply a scaling transformation directly to a * matrix, use {@link #scale(double) scale()} instead. * * @see #scale(double) * * @param factor * the scale factor in x, y and z * @return this */ public Matrix4d scaling(double factor) { return scaling(factor, factor, factor); } /** * Set this matrix to be a simple scale matrix. * * @param x * the scale in x * @param y * the scale in y * @param z * the scale in z * @return this */ public Matrix4d scaling(double x, double y, double z) { if ((properties & PROPERTY_IDENTITY) == 0) identity(); boolean one = Math.absEqualsOne(x) && Math.absEqualsOne(y) && Math.absEqualsOne(z); _m00(x). _m11(y). _m22(z). properties = PROPERTY_AFFINE | (one ? PROPERTY_ORTHONORMAL : 0); return this; } /** * Set this matrix to be a simple scale matrix which scales the base axes by * xyz.x, xyz.y and xyz.z, respectively. *

* The resulting matrix can be multiplied against another transformation * matrix to obtain an additional scaling. *

* In order to post-multiply a scaling transformation directly to a * matrix use {@link #scale(Vector3dc) scale()} instead. * * @see #scale(Vector3dc) * * @param xyz * the scale in x, y and z, respectively * @return this */ public Matrix4d scaling(Vector3dc xyz) { return scaling(xyz.x(), xyz.y(), xyz.z()); } /** * Set this matrix to a rotation matrix which rotates the given radians about a given axis. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* From Wikipedia * * @param angle * the angle in radians * @param x * the x-coordinate of the axis to rotate about * @param y * the y-coordinate of the axis to rotate about * @param z * the z-coordinate of the axis to rotate about * @return this */ public Matrix4d rotation(double angle, double x, double y, double z) { if (y == 0.0 && z == 0.0 && Math.absEqualsOne(x)) return rotationX(x * angle); else if (x == 0.0 && z == 0.0 && Math.absEqualsOne(y)) return rotationY(y * angle); else if (x == 0.0 && y == 0.0 && Math.absEqualsOne(z)) return rotationZ(z * angle); return rotationInternal(angle, x, y, z); } private Matrix4d rotationInternal(double angle, double x, double y, double z) { double sin = Math.sin(angle); double cos = Math.cosFromSin(sin, angle); double C = 1.0 - cos; double xy = x * y, xz = x * z, yz = y * z; if ((properties & PROPERTY_IDENTITY) == 0) this._identity(); _m00(cos + x * x * C). _m10(xy * C - z * sin). _m20(xz * C + y * sin). _m01(xy * C + z * sin). _m11(cos + y * y * C). _m21(yz * C - x * sin). _m02(xz * C - y * sin). _m12(yz * C + x * sin). _m22(cos + z * z * C). properties = PROPERTY_AFFINE | PROPERTY_ORTHONORMAL; return this; } /** * Set this matrix to a rotation transformation about the X axis. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* Reference: http://en.wikipedia.org * * @param ang * the angle in radians * @return this */ public Matrix4d rotationX(double ang) { double sin, cos; sin = Math.sin(ang); cos = Math.cosFromSin(sin, ang); if ((properties & PROPERTY_IDENTITY) == 0) this._identity(); _m11(cos). _m12(sin). _m21(-sin). _m22(cos). properties = PROPERTY_AFFINE | PROPERTY_ORTHONORMAL; return this; } /** * Set this matrix to a rotation transformation about the Y axis. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* Reference: http://en.wikipedia.org * * @param ang * the angle in radians * @return this */ public Matrix4d rotationY(double ang) { double sin, cos; sin = Math.sin(ang); cos = Math.cosFromSin(sin, ang); if ((properties & PROPERTY_IDENTITY) == 0) this._identity(); _m00(cos). _m02(-sin). _m20(sin). _m22(cos). properties = PROPERTY_AFFINE | PROPERTY_ORTHONORMAL; return this; } /** * Set this matrix to a rotation transformation about the Z axis. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* Reference: http://en.wikipedia.org * * @param ang * the angle in radians * @return this */ public Matrix4d rotationZ(double ang) { double sin, cos; sin = Math.sin(ang); cos = Math.cosFromSin(sin, ang); if ((properties & PROPERTY_IDENTITY) == 0) this._identity(); _m00(cos). _m01(sin). _m10(-sin). _m11(cos). properties = PROPERTY_AFFINE | PROPERTY_ORTHONORMAL; return this; } /** * Set this matrix to a rotation transformation about the Z axis to align the local +X towards (dirX, dirY). *

* The vector (dirX, dirY) must be a unit vector. * * @param dirX * the x component of the normalized direction * @param dirY * the y component of the normalized direction * @return this */ public Matrix4d rotationTowardsXY(double dirX, double dirY) { if ((properties & PROPERTY_IDENTITY) == 0) this._identity(); this.m00 = dirY; this.m01 = dirX; this.m10 = -dirX; this.m11 = dirY; properties = PROPERTY_AFFINE | PROPERTY_ORTHONORMAL; return this; } /** * Set this matrix to a rotation of angleX radians about the X axis, followed by a rotation * of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* This method is equivalent to calling: rotationX(angleX).rotateY(angleY).rotateZ(angleZ) * * @param angleX * the angle to rotate about X * @param angleY * the angle to rotate about Y * @param angleZ * the angle to rotate about Z * @return this */ public Matrix4d rotationXYZ(double angleX, double angleY, double angleZ) { double sinX = Math.sin(angleX); double cosX = Math.cosFromSin(sinX, angleX); double sinY = Math.sin(angleY); double cosY = Math.cosFromSin(sinY, angleY); double sinZ = Math.sin(angleZ); double cosZ = Math.cosFromSin(sinZ, angleZ); double m_sinX = -sinX; double m_sinY = -sinY; double m_sinZ = -sinZ; if ((properties & PROPERTY_IDENTITY) == 0) this._identity(); // rotateX double nm11 = cosX; double nm12 = sinX; double nm21 = m_sinX; double nm22 = cosX; // rotateY double nm00 = cosY; double nm01 = nm21 * m_sinY; double nm02 = nm22 * m_sinY; _m20(sinY). _m21(nm21 * cosY). _m22(nm22 * cosY). // rotateZ _m00(nm00 * cosZ). _m01(nm01 * cosZ + nm11 * sinZ). _m02(nm02 * cosZ + nm12 * sinZ). _m10(nm00 * m_sinZ). _m11(nm01 * m_sinZ + nm11 * cosZ). _m12(nm02 * m_sinZ + nm12 * cosZ). properties = PROPERTY_AFFINE | PROPERTY_ORTHONORMAL; return this; } /** * Set this matrix to a rotation of angleZ radians about the Z axis, followed by a rotation * of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* This method is equivalent to calling: rotationZ(angleZ).rotateY(angleY).rotateX(angleX) * * @param angleZ * the angle to rotate about Z * @param angleY * the angle to rotate about Y * @param angleX * the angle to rotate about X * @return this */ public Matrix4d rotationZYX(double angleZ, double angleY, double angleX) { double sinX = Math.sin(angleX); double cosX = Math.cosFromSin(sinX, angleX); double sinY = Math.sin(angleY); double cosY = Math.cosFromSin(sinY, angleY); double sinZ = Math.sin(angleZ); double cosZ = Math.cosFromSin(sinZ, angleZ); double m_sinZ = -sinZ; double m_sinY = -sinY; double m_sinX = -sinX; if ((properties & PROPERTY_IDENTITY) == 0) this._identity(); // rotateZ double nm00 = cosZ; double nm01 = sinZ; double nm10 = m_sinZ; double nm11 = cosZ; // rotateY double nm20 = nm00 * sinY; double nm21 = nm01 * sinY; double nm22 = cosY; _m00(nm00 * cosY). _m01(nm01 * cosY). _m02(m_sinY). // rotateX _m10(nm10 * cosX + nm20 * sinX). _m11(nm11 * cosX + nm21 * sinX). _m12(nm22 * sinX). _m20(nm10 * m_sinX + nm20 * cosX). _m21(nm11 * m_sinX + nm21 * cosX). _m22(nm22 * cosX). properties = PROPERTY_AFFINE | PROPERTY_ORTHONORMAL; return this; } /** * Set this matrix to a rotation of angleY radians about the Y axis, followed by a rotation * of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* This method is equivalent to calling: rotationY(angleY).rotateX(angleX).rotateZ(angleZ) * * @param angleY * the angle to rotate about Y * @param angleX * the angle to rotate about X * @param angleZ * the angle to rotate about Z * @return this */ public Matrix4d rotationYXZ(double angleY, double angleX, double angleZ) { double sinX = Math.sin(angleX); double cosX = Math.cosFromSin(sinX, angleX); double sinY = Math.sin(angleY); double cosY = Math.cosFromSin(sinY, angleY); double sinZ = Math.sin(angleZ); double cosZ = Math.cosFromSin(sinZ, angleZ); double m_sinY = -sinY; double m_sinX = -sinX; double m_sinZ = -sinZ; // rotateY double nm00 = cosY; double nm02 = m_sinY; double nm20 = sinY; double nm22 = cosY; // rotateX double nm10 = nm20 * sinX; double nm11 = cosX; double nm12 = nm22 * sinX; _m20(nm20 * cosX). _m21(m_sinX). _m22(nm22 * cosX). _m23(0.0). // rotateZ _m00(nm00 * cosZ + nm10 * sinZ). _m01(nm11 * sinZ). _m02(nm02 * cosZ + nm12 * sinZ). _m03(0.0). _m10(nm00 * m_sinZ + nm10 * cosZ). _m11(nm11 * cosZ). _m12(nm02 * m_sinZ + nm12 * cosZ). _m13(0.0). // set last column to identity _m30(0.0). _m31(0.0). _m32(0.0). _m33(1.0). properties = PROPERTY_AFFINE | PROPERTY_ORTHONORMAL; return this; } /** * Set only the upper left 3x3 submatrix of this matrix to a rotation of angleX radians about the X axis, followed by a rotation * of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. * * @param angleX * the angle to rotate about X * @param angleY * the angle to rotate about Y * @param angleZ * the angle to rotate about Z * @return this */ public Matrix4d setRotationXYZ(double angleX, double angleY, double angleZ) { double sinX = Math.sin(angleX); double cosX = Math.cosFromSin(sinX, angleX); double sinY = Math.sin(angleY); double cosY = Math.cosFromSin(sinY, angleY); double sinZ = Math.sin(angleZ); double cosZ = Math.cosFromSin(sinZ, angleZ); double m_sinX = -sinX; double m_sinY = -sinY; double m_sinZ = -sinZ; // rotateX double nm11 = cosX; double nm12 = sinX; double nm21 = m_sinX; double nm22 = cosX; // rotateY double nm00 = cosY; double nm01 = nm21 * m_sinY; double nm02 = nm22 * m_sinY; _m20(sinY). _m21(nm21 * cosY). _m22(nm22 * cosY). // rotateZ _m00(nm00 * cosZ). _m01(nm01 * cosZ + nm11 * sinZ). _m02(nm02 * cosZ + nm12 * sinZ). _m10(nm00 * m_sinZ). _m11(nm01 * m_sinZ + nm11 * cosZ). _m12(nm02 * m_sinZ + nm12 * cosZ). properties &= ~(PROPERTY_PERSPECTIVE | PROPERTY_IDENTITY | PROPERTY_TRANSLATION); return this; } /** * Set only the upper left 3x3 submatrix of this matrix to a rotation of angleZ radians about the Z axis, followed by a rotation * of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. * * @param angleZ * the angle to rotate about Z * @param angleY * the angle to rotate about Y * @param angleX * the angle to rotate about X * @return this */ public Matrix4d setRotationZYX(double angleZ, double angleY, double angleX) { double sinX = Math.sin(angleX); double cosX = Math.cosFromSin(sinX, angleX); double sinY = Math.sin(angleY); double cosY = Math.cosFromSin(sinY, angleY); double sinZ = Math.sin(angleZ); double cosZ = Math.cosFromSin(sinZ, angleZ); double m_sinZ = -sinZ; double m_sinY = -sinY; double m_sinX = -sinX; // rotateZ double nm00 = cosZ; double nm01 = sinZ; double nm10 = m_sinZ; double nm11 = cosZ; // rotateY double nm20 = nm00 * sinY; double nm21 = nm01 * sinY; double nm22 = cosY; _m00(nm00 * cosY). _m01(nm01 * cosY). _m02(m_sinY). // rotateX _m10(nm10 * cosX + nm20 * sinX). _m11(nm11 * cosX + nm21 * sinX). _m12(nm22 * sinX). _m20(nm10 * m_sinX + nm20 * cosX). _m21(nm11 * m_sinX + nm21 * cosX). _m22(nm22 * cosX). properties &= ~(PROPERTY_PERSPECTIVE | PROPERTY_IDENTITY | PROPERTY_TRANSLATION); return this; } /** * Set only the upper left 3x3 submatrix of this matrix to a rotation of angleY radians about the Y axis, followed by a rotation * of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. * * @param angleY * the angle to rotate about Y * @param angleX * the angle to rotate about X * @param angleZ * the angle to rotate about Z * @return this */ public Matrix4d setRotationYXZ(double angleY, double angleX, double angleZ) { double sinX = Math.sin(angleX); double cosX = Math.cosFromSin(sinX, angleX); double sinY = Math.sin(angleY); double cosY = Math.cosFromSin(sinY, angleY); double sinZ = Math.sin(angleZ); double cosZ = Math.cosFromSin(sinZ, angleZ); double m_sinY = -sinY; double m_sinX = -sinX; double m_sinZ = -sinZ; // rotateY double nm00 = cosY; double nm02 = m_sinY; double nm20 = sinY; double nm22 = cosY; // rotateX double nm10 = nm20 * sinX; double nm11 = cosX; double nm12 = nm22 * sinX; _m20(nm20 * cosX). _m21(m_sinX). _m22(nm22 * cosX). // rotateZ _m00(nm00 * cosZ + nm10 * sinZ). _m01(nm11 * sinZ). _m02(nm02 * cosZ + nm12 * sinZ). _m10(nm00 * m_sinZ + nm10 * cosZ). _m11(nm11 * cosZ). _m12(nm02 * m_sinZ + nm12 * cosZ). properties &= ~(PROPERTY_PERSPECTIVE | PROPERTY_IDENTITY | PROPERTY_TRANSLATION); return this; } /** * Set this matrix to a rotation matrix which rotates the given radians about a given axis. *

* The axis described by the axis vector needs to be a unit vector. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. * * @param angle * the angle in radians * @param axis * the axis to rotate about * @return this */ public Matrix4d rotation(double angle, Vector3dc axis) { return rotation(angle, axis.x(), axis.y(), axis.z()); } /** * Set this matrix to a rotation matrix which rotates the given radians about a given axis. *

* The axis described by the axis vector needs to be a unit vector. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. * * @param angle * the angle in radians * @param axis * the axis to rotate about * @return this */ public Matrix4d rotation(double angle, Vector3fc axis) { return rotation(angle, axis.x(), axis.y(), axis.z()); } public Vector4d transform(Vector4d v) { return v.mul(this); } public Vector4d transform(Vector4dc v, Vector4d dest) { return v.mul(this, dest); } public Vector4d transform(double x, double y, double z, double w, Vector4d dest) { return dest.set(m00 * x + m10 * y + m20 * z + m30 * w, m01 * x + m11 * y + m21 * z + m31 * w, m02 * x + m12 * y + m22 * z + m32 * w, m03 * x + m13 * y + m23 * z + m33 * w); } public Vector4d transformTranspose(Vector4d v) { return v.mulTranspose(this); } public Vector4d transformTranspose(Vector4dc v, Vector4d dest) { return v.mulTranspose(this, dest); } public Vector4d transformTranspose(double x, double y, double z, double w, Vector4d dest) { return dest.set(x, y, z, w).mulTranspose(this); } public Vector4d transformProject(Vector4d v) { return v.mulProject(this); } public Vector4d transformProject(Vector4dc v, Vector4d dest) { return v.mulProject(this, dest); } public Vector4d transformProject(double x, double y, double z, double w, Vector4d dest) { double invW = 1.0 / (m03 * x + m13 * y + m23 * z + m33 * w); return dest.set((m00 * x + m10 * y + m20 * z + m30 * w) * invW, (m01 * x + m11 * y + m21 * z + m31 * w) * invW, (m02 * x + m12 * y + m22 * z + m32 * w) * invW, 1.0); } public Vector3d transformProject(Vector3d v) { return v.mulProject(this); } public Vector3d transformProject(Vector3dc v, Vector3d dest) { return v.mulProject(this, dest); } public Vector3d transformProject(double x, double y, double z, Vector3d dest) { double invW = 1.0 / (m03 * x + m13 * y + m23 * z + m33); return dest.set((m00 * x + m10 * y + m20 * z + m30) * invW, (m01 * x + m11 * y + m21 * z + m31) * invW, (m02 * x + m12 * y + m22 * z + m32) * invW); } public Vector3d transformProject(Vector4dc v, Vector3d dest) { return v.mulProject(this, dest); } public Vector3d transformProject(double x, double y, double z, double w, Vector3d dest) { dest.x = x; dest.y = y; dest.z = z; return dest.mulProject(this, w, dest); } public Vector3d transformPosition(Vector3d dest) { return dest.set(m00 * dest.x + m10 * dest.y + m20 * dest.z + m30, m01 * dest.x + m11 * dest.y + m21 * dest.z + m31, m02 * dest.x + m12 * dest.y + m22 * dest.z + m32); } public Vector3d transformPosition(Vector3dc v, Vector3d dest) { return transformPosition(v.x(), v.y(), v.z(), dest); } public Vector3d transformPosition(double x, double y, double z, Vector3d dest) { return dest.set(m00 * x + m10 * y + m20 * z + m30, m01 * x + m11 * y + m21 * z + m31, m02 * x + m12 * y + m22 * z + m32); } public Vector3d transformDirection(Vector3d dest) { return dest.set(m00 * dest.x + m10 * dest.y + m20 * dest.z, m01 * dest.x + m11 * dest.y + m21 * dest.z, m02 * dest.x + m12 * dest.y + m22 * dest.z); } public Vector3d transformDirection(Vector3dc v, Vector3d dest) { return dest.set(m00 * v.x() + m10 * v.y() + m20 * v.z(), m01 * v.x() + m11 * v.y() + m21 * v.z(), m02 * v.x() + m12 * v.y() + m22 * v.z()); } public Vector3d transformDirection(double x, double y, double z, Vector3d dest) { return dest.set(m00 * x + m10 * y + m20 * z, m01 * x + m11 * y + m21 * z, m02 * x + m12 * y + m22 * z); } public Vector3f transformDirection(Vector3f dest) { return dest.mulDirection(this); } public Vector3f transformDirection(Vector3fc v, Vector3f dest) { return v.mulDirection(this, dest); } public Vector3f transformDirection(double x, double y, double z, Vector3f dest) { float rx = (float)(m00 * x + m10 * y + m20 * z); float ry = (float)(m01 * x + m11 * y + m21 * z); float rz = (float)(m02 * x + m12 * y + m22 * z); dest.x = rx; dest.y = ry; dest.z = rz; return dest; } public Vector4d transformAffine(Vector4d dest) { return dest.mulAffine(this, dest); } public Vector4d transformAffine(Vector4dc v, Vector4d dest) { return transformAffine(v.x(), v.y(), v.z(), v.w(), dest); } public Vector4d transformAffine(double x, double y, double z, double w, Vector4d dest) { double rx = m00 * x + m10 * y + m20 * z + m30 * w; double ry = m01 * x + m11 * y + m21 * z + m31 * w; double rz = m02 * x + m12 * y + m22 * z + m32 * w; dest.x = rx; dest.y = ry; dest.z = rz; dest.w = w; return dest; } /** * Set the upper left 3x3 submatrix of this {@link Matrix4d} to the given {@link Matrix3dc} and don't change the other elements. * * @param mat * the 3x3 matrix * @return this */ public Matrix4d set3x3(Matrix3dc mat) { return _m00(mat.m00()). _m01(mat.m01()). _m02(mat.m02()). _m10(mat.m10()). _m11(mat.m11()). _m12(mat.m12()). _m20(mat.m20()). _m21(mat.m21()). _m22(mat.m22()). _properties(properties & ~(PROPERTY_PERSPECTIVE | PROPERTY_IDENTITY | PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL)); } public Matrix4d scale(Vector3dc xyz, Matrix4d dest) { return scale(xyz.x(), xyz.y(), xyz.z(), dest); } /** * Apply scaling to this matrix by scaling the base axes by the given xyz.x, * xyz.y and xyz.z factors, respectively. *

* If M is this matrix and S the scaling matrix, * then the new matrix will be M * S. So when transforming a * vector v with the new matrix by using M * S * v, the * scaling will be applied first! * * @param xyz * the factors of the x, y and z component, respectively * @return this */ public Matrix4d scale(Vector3dc xyz) { return scale(xyz.x(), xyz.y(), xyz.z(), this); } public Matrix4d scale(double x, double y, double z, Matrix4d dest) { if ((properties & PROPERTY_IDENTITY) != 0) return dest.scaling(x, y, z); return scaleGeneric(x, y, z, dest); } private Matrix4d scaleGeneric(double x, double y, double z, Matrix4d dest) { boolean one = Math.absEqualsOne(x) && Math.absEqualsOne(y) && Math.absEqualsOne(z); dest._m00(m00 * x) ._m01(m01 * x) ._m02(m02 * x) ._m03(m03 * x) ._m10(m10 * y) ._m11(m11 * y) ._m12(m12 * y) ._m13(m13 * y) ._m20(m20 * z) ._m21(m21 * z) ._m22(m22 * z) ._m23(m23 * z) ._m30(m30) ._m31(m31) ._m32(m32) ._m33(m33) ._properties(properties & ~(PROPERTY_PERSPECTIVE | PROPERTY_IDENTITY | PROPERTY_TRANSLATION | (one ? 0 : PROPERTY_ORTHONORMAL))); return dest; } /** * Apply scaling to this matrix by scaling the base axes by the given x, * y and z factors. *

* If M is this matrix and S the scaling matrix, * then the new matrix will be M * S. So when transforming a * vector v with the new matrix by using M * S * v * , the scaling will be applied first! * * @param x * the factor of the x component * @param y * the factor of the y component * @param z * the factor of the z component * @return this */ public Matrix4d scale(double x, double y, double z) { return scale(x, y, z, this); } public Matrix4d scale(double xyz, Matrix4d dest) { return scale(xyz, xyz, xyz, dest); } /** * Apply scaling to this matrix by uniformly scaling all base axes by the given xyz factor. *

* If M is this matrix and S the scaling matrix, * then the new matrix will be M * S. So when transforming a * vector v with the new matrix by using M * S * v * , the scaling will be applied first! * * @see #scale(double, double, double) * * @param xyz * the factor for all components * @return this */ public Matrix4d scale(double xyz) { return scale(xyz, xyz, xyz); } public Matrix4d scaleXY(double x, double y, Matrix4d dest) { return scale(x, y, 1.0, dest); } /** * Apply scaling to this matrix by scaling the X axis by x and the Y axis by y. *

* If M is this matrix and S the scaling matrix, * then the new matrix will be M * S. So when transforming a * vector v with the new matrix by using M * S * v, the * scaling will be applied first! * * @param x * the factor of the x component * @param y * the factor of the y component * @return this */ public Matrix4d scaleXY(double x, double y) { return scale(x, y, 1.0); } public Matrix4d scaleAround(double sx, double sy, double sz, double ox, double oy, double oz, Matrix4d dest) { double nm30 = m00 * ox + m10 * oy + m20 * oz + m30; double nm31 = m01 * ox + m11 * oy + m21 * oz + m31; double nm32 = m02 * ox + m12 * oy + m22 * oz + m32; double nm33 = m03 * ox + m13 * oy + m23 * oz + m33; boolean one = Math.absEqualsOne(sx) && Math.absEqualsOne(sy) && Math.absEqualsOne(sz); return dest ._m00(m00 * sx) ._m01(m01 * sx) ._m02(m02 * sx) ._m03(m03 * sx) ._m10(m10 * sy) ._m11(m11 * sy) ._m12(m12 * sy) ._m13(m13 * sy) ._m20(m20 * sz) ._m21(m21 * sz) ._m22(m22 * sz) ._m23(m23 * sz) ._m30(-dest.m00 * ox - dest.m10 * oy - dest.m20 * oz + nm30) ._m31(-dest.m01 * ox - dest.m11 * oy - dest.m21 * oz + nm31) ._m32(-dest.m02 * ox - dest.m12 * oy - dest.m22 * oz + nm32) ._m33(-dest.m03 * ox - dest.m13 * oy - dest.m23 * oz + nm33) ._properties(properties & ~(PROPERTY_PERSPECTIVE | PROPERTY_IDENTITY | PROPERTY_TRANSLATION | (one ? 0 : PROPERTY_ORTHONORMAL))); } /** * Apply scaling to this matrix by scaling the base axes by the given sx, * sy and sz factors while using (ox, oy, oz) as the scaling origin. *

* If M is this matrix and S the scaling matrix, * then the new matrix will be M * S. So when transforming a * vector v with the new matrix by using M * S * v, the * scaling will be applied first! *

* This method is equivalent to calling: translate(ox, oy, oz).scale(sx, sy, sz).translate(-ox, -oy, -oz) * * @param sx * the scaling factor of the x component * @param sy * the scaling factor of the y component * @param sz * the scaling factor of the z component * @param ox * the x coordinate of the scaling origin * @param oy * the y coordinate of the scaling origin * @param oz * the z coordinate of the scaling origin * @return this */ public Matrix4d scaleAround(double sx, double sy, double sz, double ox, double oy, double oz) { return scaleAround(sx, sy, sz, ox, oy, oz, this); } /** * Apply scaling to this matrix by scaling all three base axes by the given factor * while using (ox, oy, oz) as the scaling origin. *

* If M is this matrix and S the scaling matrix, * then the new matrix will be M * S. So when transforming a * vector v with the new matrix by using M * S * v, the * scaling will be applied first! *

* This method is equivalent to calling: translate(ox, oy, oz).scale(factor).translate(-ox, -oy, -oz) * * @param factor * the scaling factor for all three axes * @param ox * the x coordinate of the scaling origin * @param oy * the y coordinate of the scaling origin * @param oz * the z coordinate of the scaling origin * @return this */ public Matrix4d scaleAround(double factor, double ox, double oy, double oz) { return scaleAround(factor, factor, factor, ox, oy, oz, this); } public Matrix4d scaleAround(double factor, double ox, double oy, double oz, Matrix4d dest) { return scaleAround(factor, factor, factor, ox, oy, oz, dest); } public Matrix4d scaleLocal(double x, double y, double z, Matrix4d dest) { if ((properties & PROPERTY_IDENTITY) != 0) return dest.scaling(x, y, z); return scaleLocalGeneric(x, y, z, dest); } private Matrix4d scaleLocalGeneric(double x, double y, double z, Matrix4d dest) { double nm00 = x * m00; double nm01 = y * m01; double nm02 = z * m02; double nm10 = x * m10; double nm11 = y * m11; double nm12 = z * m12; double nm20 = x * m20; double nm21 = y * m21; double nm22 = z * m22; double nm30 = x * m30; double nm31 = y * m31; double nm32 = z * m32; boolean one = Math.absEqualsOne(x) && Math.absEqualsOne(y) && Math.absEqualsOne(z); dest._m00(nm00) ._m01(nm01) ._m02(nm02) ._m03(m03) ._m10(nm10) ._m11(nm11) ._m12(nm12) ._m13(m13) ._m20(nm20) ._m21(nm21) ._m22(nm22) ._m23(m23) ._m30(nm30) ._m31(nm31) ._m32(nm32) ._m33(m33) ._properties(properties & ~(PROPERTY_PERSPECTIVE | PROPERTY_IDENTITY | PROPERTY_TRANSLATION | (one ? 0 : PROPERTY_ORTHONORMAL))); return dest; } public Matrix4d scaleLocal(double xyz, Matrix4d dest) { return scaleLocal(xyz, xyz, xyz, dest); } /** * Pre-multiply scaling to this matrix by scaling the base axes by the given xyz factor. *

* If M is this matrix and S the scaling matrix, * then the new matrix will be S * M. So when transforming a * vector v with the new matrix by using S * M * v, the * scaling will be applied last! * * @param xyz * the factor of the x, y and z component * @return this */ public Matrix4d scaleLocal(double xyz) { return scaleLocal(xyz, this); } /** * Pre-multiply scaling to this matrix by scaling the base axes by the given x, * y and z factors. *

* If M is this matrix and S the scaling matrix, * then the new matrix will be S * M. So when transforming a * vector v with the new matrix by using S * M * v, the * scaling will be applied last! * * @param x * the factor of the x component * @param y * the factor of the y component * @param z * the factor of the z component * @return this */ public Matrix4d scaleLocal(double x, double y, double z) { return scaleLocal(x, y, z, this); } public Matrix4d scaleAroundLocal(double sx, double sy, double sz, double ox, double oy, double oz, Matrix4d dest) { boolean one = Math.absEqualsOne(sx) && Math.absEqualsOne(sy) && Math.absEqualsOne(sz); dest._m00(sx * (m00 - ox * m03) + ox * m03) ._m01(sy * (m01 - oy * m03) + oy * m03) ._m02(sz * (m02 - oz * m03) + oz * m03) ._m03(m03) ._m10(sx * (m10 - ox * m13) + ox * m13) ._m11(sy * (m11 - oy * m13) + oy * m13) ._m12(sz * (m12 - oz * m13) + oz * m13) ._m13(m13) ._m20(sx * (m20 - ox * m23) + ox * m23) ._m21(sy * (m21 - oy * m23) + oy * m23) ._m22(sz * (m22 - oz * m23) + oz * m23) ._m23(m23) ._m30(sx * (m30 - ox * m33) + ox * m33) ._m31(sy * (m31 - oy * m33) + oy * m33) ._m32(sz * (m32 - oz * m33) + oz * m33) ._m33(m33) ._properties(properties & ~(PROPERTY_PERSPECTIVE | PROPERTY_IDENTITY | PROPERTY_TRANSLATION | (one ? 0 : PROPERTY_ORTHONORMAL))); return dest; } /** * Pre-multiply scaling to this matrix by scaling the base axes by the given sx, * sy and sz factors while using (ox, oy, oz) as the scaling origin. *

* If M is this matrix and S the scaling matrix, * then the new matrix will be S * M. So when transforming a * vector v with the new matrix by using S * M * v, the * scaling will be applied last! *

* This method is equivalent to calling: new Matrix4d().translate(ox, oy, oz).scale(sx, sy, sz).translate(-ox, -oy, -oz).mul(this, this) * * @param sx * the scaling factor of the x component * @param sy * the scaling factor of the y component * @param sz * the scaling factor of the z component * @param ox * the x coordinate of the scaling origin * @param oy * the y coordinate of the scaling origin * @param oz * the z coordinate of the scaling origin * @return this */ public Matrix4d scaleAroundLocal(double sx, double sy, double sz, double ox, double oy, double oz) { return scaleAroundLocal(sx, sy, sz, ox, oy, oz, this); } /** * Pre-multiply scaling to this matrix by scaling all three base axes by the given factor * while using (ox, oy, oz) as the scaling origin. *

* If M is this matrix and S the scaling matrix, * then the new matrix will be S * M. So when transforming a * vector v with the new matrix by using S * M * v, the * scaling will be applied last! *

* This method is equivalent to calling: new Matrix4d().translate(ox, oy, oz).scale(factor).translate(-ox, -oy, -oz).mul(this, this) * * @param factor * the scaling factor for all three axes * @param ox * the x coordinate of the scaling origin * @param oy * the y coordinate of the scaling origin * @param oz * the z coordinate of the scaling origin * @return this */ public Matrix4d scaleAroundLocal(double factor, double ox, double oy, double oz) { return scaleAroundLocal(factor, factor, factor, ox, oy, oz, this); } public Matrix4d scaleAroundLocal(double factor, double ox, double oy, double oz, Matrix4d dest) { return scaleAroundLocal(factor, factor, factor, ox, oy, oz, dest); } public Matrix4d rotate(double ang, double x, double y, double z, Matrix4d dest) { if ((properties & PROPERTY_IDENTITY) != 0) return dest.rotation(ang, x, y, z); else if ((properties & PROPERTY_TRANSLATION) != 0) return rotateTranslation(ang, x, y, z, dest); else if ((properties & PROPERTY_AFFINE) != 0) return rotateAffine(ang, x, y, z, dest); return rotateGeneric(ang, x, y, z, dest); } private Matrix4d rotateGeneric(double ang, double x, double y, double z, Matrix4d dest) { if (y == 0.0 && z == 0.0 && Math.absEqualsOne(x)) return rotateX(x * ang, dest); else if (x == 0.0 && z == 0.0 && Math.absEqualsOne(y)) return rotateY(y * ang, dest); else if (x == 0.0 && y == 0.0 && Math.absEqualsOne(z)) return rotateZ(z * ang, dest); return rotateGenericInternal(ang, x, y, z, dest); } private Matrix4d rotateGenericInternal(double ang, double x, double y, double z, Matrix4d dest) { double s = Math.sin(ang); double c = Math.cosFromSin(s, ang); double C = 1.0 - c; double xx = x * x, xy = x * y, xz = x * z; double yy = y * y, yz = y * z; double zz = z * z; double rm00 = xx * C + c; double rm01 = xy * C + z * s; double rm02 = xz * C - y * s; double rm10 = xy * C - z * s; double rm11 = yy * C + c; double rm12 = yz * C + x * s; double rm20 = xz * C + y * s; double rm21 = yz * C - x * s; double rm22 = zz * C + c; double nm00 = m00 * rm00 + m10 * rm01 + m20 * rm02; double nm01 = m01 * rm00 + m11 * rm01 + m21 * rm02; double nm02 = m02 * rm00 + m12 * rm01 + m22 * rm02; double nm03 = m03 * rm00 + m13 * rm01 + m23 * rm02; double nm10 = m00 * rm10 + m10 * rm11 + m20 * rm12; double nm11 = m01 * rm10 + m11 * rm11 + m21 * rm12; double nm12 = m02 * rm10 + m12 * rm11 + m22 * rm12; double nm13 = m03 * rm10 + m13 * rm11 + m23 * rm12; dest._m20(m00 * rm20 + m10 * rm21 + m20 * rm22) ._m21(m01 * rm20 + m11 * rm21 + m21 * rm22) ._m22(m02 * rm20 + m12 * rm21 + m22 * rm22) ._m23(m03 * rm20 + m13 * rm21 + m23 * rm22) ._m00(nm00) ._m01(nm01) ._m02(nm02) ._m03(nm03) ._m10(nm10) ._m11(nm11) ._m12(nm12) ._m13(nm13) ._m30(m30) ._m31(m31) ._m32(m32) ._m33(m33) ._properties(properties & ~(PROPERTY_PERSPECTIVE | PROPERTY_IDENTITY | PROPERTY_TRANSLATION)); return dest; } /** * Apply rotation to this matrix by rotating the given amount of radians * about the given axis specified as x, y and z components. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and R the rotation matrix, * then the new matrix will be M * R. So when transforming a * vector v with the new matrix by using M * R * v * , the rotation will be applied first! *

* In order to set the matrix to a rotation matrix without post-multiplying the rotation * transformation, use {@link #rotation(double, double, double, double) rotation()}. * * @see #rotation(double, double, double, double) * * @param ang * the angle is in radians * @param x * the x component of the axis * @param y * the y component of the axis * @param z * the z component of the axis * @return this */ public Matrix4d rotate(double ang, double x, double y, double z) { return rotate(ang, x, y, z, this); } /** * Apply rotation to this matrix, which is assumed to only contain a translation, by rotating the given amount of radians * about the specified (x, y, z) axis and store the result in dest. *

* This method assumes this to only contain a translation. *

* The axis described by the three components needs to be a unit vector. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and R the rotation matrix, * then the new matrix will be M * R. So when transforming a * vector v with the new matrix by using M * R * v, the * rotation will be applied first! *

* In order to set the matrix to a rotation matrix without post-multiplying the rotation * transformation, use {@link #rotation(double, double, double, double) rotation()}. *

* Reference: http://en.wikipedia.org * * @see #rotation(double, double, double, double) * * @param ang * the angle in radians * @param x * the x component of the axis * @param y * the y component of the axis * @param z * the z component of the axis * @param dest * will hold the result * @return dest */ public Matrix4d rotateTranslation(double ang, double x, double y, double z, Matrix4d dest) { double tx = m30, ty = m31, tz = m32; if (y == 0.0 && z == 0.0 && Math.absEqualsOne(x)) return dest.rotationX(x * ang).setTranslation(tx, ty, tz); else if (x == 0.0 && z == 0.0 && Math.absEqualsOne(y)) return dest.rotationY(y * ang).setTranslation(tx, ty, tz); else if (x == 0.0 && y == 0.0 && Math.absEqualsOne(z)) return dest.rotationZ(z * ang).setTranslation(tx, ty, tz); return rotateTranslationInternal(ang, x, y, z, dest); } private Matrix4d rotateTranslationInternal(double ang, double x, double y, double z, Matrix4d dest) { double s = Math.sin(ang); double c = Math.cosFromSin(s, ang); double C = 1.0 - c; double xx = x * x, xy = x * y, xz = x * z; double yy = y * y, yz = y * z; double zz = z * z; double rm00 = xx * C + c; double rm01 = xy * C + z * s; double rm02 = xz * C - y * s; double rm10 = xy * C - z * s; double rm11 = yy * C + c; double rm12 = yz * C + x * s; double rm20 = xz * C + y * s; double rm21 = yz * C - x * s; double rm22 = zz * C + c; return dest ._m20(rm20) ._m21(rm21) ._m22(rm22) ._m23(0.0) ._m00(rm00) ._m01(rm01) ._m02(rm02) ._m03(0.0) ._m10(rm10) ._m11(rm11) ._m12(rm12) ._m13(0.0) ._m30(m30) ._m31(m31) ._m32(m32) ._m33(1.0) ._properties(properties & ~(PROPERTY_PERSPECTIVE | PROPERTY_IDENTITY | PROPERTY_TRANSLATION)); } /** * Apply rotation to this {@link #isAffine() affine} matrix by rotating the given amount of radians * about the specified (x, y, z) axis and store the result in dest. *

* This method assumes this to be {@link #isAffine() affine}. *

* The axis described by the three components needs to be a unit vector. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and R the rotation matrix, * then the new matrix will be M * R. So when transforming a * vector v with the new matrix by using M * R * v, the * rotation will be applied first! *

* In order to set the matrix to a rotation matrix without post-multiplying the rotation * transformation, use {@link #rotation(double, double, double, double) rotation()}. *

* Reference: http://en.wikipedia.org * * @see #rotation(double, double, double, double) * * @param ang * the angle in radians * @param x * the x component of the axis * @param y * the y component of the axis * @param z * the z component of the axis * @param dest * will hold the result * @return dest */ public Matrix4d rotateAffine(double ang, double x, double y, double z, Matrix4d dest) { if (y == 0.0 && z == 0.0 && Math.absEqualsOne(x)) return rotateX(x * ang, dest); else if (x == 0.0 && z == 0.0 && Math.absEqualsOne(y)) return rotateY(y * ang, dest); else if (x == 0.0 && y == 0.0 && Math.absEqualsOne(z)) return rotateZ(z * ang, dest); return rotateAffineInternal(ang, x, y, z, dest); } private Matrix4d rotateAffineInternal(double ang, double x, double y, double z, Matrix4d dest) { double s = Math.sin(ang); double c = Math.cosFromSin(s, ang); double C = 1.0 - c; double xx = x * x, xy = x * y, xz = x * z; double yy = y * y, yz = y * z; double zz = z * z; double rm00 = xx * C + c; double rm01 = xy * C + z * s; double rm02 = xz * C - y * s; double rm10 = xy * C - z * s; double rm11 = yy * C + c; double rm12 = yz * C + x * s; double rm20 = xz * C + y * s; double rm21 = yz * C - x * s; double rm22 = zz * C + c; // add temporaries for dependent values double nm00 = m00 * rm00 + m10 * rm01 + m20 * rm02; double nm01 = m01 * rm00 + m11 * rm01 + m21 * rm02; double nm02 = m02 * rm00 + m12 * rm01 + m22 * rm02; double nm10 = m00 * rm10 + m10 * rm11 + m20 * rm12; double nm11 = m01 * rm10 + m11 * rm11 + m21 * rm12; double nm12 = m02 * rm10 + m12 * rm11 + m22 * rm12; // set non-dependent values directly dest._m20(m00 * rm20 + m10 * rm21 + m20 * rm22) ._m21(m01 * rm20 + m11 * rm21 + m21 * rm22) ._m22(m02 * rm20 + m12 * rm21 + m22 * rm22) ._m23(0.0) // set other values ._m00(nm00) ._m01(nm01) ._m02(nm02) ._m03(0.0) ._m10(nm10) ._m11(nm11) ._m12(nm12) ._m13(0.0) ._m30(m30) ._m31(m31) ._m32(m32) ._m33(m33) ._properties(properties & ~(PROPERTY_PERSPECTIVE | PROPERTY_IDENTITY | PROPERTY_TRANSLATION)); return dest; } /** * Apply rotation to this {@link #isAffine() affine} matrix by rotating the given amount of radians * about the specified (x, y, z) axis. *

* This method assumes this to be {@link #isAffine() affine}. *

* The axis described by the three components needs to be a unit vector. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and R the rotation matrix, * then the new matrix will be M * R. So when transforming a * vector v with the new matrix by using M * R * v, the * rotation will be applied first! *

* In order to set the matrix to a rotation matrix without post-multiplying the rotation * transformation, use {@link #rotation(double, double, double, double) rotation()}. *

* Reference: http://en.wikipedia.org * * @see #rotation(double, double, double, double) * * @param ang * the angle in radians * @param x * the x component of the axis * @param y * the y component of the axis * @param z * the z component of the axis * @return this */ public Matrix4d rotateAffine(double ang, double x, double y, double z) { return rotateAffine(ang, x, y, z, this); } /** * Apply the rotation transformation of the given {@link Quaterniondc} to this matrix while using (ox, oy, oz) as the rotation origin. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and Q the rotation matrix obtained from the given quaternion, * then the new matrix will be M * Q. So when transforming a * vector v with the new matrix by using M * Q * v, * the quaternion rotation will be applied first! *

* This method is equivalent to calling: translate(ox, oy, oz).rotate(quat).translate(-ox, -oy, -oz) *

* Reference: http://en.wikipedia.org * * @param quat * the {@link Quaterniondc} * @param ox * the x coordinate of the rotation origin * @param oy * the y coordinate of the rotation origin * @param oz * the z coordinate of the rotation origin * @return this */ public Matrix4d rotateAround(Quaterniondc quat, double ox, double oy, double oz) { return rotateAround(quat, ox, oy, oz, this); } public Matrix4d rotateAroundAffine(Quaterniondc quat, double ox, double oy, double oz, Matrix4d dest) { double w2 = quat.w() * quat.w(), x2 = quat.x() * quat.x(); double y2 = quat.y() * quat.y(), z2 = quat.z() * quat.z(); double zw = quat.z() * quat.w(), dzw = zw + zw, xy = quat.x() * quat.y(), dxy = xy + xy; double xz = quat.x() * quat.z(), dxz = xz + xz, yw = quat.y() * quat.w(), dyw = yw + yw; double yz = quat.y() * quat.z(), dyz = yz + yz, xw = quat.x() * quat.w(), dxw = xw + xw; double rm00 = w2 + x2 - z2 - y2; double rm01 = dxy + dzw; double rm02 = dxz - dyw; double rm10 = -dzw + dxy; double rm11 = y2 - z2 + w2 - x2; double rm12 = dyz + dxw; double rm20 = dyw + dxz; double rm21 = dyz - dxw; double rm22 = z2 - y2 - x2 + w2; double tm30 = m00 * ox + m10 * oy + m20 * oz + m30; double tm31 = m01 * ox + m11 * oy + m21 * oz + m31; double tm32 = m02 * ox + m12 * oy + m22 * oz + m32; double nm00 = m00 * rm00 + m10 * rm01 + m20 * rm02; double nm01 = m01 * rm00 + m11 * rm01 + m21 * rm02; double nm02 = m02 * rm00 + m12 * rm01 + m22 * rm02; double nm10 = m00 * rm10 + m10 * rm11 + m20 * rm12; double nm11 = m01 * rm10 + m11 * rm11 + m21 * rm12; double nm12 = m02 * rm10 + m12 * rm11 + m22 * rm12; dest ._m20(m00 * rm20 + m10 * rm21 + m20 * rm22) ._m21(m01 * rm20 + m11 * rm21 + m21 * rm22) ._m22(m02 * rm20 + m12 * rm21 + m22 * rm22) ._m23(0.0) ._m00(nm00) ._m01(nm01) ._m02(nm02) ._m03(0.0) ._m10(nm10) ._m11(nm11) ._m12(nm12) ._m13(0.0) ._m30(-nm00 * ox - nm10 * oy - m20 * oz + tm30) ._m31(-nm01 * ox - nm11 * oy - m21 * oz + tm31) ._m32(-nm02 * ox - nm12 * oy - m22 * oz + tm32) ._m33(1.0) ._properties(properties & ~(PROPERTY_PERSPECTIVE | PROPERTY_IDENTITY | PROPERTY_TRANSLATION)); return dest; } public Matrix4d rotateAround(Quaterniondc quat, double ox, double oy, double oz, Matrix4d dest) { if ((properties & PROPERTY_IDENTITY) != 0) return rotationAround(quat, ox, oy, oz); else if ((properties & PROPERTY_AFFINE) != 0) return rotateAroundAffine(quat, ox, oy, oz, this); return rotateAroundGeneric(quat, ox, oy, oz, this); } private Matrix4d rotateAroundGeneric(Quaterniondc quat, double ox, double oy, double oz, Matrix4d dest) { double w2 = quat.w() * quat.w(), x2 = quat.x() * quat.x(); double y2 = quat.y() * quat.y(), z2 = quat.z() * quat.z(); double zw = quat.z() * quat.w(), dzw = zw + zw, xy = quat.x() * quat.y(), dxy = xy + xy; double xz = quat.x() * quat.z(), dxz = xz + xz, yw = quat.y() * quat.w(), dyw = yw + yw; double yz = quat.y() * quat.z(), dyz = yz + yz, xw = quat.x() * quat.w(), dxw = xw + xw; double rm00 = w2 + x2 - z2 - y2; double rm01 = dxy + dzw; double rm02 = dxz - dyw; double rm10 = -dzw + dxy; double rm11 = y2 - z2 + w2 - x2; double rm12 = dyz + dxw; double rm20 = dyw + dxz; double rm21 = dyz - dxw; double rm22 = z2 - y2 - x2 + w2; double tm30 = m00 * ox + m10 * oy + m20 * oz + m30; double tm31 = m01 * ox + m11 * oy + m21 * oz + m31; double tm32 = m02 * ox + m12 * oy + m22 * oz + m32; double nm00 = m00 * rm00 + m10 * rm01 + m20 * rm02; double nm01 = m01 * rm00 + m11 * rm01 + m21 * rm02; double nm02 = m02 * rm00 + m12 * rm01 + m22 * rm02; double nm03 = m03 * rm00 + m13 * rm01 + m23 * rm02; double nm10 = m00 * rm10 + m10 * rm11 + m20 * rm12; double nm11 = m01 * rm10 + m11 * rm11 + m21 * rm12; double nm12 = m02 * rm10 + m12 * rm11 + m22 * rm12; double nm13 = m03 * rm10 + m13 * rm11 + m23 * rm12; dest ._m20(m00 * rm20 + m10 * rm21 + m20 * rm22) ._m21(m01 * rm20 + m11 * rm21 + m21 * rm22) ._m22(m02 * rm20 + m12 * rm21 + m22 * rm22) ._m23(m03 * rm20 + m13 * rm21 + m23 * rm22) ._m00(nm00) ._m01(nm01) ._m02(nm02) ._m03(nm03) ._m10(nm10) ._m11(nm11) ._m12(nm12) ._m13(nm13) ._m30(-nm00 * ox - nm10 * oy - m20 * oz + tm30) ._m31(-nm01 * ox - nm11 * oy - m21 * oz + tm31) ._m32(-nm02 * ox - nm12 * oy - m22 * oz + tm32) ._m33(m33) ._properties(properties & ~(PROPERTY_PERSPECTIVE | PROPERTY_IDENTITY | PROPERTY_TRANSLATION)); return dest; } /** * Set this matrix to a transformation composed of a rotation of the specified {@link Quaterniondc} while using (ox, oy, oz) as the rotation origin. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* This method is equivalent to calling: translation(ox, oy, oz).rotate(quat).translate(-ox, -oy, -oz) *

* Reference: http://en.wikipedia.org * * @param quat * the {@link Quaterniondc} * @param ox * the x coordinate of the rotation origin * @param oy * the y coordinate of the rotation origin * @param oz * the z coordinate of the rotation origin * @return this */ public Matrix4d rotationAround(Quaterniondc quat, double ox, double oy, double oz) { double w2 = quat.w() * quat.w(), x2 = quat.x() * quat.x(); double y2 = quat.y() * quat.y(), z2 = quat.z() * quat.z(); double zw = quat.z() * quat.w(), dzw = zw + zw, xy = quat.x() * quat.y(), dxy = xy + xy; double xz = quat.x() * quat.z(), dxz = xz + xz, yw = quat.y() * quat.w(), dyw = yw + yw; double yz = quat.y() * quat.z(), dyz = yz + yz, xw = quat.x() * quat.w(), dxw = xw + xw; this._m20(dyw + dxz); this._m21(dyz - dxw); this._m22(z2 - y2 - x2 + w2); this._m23(0.0); this._m00(w2 + x2 - z2 - y2); this._m01(dxy + dzw); this._m02(dxz - dyw); this._m03(0.0); this._m10(-dzw + dxy); this._m11(y2 - z2 + w2 - x2); this._m12(dyz + dxw); this._m13(0.0); this._m30(-m00 * ox - m10 * oy - m20 * oz + ox); this._m31(-m01 * ox - m11 * oy - m21 * oz + oy); this._m32(-m02 * ox - m12 * oy - m22 * oz + oz); this._m33(1.0); this.properties = PROPERTY_AFFINE | PROPERTY_ORTHONORMAL; return this; } /** * Pre-multiply a rotation to this matrix by rotating the given amount of radians * about the specified (x, y, z) axis and store the result in dest. *

* The axis described by the three components needs to be a unit vector. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and R the rotation matrix, * then the new matrix will be R * M. So when transforming a * vector v with the new matrix by using R * M * v, the * rotation will be applied last! *

* In order to set the matrix to a rotation matrix without pre-multiplying the rotation * transformation, use {@link #rotation(double, double, double, double) rotation()}. *

* Reference: http://en.wikipedia.org * * @see #rotation(double, double, double, double) * * @param ang * the angle in radians * @param x * the x component of the axis * @param y * the y component of the axis * @param z * the z component of the axis * @param dest * will hold the result * @return dest */ public Matrix4d rotateLocal(double ang, double x, double y, double z, Matrix4d dest) { if ((properties & PROPERTY_IDENTITY) != 0) return dest.rotation(ang, x, y, z); return rotateLocalGeneric(ang, x, y, z, dest); } private Matrix4d rotateLocalGeneric(double ang, double x, double y, double z, Matrix4d dest) { if (y == 0.0 && z == 0.0 && Math.absEqualsOne(x)) return rotateLocalX(x * ang, dest); else if (x == 0.0 && z == 0.0 && Math.absEqualsOne(y)) return rotateLocalY(y * ang, dest); else if (x == 0.0 && y == 0.0 && Math.absEqualsOne(z)) return rotateLocalZ(z * ang, dest); return rotateLocalGenericInternal(ang, x, y, z, dest); } private Matrix4d rotateLocalGenericInternal(double ang, double x, double y, double z, Matrix4d dest) { double s = Math.sin(ang); double c = Math.cosFromSin(s, ang); double C = 1.0 - c; double xx = x * x, xy = x * y, xz = x * z; double yy = y * y, yz = y * z; double zz = z * z; double lm00 = xx * C + c; double lm01 = xy * C + z * s; double lm02 = xz * C - y * s; double lm10 = xy * C - z * s; double lm11 = yy * C + c; double lm12 = yz * C + x * s; double lm20 = xz * C + y * s; double lm21 = yz * C - x * s; double lm22 = zz * C + c; double nm00 = lm00 * m00 + lm10 * m01 + lm20 * m02; double nm01 = lm01 * m00 + lm11 * m01 + lm21 * m02; double nm02 = lm02 * m00 + lm12 * m01 + lm22 * m02; double nm10 = lm00 * m10 + lm10 * m11 + lm20 * m12; double nm11 = lm01 * m10 + lm11 * m11 + lm21 * m12; double nm12 = lm02 * m10 + lm12 * m11 + lm22 * m12; double nm20 = lm00 * m20 + lm10 * m21 + lm20 * m22; double nm21 = lm01 * m20 + lm11 * m21 + lm21 * m22; double nm22 = lm02 * m20 + lm12 * m21 + lm22 * m22; double nm30 = lm00 * m30 + lm10 * m31 + lm20 * m32; double nm31 = lm01 * m30 + lm11 * m31 + lm21 * m32; double nm32 = lm02 * m30 + lm12 * m31 + lm22 * m32; dest._m00(nm00) ._m01(nm01) ._m02(nm02) ._m03(m03) ._m10(nm10) ._m11(nm11) ._m12(nm12) ._m13(m13) ._m20(nm20) ._m21(nm21) ._m22(nm22) ._m23(m23) ._m30(nm30) ._m31(nm31) ._m32(nm32) ._m33(m33) ._properties(properties & ~(PROPERTY_PERSPECTIVE | PROPERTY_IDENTITY | PROPERTY_TRANSLATION)); return dest; } /** * Pre-multiply a rotation to this matrix by rotating the given amount of radians * about the specified (x, y, z) axis. *

* The axis described by the three components needs to be a unit vector. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and R the rotation matrix, * then the new matrix will be R * M. So when transforming a * vector v with the new matrix by using R * M * v, the * rotation will be applied last! *

* In order to set the matrix to a rotation matrix without pre-multiplying the rotation * transformation, use {@link #rotation(double, double, double, double) rotation()}. *

* Reference: http://en.wikipedia.org * * @see #rotation(double, double, double, double) * * @param ang * the angle in radians * @param x * the x component of the axis * @param y * the y component of the axis * @param z * the z component of the axis * @return this */ public Matrix4d rotateLocal(double ang, double x, double y, double z) { return rotateLocal(ang, x, y, z, this); } public Matrix4d rotateAroundLocal(Quaterniondc quat, double ox, double oy, double oz, Matrix4d dest) { double w2 = quat.w() * quat.w(); double x2 = quat.x() * quat.x(); double y2 = quat.y() * quat.y(); double z2 = quat.z() * quat.z(); double zw = quat.z() * quat.w(); double xy = quat.x() * quat.y(); double xz = quat.x() * quat.z(); double yw = quat.y() * quat.w(); double yz = quat.y() * quat.z(); double xw = quat.x() * quat.w(); double lm00 = w2 + x2 - z2 - y2; double lm01 = xy + zw + zw + xy; double lm02 = xz - yw + xz - yw; double lm10 = -zw + xy - zw + xy; double lm11 = y2 - z2 + w2 - x2; double lm12 = yz + yz + xw + xw; double lm20 = yw + xz + xz + yw; double lm21 = yz + yz - xw - xw; double lm22 = z2 - y2 - x2 + w2; double tm00 = m00 - ox * m03; double tm01 = m01 - oy * m03; double tm02 = m02 - oz * m03; double tm10 = m10 - ox * m13; double tm11 = m11 - oy * m13; double tm12 = m12 - oz * m13; double tm20 = m20 - ox * m23; double tm21 = m21 - oy * m23; double tm22 = m22 - oz * m23; double tm30 = m30 - ox * m33; double tm31 = m31 - oy * m33; double tm32 = m32 - oz * m33; dest._m00(lm00 * tm00 + lm10 * tm01 + lm20 * tm02 + ox * m03) ._m01(lm01 * tm00 + lm11 * tm01 + lm21 * tm02 + oy * m03) ._m02(lm02 * tm00 + lm12 * tm01 + lm22 * tm02 + oz * m03) ._m03(m03) ._m10(lm00 * tm10 + lm10 * tm11 + lm20 * tm12 + ox * m13) ._m11(lm01 * tm10 + lm11 * tm11 + lm21 * tm12 + oy * m13) ._m12(lm02 * tm10 + lm12 * tm11 + lm22 * tm12 + oz * m13) ._m13(m13) ._m20(lm00 * tm20 + lm10 * tm21 + lm20 * tm22 + ox * m23) ._m21(lm01 * tm20 + lm11 * tm21 + lm21 * tm22 + oy * m23) ._m22(lm02 * tm20 + lm12 * tm21 + lm22 * tm22 + oz * m23) ._m23(m23) ._m30(lm00 * tm30 + lm10 * tm31 + lm20 * tm32 + ox * m33) ._m31(lm01 * tm30 + lm11 * tm31 + lm21 * tm32 + oy * m33) ._m32(lm02 * tm30 + lm12 * tm31 + lm22 * tm32 + oz * m33) ._m33(m33) ._properties(properties & ~(PROPERTY_PERSPECTIVE | PROPERTY_IDENTITY | PROPERTY_TRANSLATION)); return dest; } /** * Pre-multiply the rotation - and possibly scaling - transformation of the given {@link Quaterniondc} to this matrix while using (ox, oy, oz) * as the rotation origin. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and Q the rotation matrix obtained from the given quaternion, * then the new matrix will be Q * M. So when transforming a * vector v with the new matrix by using Q * M * v, * the quaternion rotation will be applied last! *

* This method is equivalent to calling: translateLocal(-ox, -oy, -oz).rotateLocal(quat).translateLocal(ox, oy, oz) *

* Reference: http://en.wikipedia.org * * @param quat * the {@link Quaterniondc} * @param ox * the x coordinate of the rotation origin * @param oy * the y coordinate of the rotation origin * @param oz * the z coordinate of the rotation origin * @return this */ public Matrix4d rotateAroundLocal(Quaterniondc quat, double ox, double oy, double oz) { return rotateAroundLocal(quat, ox, oy, oz, this); } /** * Apply a translation to this matrix by translating by the given number of * units in x, y and z. *

* If M is this matrix and T the translation * matrix, then the new matrix will be M * T. So when * transforming a vector v with the new matrix by using * M * T * v, the translation will be applied first! *

* In order to set the matrix to a translation transformation without post-multiplying * it, use {@link #translation(Vector3dc)}. * * @see #translation(Vector3dc) * * @param offset * the number of units in x, y and z by which to translate * @return this */ public Matrix4d translate(Vector3dc offset) { return translate(offset.x(), offset.y(), offset.z()); } /** * Apply a translation to this matrix by translating by the given number of * units in x, y and z and store the result in dest. *

* If M is this matrix and T the translation * matrix, then the new matrix will be M * T. So when * transforming a vector v with the new matrix by using * M * T * v, the translation will be applied first! *

* In order to set the matrix to a translation transformation without post-multiplying * it, use {@link #translation(Vector3dc)}. * * @see #translation(Vector3dc) * * @param offset * the number of units in x, y and z by which to translate * @param dest * will hold the result * @return dest */ public Matrix4d translate(Vector3dc offset, Matrix4d dest) { return translate(offset.x(), offset.y(), offset.z(), dest); } /** * Apply a translation to this matrix by translating by the given number of * units in x, y and z. *

* If M is this matrix and T the translation * matrix, then the new matrix will be M * T. So when * transforming a vector v with the new matrix by using * M * T * v, the translation will be applied first! *

* In order to set the matrix to a translation transformation without post-multiplying * it, use {@link #translation(Vector3fc)}. * * @see #translation(Vector3fc) * * @param offset * the number of units in x, y and z by which to translate * @return this */ public Matrix4d translate(Vector3fc offset) { return translate(offset.x(), offset.y(), offset.z()); } /** * Apply a translation to this matrix by translating by the given number of * units in x, y and z and store the result in dest. *

* If M is this matrix and T the translation * matrix, then the new matrix will be M * T. So when * transforming a vector v with the new matrix by using * M * T * v, the translation will be applied first! *

* In order to set the matrix to a translation transformation without post-multiplying * it, use {@link #translation(Vector3fc)}. * * @see #translation(Vector3fc) * * @param offset * the number of units in x, y and z by which to translate * @param dest * will hold the result * @return dest */ public Matrix4d translate(Vector3fc offset, Matrix4d dest) { return translate(offset.x(), offset.y(), offset.z(), dest); } /** * Apply a translation to this matrix by translating by the given number of * units in x, y and z and store the result in dest. *

* If M is this matrix and T the translation * matrix, then the new matrix will be M * T. So when * transforming a vector v with the new matrix by using * M * T * v, the translation will be applied first! *

* In order to set the matrix to a translation transformation without post-multiplying * it, use {@link #translation(double, double, double)}. * * @see #translation(double, double, double) * * @param x * the offset to translate in x * @param y * the offset to translate in y * @param z * the offset to translate in z * @param dest * will hold the result * @return dest */ public Matrix4d translate(double x, double y, double z, Matrix4d dest) { if ((properties & PROPERTY_IDENTITY) != 0) return dest.translation(x, y, z); return translateGeneric(x, y, z, dest); } private Matrix4d translateGeneric(double x, double y, double z, Matrix4d dest) { dest._m00(m00) ._m01(m01) ._m02(m02) ._m03(m03) ._m10(m10) ._m11(m11) ._m12(m12) ._m13(m13) ._m20(m20) ._m21(m21) ._m22(m22) ._m23(m23) ._m30(Math.fma(m00, x, Math.fma(m10, y, Math.fma(m20, z, m30)))) ._m31(Math.fma(m01, x, Math.fma(m11, y, Math.fma(m21, z, m31)))) ._m32(Math.fma(m02, x, Math.fma(m12, y, Math.fma(m22, z, m32)))) ._m33(Math.fma(m03, x, Math.fma(m13, y, Math.fma(m23, z, m33)))) ._properties(properties & ~(PROPERTY_PERSPECTIVE | PROPERTY_IDENTITY)); return dest; } /** * Apply a translation to this matrix by translating by the given number of * units in x, y and z. *

* If M is this matrix and T the translation * matrix, then the new matrix will be M * T. So when * transforming a vector v with the new matrix by using * M * T * v, the translation will be applied first! *

* In order to set the matrix to a translation transformation without post-multiplying * it, use {@link #translation(double, double, double)}. * * @see #translation(double, double, double) * * @param x * the offset to translate in x * @param y * the offset to translate in y * @param z * the offset to translate in z * @return this */ public Matrix4d translate(double x, double y, double z) { if ((properties & PROPERTY_IDENTITY) != 0) return translation(x, y, z); this._m30(Math.fma(m00, x, Math.fma(m10, y, Math.fma(m20, z, m30)))); this._m31(Math.fma(m01, x, Math.fma(m11, y, Math.fma(m21, z, m31)))); this._m32(Math.fma(m02, x, Math.fma(m12, y, Math.fma(m22, z, m32)))); this._m33(Math.fma(m03, x, Math.fma(m13, y, Math.fma(m23, z, m33)))); this.properties &= ~(PROPERTY_PERSPECTIVE | PROPERTY_IDENTITY); return this; } /** * Pre-multiply a translation to this matrix by translating by the given number of * units in x, y and z. *

* If M is this matrix and T the translation * matrix, then the new matrix will be T * M. So when * transforming a vector v with the new matrix by using * T * M * v, the translation will be applied last! *

* In order to set the matrix to a translation transformation without pre-multiplying * it, use {@link #translation(Vector3fc)}. * * @see #translation(Vector3fc) * * @param offset * the number of units in x, y and z by which to translate * @return this */ public Matrix4d translateLocal(Vector3fc offset) { return translateLocal(offset.x(), offset.y(), offset.z()); } /** * Pre-multiply a translation to this matrix by translating by the given number of * units in x, y and z and store the result in dest. *

* If M is this matrix and T the translation * matrix, then the new matrix will be T * M. So when * transforming a vector v with the new matrix by using * T * M * v, the translation will be applied last! *

* In order to set the matrix to a translation transformation without pre-multiplying * it, use {@link #translation(Vector3fc)}. * * @see #translation(Vector3fc) * * @param offset * the number of units in x, y and z by which to translate * @param dest * will hold the result * @return dest */ public Matrix4d translateLocal(Vector3fc offset, Matrix4d dest) { return translateLocal(offset.x(), offset.y(), offset.z(), dest); } /** * Pre-multiply a translation to this matrix by translating by the given number of * units in x, y and z. *

* If M is this matrix and T the translation * matrix, then the new matrix will be T * M. So when * transforming a vector v with the new matrix by using * T * M * v, the translation will be applied last! *

* In order to set the matrix to a translation transformation without pre-multiplying * it, use {@link #translation(Vector3dc)}. * * @see #translation(Vector3dc) * * @param offset * the number of units in x, y and z by which to translate * @return this */ public Matrix4d translateLocal(Vector3dc offset) { return translateLocal(offset.x(), offset.y(), offset.z()); } /** * Pre-multiply a translation to this matrix by translating by the given number of * units in x, y and z and store the result in dest. *

* If M is this matrix and T the translation * matrix, then the new matrix will be T * M. So when * transforming a vector v with the new matrix by using * T * M * v, the translation will be applied last! *

* In order to set the matrix to a translation transformation without pre-multiplying * it, use {@link #translation(Vector3dc)}. * * @see #translation(Vector3dc) * * @param offset * the number of units in x, y and z by which to translate * @param dest * will hold the result * @return dest */ public Matrix4d translateLocal(Vector3dc offset, Matrix4d dest) { return translateLocal(offset.x(), offset.y(), offset.z(), dest); } /** * Pre-multiply a translation to this matrix by translating by the given number of * units in x, y and z and store the result in dest. *

* If M is this matrix and T the translation * matrix, then the new matrix will be T * M. So when * transforming a vector v with the new matrix by using * T * M * v, the translation will be applied last! *

* In order to set the matrix to a translation transformation without pre-multiplying * it, use {@link #translation(double, double, double)}. * * @see #translation(double, double, double) * * @param x * the offset to translate in x * @param y * the offset to translate in y * @param z * the offset to translate in z * @param dest * will hold the result * @return dest */ public Matrix4d translateLocal(double x, double y, double z, Matrix4d dest) { if ((properties & PROPERTY_IDENTITY) != 0) return dest.translation(x, y, z); return translateLocalGeneric(x, y, z, dest); } private Matrix4d translateLocalGeneric(double x, double y, double z, Matrix4d dest) { double nm00 = m00 + x * m03; double nm01 = m01 + y * m03; double nm02 = m02 + z * m03; double nm10 = m10 + x * m13; double nm11 = m11 + y * m13; double nm12 = m12 + z * m13; double nm20 = m20 + x * m23; double nm21 = m21 + y * m23; double nm22 = m22 + z * m23; double nm30 = m30 + x * m33; double nm31 = m31 + y * m33; double nm32 = m32 + z * m33; return dest ._m00(nm00) ._m01(nm01) ._m02(nm02) ._m03(m03) ._m10(nm10) ._m11(nm11) ._m12(nm12) ._m13(m13) ._m20(nm20) ._m21(nm21) ._m22(nm22) ._m23(m23) ._m30(nm30) ._m31(nm31) ._m32(nm32) ._m33(m33) ._properties(properties & ~(PROPERTY_PERSPECTIVE | PROPERTY_IDENTITY)); } /** * Pre-multiply a translation to this matrix by translating by the given number of * units in x, y and z. *

* If M is this matrix and T the translation * matrix, then the new matrix will be T * M. So when * transforming a vector v with the new matrix by using * T * M * v, the translation will be applied last! *

* In order to set the matrix to a translation transformation without pre-multiplying * it, use {@link #translation(double, double, double)}. * * @see #translation(double, double, double) * * @param x * the offset to translate in x * @param y * the offset to translate in y * @param z * the offset to translate in z * @return this */ public Matrix4d translateLocal(double x, double y, double z) { return translateLocal(x, y, z, this); } /** * Pre-multiply a rotation around the X axis to this matrix by rotating the given amount of radians * about the X axis and store the result in dest. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and R the rotation matrix, * then the new matrix will be R * M. So when transforming a * vector v with the new matrix by using R * M * v, the * rotation will be applied last! *

* In order to set the matrix to a rotation matrix without pre-multiplying the rotation * transformation, use {@link #rotationX(double) rotationX()}. *

* Reference: http://en.wikipedia.org * * @see #rotationX(double) * * @param ang * the angle in radians to rotate about the X axis * @param dest * will hold the result * @return dest */ public Matrix4d rotateLocalX(double ang, Matrix4d dest) { double sin = Math.sin(ang); double cos = Math.cosFromSin(sin, ang); double nm02 = sin * m01 + cos * m02; double nm12 = sin * m11 + cos * m12; double nm22 = sin * m21 + cos * m22; double nm32 = sin * m31 + cos * m32; dest ._m00(m00) ._m01(cos * m01 - sin * m02) ._m02(nm02) ._m03(m03) ._m10(m10) ._m11(cos * m11 - sin * m12) ._m12(nm12) ._m13(m13) ._m20(m20) ._m21(cos * m21 - sin * m22) ._m22(nm22) ._m23(m23) ._m30(m30) ._m31(cos * m31 - sin * m32) ._m32(nm32) ._m33(m33) ._properties(properties & ~(PROPERTY_PERSPECTIVE | PROPERTY_IDENTITY | PROPERTY_TRANSLATION)); return dest; } /** * Pre-multiply a rotation to this matrix by rotating the given amount of radians about the X axis. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and R the rotation matrix, * then the new matrix will be R * M. So when transforming a * vector v with the new matrix by using R * M * v, the * rotation will be applied last! *

* In order to set the matrix to a rotation matrix without pre-multiplying the rotation * transformation, use {@link #rotationX(double) rotationX()}. *

* Reference: http://en.wikipedia.org * * @see #rotationX(double) * * @param ang * the angle in radians to rotate about the X axis * @return this */ public Matrix4d rotateLocalX(double ang) { return rotateLocalX(ang, this); } /** * Pre-multiply a rotation around the Y axis to this matrix by rotating the given amount of radians * about the Y axis and store the result in dest. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and R the rotation matrix, * then the new matrix will be R * M. So when transforming a * vector v with the new matrix by using R * M * v, the * rotation will be applied last! *

* In order to set the matrix to a rotation matrix without pre-multiplying the rotation * transformation, use {@link #rotationY(double) rotationY()}. *

* Reference: http://en.wikipedia.org * * @see #rotationY(double) * * @param ang * the angle in radians to rotate about the Y axis * @param dest * will hold the result * @return dest */ public Matrix4d rotateLocalY(double ang, Matrix4d dest) { double sin = Math.sin(ang); double cos = Math.cosFromSin(sin, ang); double nm02 = -sin * m00 + cos * m02; double nm12 = -sin * m10 + cos * m12; double nm22 = -sin * m20 + cos * m22; double nm32 = -sin * m30 + cos * m32; dest ._m00(cos * m00 + sin * m02) ._m01(m01) ._m02(nm02) ._m03(m03) ._m10(cos * m10 + sin * m12) ._m11(m11) ._m12(nm12) ._m13(m13) ._m20(cos * m20 + sin * m22) ._m21(m21) ._m22(nm22) ._m23(m23) ._m30(cos * m30 + sin * m32) ._m31(m31) ._m32(nm32) ._m33(m33) ._properties(properties & ~(PROPERTY_PERSPECTIVE | PROPERTY_IDENTITY | PROPERTY_TRANSLATION)); return dest; } /** * Pre-multiply a rotation to this matrix by rotating the given amount of radians about the Y axis. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and R the rotation matrix, * then the new matrix will be R * M. So when transforming a * vector v with the new matrix by using R * M * v, the * rotation will be applied last! *

* In order to set the matrix to a rotation matrix without pre-multiplying the rotation * transformation, use {@link #rotationY(double) rotationY()}. *

* Reference: http://en.wikipedia.org * * @see #rotationY(double) * * @param ang * the angle in radians to rotate about the Y axis * @return this */ public Matrix4d rotateLocalY(double ang) { return rotateLocalY(ang, this); } /** * Pre-multiply a rotation around the Z axis to this matrix by rotating the given amount of radians * about the Z axis and store the result in dest. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and R the rotation matrix, * then the new matrix will be R * M. So when transforming a * vector v with the new matrix by using R * M * v, the * rotation will be applied last! *

* In order to set the matrix to a rotation matrix without pre-multiplying the rotation * transformation, use {@link #rotationZ(double) rotationZ()}. *

* Reference: http://en.wikipedia.org * * @see #rotationZ(double) * * @param ang * the angle in radians to rotate about the Z axis * @param dest * will hold the result * @return dest */ public Matrix4d rotateLocalZ(double ang, Matrix4d dest) { double sin = Math.sin(ang); double cos = Math.cosFromSin(sin, ang); double nm01 = sin * m00 + cos * m01; double nm11 = sin * m10 + cos * m11; double nm21 = sin * m20 + cos * m21; double nm31 = sin * m30 + cos * m31; dest ._m00(cos * m00 - sin * m01) ._m01(nm01) ._m02(m02) ._m03(m03) ._m10(cos * m10 - sin * m11) ._m11(nm11) ._m12(m12) ._m13(m13) ._m20(cos * m20 - sin * m21) ._m21(nm21) ._m22(m22) ._m23(m23) ._m30(cos * m30 - sin * m31) ._m31(nm31) ._m32(m32) ._m33(m33) ._properties(properties & ~(PROPERTY_PERSPECTIVE | PROPERTY_IDENTITY | PROPERTY_TRANSLATION)); return dest; } /** * Pre-multiply a rotation to this matrix by rotating the given amount of radians about the Z axis. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and R the rotation matrix, * then the new matrix will be R * M. So when transforming a * vector v with the new matrix by using R * M * v, the * rotation will be applied last! *

* In order to set the matrix to a rotation matrix without pre-multiplying the rotation * transformation, use {@link #rotationZ(double) rotationY()}. *

* Reference: http://en.wikipedia.org * * @see #rotationY(double) * * @param ang * the angle in radians to rotate about the Z axis * @return this */ public Matrix4d rotateLocalZ(double ang) { return rotateLocalZ(ang, this); } public void writeExternal(ObjectOutput out) throws IOException { out.writeDouble(m00); out.writeDouble(m01); out.writeDouble(m02); out.writeDouble(m03); out.writeDouble(m10); out.writeDouble(m11); out.writeDouble(m12); out.writeDouble(m13); out.writeDouble(m20); out.writeDouble(m21); out.writeDouble(m22); out.writeDouble(m23); out.writeDouble(m30); out.writeDouble(m31); out.writeDouble(m32); out.writeDouble(m33); } public void readExternal(ObjectInput in) throws IOException { _m00(in.readDouble()). _m01(in.readDouble()). _m02(in.readDouble()). _m03(in.readDouble()). _m10(in.readDouble()). _m11(in.readDouble()). _m12(in.readDouble()). _m13(in.readDouble()). _m20(in.readDouble()). _m21(in.readDouble()). _m22(in.readDouble()). _m23(in.readDouble()). _m30(in.readDouble()). _m31(in.readDouble()). _m32(in.readDouble()). _m33(in.readDouble()). determineProperties(); } public Matrix4d rotateX(double ang, Matrix4d dest) { if ((properties & PROPERTY_IDENTITY) != 0) return dest.rotationX(ang); else if ((properties & PROPERTY_TRANSLATION) != 0) { double x = m30, y = m31, z = m32; return dest.rotationX(ang).setTranslation(x, y, z); } return rotateXInternal(ang, dest); } private Matrix4d rotateXInternal(double ang, Matrix4d dest) { double sin, cos; sin = Math.sin(ang); cos = Math.cosFromSin(sin, ang); double rm11 = cos; double rm12 = sin; double rm21 = -sin; double rm22 = cos; // add temporaries for dependent values double nm10 = m10 * rm11 + m20 * rm12; double nm11 = m11 * rm11 + m21 * rm12; double nm12 = m12 * rm11 + m22 * rm12; double nm13 = m13 * rm11 + m23 * rm12; // set non-dependent values directly dest._m20(m10 * rm21 + m20 * rm22) ._m21(m11 * rm21 + m21 * rm22) ._m22(m12 * rm21 + m22 * rm22) ._m23(m13 * rm21 + m23 * rm22) // set other values ._m10(nm10) ._m11(nm11) ._m12(nm12) ._m13(nm13) ._m00(m00) ._m01(m01) ._m02(m02) ._m03(m03) ._m30(m30) ._m31(m31) ._m32(m32) ._m33(m33) ._properties(properties & ~(PROPERTY_PERSPECTIVE | PROPERTY_IDENTITY | PROPERTY_TRANSLATION)); return dest; } /** * Apply rotation about the X axis to this matrix by rotating the given amount of radians. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and R the rotation matrix, * then the new matrix will be M * R. So when transforming a * vector v with the new matrix by using M * R * v, the * rotation will be applied first! *

* Reference: http://en.wikipedia.org * * @param ang * the angle in radians * @return this */ public Matrix4d rotateX(double ang) { return rotateX(ang, this); } public Matrix4d rotateY(double ang, Matrix4d dest) { if ((properties & PROPERTY_IDENTITY) != 0) return dest.rotationY(ang); else if ((properties & PROPERTY_TRANSLATION) != 0) { double x = m30, y = m31, z = m32; return dest.rotationY(ang).setTranslation(x, y, z); } return rotateYInternal(ang, dest); } private Matrix4d rotateYInternal(double ang, Matrix4d dest) { double sin, cos; sin = Math.sin(ang); cos = Math.cosFromSin(sin, ang); double rm00 = cos; double rm02 = -sin; double rm20 = sin; double rm22 = cos; // add temporaries for dependent values double nm00 = m00 * rm00 + m20 * rm02; double nm01 = m01 * rm00 + m21 * rm02; double nm02 = m02 * rm00 + m22 * rm02; double nm03 = m03 * rm00 + m23 * rm02; // set non-dependent values directly dest._m20(m00 * rm20 + m20 * rm22) ._m21(m01 * rm20 + m21 * rm22) ._m22(m02 * rm20 + m22 * rm22) ._m23(m03 * rm20 + m23 * rm22) // set other values ._m00(nm00) ._m01(nm01) ._m02(nm02) ._m03(nm03) ._m10(m10) ._m11(m11) ._m12(m12) ._m13(m13) ._m30(m30) ._m31(m31) ._m32(m32) ._m33(m33) ._properties(properties & ~(PROPERTY_PERSPECTIVE | PROPERTY_IDENTITY | PROPERTY_TRANSLATION)); return dest; } /** * Apply rotation about the Y axis to this matrix by rotating the given amount of radians. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and R the rotation matrix, * then the new matrix will be M * R. So when transforming a * vector v with the new matrix by using M * R * v, the * rotation will be applied first! *

* Reference: http://en.wikipedia.org * * @param ang * the angle in radians * @return this */ public Matrix4d rotateY(double ang) { return rotateY(ang, this); } public Matrix4d rotateZ(double ang, Matrix4d dest) { if ((properties & PROPERTY_IDENTITY) != 0) return dest.rotationZ(ang); else if ((properties & PROPERTY_TRANSLATION) != 0) { double x = m30, y = m31, z = m32; return dest.rotationZ(ang).setTranslation(x, y, z); } return rotateZInternal(ang, dest); } private Matrix4d rotateZInternal(double ang, Matrix4d dest) { double sin = Math.sin(ang); double cos = Math.cosFromSin(sin, ang); return rotateTowardsXY(sin, cos, dest); } /** * Apply rotation about the Z axis to this matrix by rotating the given amount of radians. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and R the rotation matrix, * then the new matrix will be M * R. So when transforming a * vector v with the new matrix by using M * R * v, the * rotation will be applied first! *

* Reference: http://en.wikipedia.org * * @param ang * the angle in radians * @return this */ public Matrix4d rotateZ(double ang) { return rotateZ(ang, this); } /** * Apply rotation about the Z axis to align the local +X towards (dirX, dirY). *

* If M is this matrix and R the rotation matrix, * then the new matrix will be M * R. So when transforming a * vector v with the new matrix by using M * R * v, the * rotation will be applied first! *

* The vector (dirX, dirY) must be a unit vector. * * @param dirX * the x component of the normalized direction * @param dirY * the y component of the normalized direction * @return this */ public Matrix4d rotateTowardsXY(double dirX, double dirY) { return rotateTowardsXY(dirX, dirY, this); } public Matrix4d rotateTowardsXY(double dirX, double dirY, Matrix4d dest) { if ((properties & PROPERTY_IDENTITY) != 0) return dest.rotationTowardsXY(dirX, dirY); double rm00 = dirY; double rm01 = dirX; double rm10 = -dirX; double rm11 = dirY; double nm00 = m00 * rm00 + m10 * rm01; double nm01 = m01 * rm00 + m11 * rm01; double nm02 = m02 * rm00 + m12 * rm01; double nm03 = m03 * rm00 + m13 * rm01; dest._m10(m00 * rm10 + m10 * rm11) ._m11(m01 * rm10 + m11 * rm11) ._m12(m02 * rm10 + m12 * rm11) ._m13(m03 * rm10 + m13 * rm11) ._m00(nm00) ._m01(nm01) ._m02(nm02) ._m03(nm03) ._m20(m20) ._m21(m21) ._m22(m22) ._m23(m23) ._m30(m30) ._m31(m31) ._m32(m32) ._m33(m33) ._properties(properties & ~(PROPERTY_PERSPECTIVE | PROPERTY_IDENTITY | PROPERTY_TRANSLATION)); return dest; } /** * Apply rotation of angles.x radians about the X axis, followed by a rotation of angles.y radians about the Y axis and * followed by a rotation of angles.z radians about the Z axis. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and R the rotation matrix, * then the new matrix will be M * R. So when transforming a * vector v with the new matrix by using M * R * v, the * rotation will be applied first! *

* This method is equivalent to calling: rotateX(angles.x).rotateY(angles.y).rotateZ(angles.z) * * @param angles * the Euler angles * @return this */ public Matrix4d rotateXYZ(Vector3d angles) { return rotateXYZ(angles.x, angles.y, angles.z); } /** * Apply rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and * followed by a rotation of angleZ radians about the Z axis. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and R the rotation matrix, * then the new matrix will be M * R. So when transforming a * vector v with the new matrix by using M * R * v, the * rotation will be applied first! *

* This method is equivalent to calling: rotateX(angleX).rotateY(angleY).rotateZ(angleZ) * * @param angleX * the angle to rotate about X * @param angleY * the angle to rotate about Y * @param angleZ * the angle to rotate about Z * @return this */ public Matrix4d rotateXYZ(double angleX, double angleY, double angleZ) { return rotateXYZ(angleX, angleY, angleZ, this); } public Matrix4d rotateXYZ(double angleX, double angleY, double angleZ, Matrix4d dest) { if ((properties & PROPERTY_IDENTITY) != 0) return dest.rotationXYZ(angleX, angleY, angleZ); else if ((properties & PROPERTY_TRANSLATION) != 0) { double tx = m30, ty = m31, tz = m32; return dest.rotationXYZ(angleX, angleY, angleZ).setTranslation(tx, ty, tz); } else if ((properties & PROPERTY_AFFINE) != 0) return dest.rotateAffineXYZ(angleX, angleY, angleZ); return rotateXYZInternal(angleX, angleY, angleZ, dest); } private Matrix4d rotateXYZInternal(double angleX, double angleY, double angleZ, Matrix4d dest) { double sinX = Math.sin(angleX); double cosX = Math.cosFromSin(sinX, angleX); double sinY = Math.sin(angleY); double cosY = Math.cosFromSin(sinY, angleY); double sinZ = Math.sin(angleZ); double cosZ = Math.cosFromSin(sinZ, angleZ); double m_sinX = -sinX; double m_sinY = -sinY; double m_sinZ = -sinZ; // rotateX double nm10 = m10 * cosX + m20 * sinX; double nm11 = m11 * cosX + m21 * sinX; double nm12 = m12 * cosX + m22 * sinX; double nm13 = m13 * cosX + m23 * sinX; double nm20 = m10 * m_sinX + m20 * cosX; double nm21 = m11 * m_sinX + m21 * cosX; double nm22 = m12 * m_sinX + m22 * cosX; double nm23 = m13 * m_sinX + m23 * cosX; // rotateY double nm00 = m00 * cosY + nm20 * m_sinY; double nm01 = m01 * cosY + nm21 * m_sinY; double nm02 = m02 * cosY + nm22 * m_sinY; double nm03 = m03 * cosY + nm23 * m_sinY; dest._m20(m00 * sinY + nm20 * cosY) ._m21(m01 * sinY + nm21 * cosY) ._m22(m02 * sinY + nm22 * cosY) ._m23(m03 * sinY + nm23 * cosY) // rotateZ ._m00(nm00 * cosZ + nm10 * sinZ) ._m01(nm01 * cosZ + nm11 * sinZ) ._m02(nm02 * cosZ + nm12 * sinZ) ._m03(nm03 * cosZ + nm13 * sinZ) ._m10(nm00 * m_sinZ + nm10 * cosZ) ._m11(nm01 * m_sinZ + nm11 * cosZ) ._m12(nm02 * m_sinZ + nm12 * cosZ) ._m13(nm03 * m_sinZ + nm13 * cosZ) // copy last column from 'this' ._m30(m30) ._m31(m31) ._m32(m32) ._m33(m33) ._properties(properties & ~(PROPERTY_PERSPECTIVE | PROPERTY_IDENTITY | PROPERTY_TRANSLATION)); return dest; } /** * Apply rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and * followed by a rotation of angleZ radians about the Z axis. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* This method assumes that this matrix represents an {@link #isAffine() affine} transformation (i.e. its last row is equal to (0, 0, 0, 1)) * and can be used to speed up matrix multiplication if the matrix only represents affine transformations, such as translation, rotation, scaling and shearing (in any combination). *

* If M is this matrix and R the rotation matrix, * then the new matrix will be M * R. So when transforming a * vector v with the new matrix by using M * R * v, the * rotation will be applied first! *

* This method is equivalent to calling: rotateX(angleX).rotateY(angleY).rotateZ(angleZ) * * @param angleX * the angle to rotate about X * @param angleY * the angle to rotate about Y * @param angleZ * the angle to rotate about Z * @return this */ public Matrix4d rotateAffineXYZ(double angleX, double angleY, double angleZ) { return rotateAffineXYZ(angleX, angleY, angleZ, this); } public Matrix4d rotateAffineXYZ(double angleX, double angleY, double angleZ, Matrix4d dest) { if ((properties & PROPERTY_IDENTITY) != 0) return dest.rotationXYZ(angleX, angleY, angleZ); else if ((properties & PROPERTY_TRANSLATION) != 0) { double tx = m30, ty = m31, tz = m32; return dest.rotationXYZ(angleX, angleY, angleZ).setTranslation(tx, ty, tz); } return rotateAffineXYZInternal(angleX, angleY, angleZ, dest); } private Matrix4d rotateAffineXYZInternal(double angleX, double angleY, double angleZ, Matrix4d dest) { double sinX = Math.sin(angleX); double cosX = Math.cosFromSin(sinX, angleX); double sinY = Math.sin(angleY); double cosY = Math.cosFromSin(sinY, angleY); double sinZ = Math.sin(angleZ); double cosZ = Math.cosFromSin(sinZ, angleZ); double m_sinX = -sinX; double m_sinY = -sinY; double m_sinZ = -sinZ; // rotateX double nm10 = m10 * cosX + m20 * sinX; double nm11 = m11 * cosX + m21 * sinX; double nm12 = m12 * cosX + m22 * sinX; double nm20 = m10 * m_sinX + m20 * cosX; double nm21 = m11 * m_sinX + m21 * cosX; double nm22 = m12 * m_sinX + m22 * cosX; // rotateY double nm00 = m00 * cosY + nm20 * m_sinY; double nm01 = m01 * cosY + nm21 * m_sinY; double nm02 = m02 * cosY + nm22 * m_sinY; dest._m20(m00 * sinY + nm20 * cosY) ._m21(m01 * sinY + nm21 * cosY) ._m22(m02 * sinY + nm22 * cosY) ._m23(0.0) // rotateZ ._m00(nm00 * cosZ + nm10 * sinZ) ._m01(nm01 * cosZ + nm11 * sinZ) ._m02(nm02 * cosZ + nm12 * sinZ) ._m03(0.0) ._m10(nm00 * m_sinZ + nm10 * cosZ) ._m11(nm01 * m_sinZ + nm11 * cosZ) ._m12(nm02 * m_sinZ + nm12 * cosZ) ._m13(0.0) // copy last column from 'this' ._m30(m30) ._m31(m31) ._m32(m32) ._m33(m33) ._properties(properties & ~(PROPERTY_PERSPECTIVE | PROPERTY_IDENTITY | PROPERTY_TRANSLATION)); return dest; } /** * Apply rotation of angles.z radians about the Z axis, followed by a rotation of angles.y radians about the Y axis and * followed by a rotation of angles.x radians about the X axis. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and R the rotation matrix, * then the new matrix will be M * R. So when transforming a * vector v with the new matrix by using M * R * v, the * rotation will be applied first! *

* This method is equivalent to calling: rotateZ(angles.z).rotateY(angles.y).rotateX(angles.x) * * @param angles * the Euler angles * @return this */ public Matrix4d rotateZYX(Vector3d angles) { return rotateZYX(angles.z, angles.y, angles.x); } /** * Apply rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and * followed by a rotation of angleX radians about the X axis. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and R the rotation matrix, * then the new matrix will be M * R. So when transforming a * vector v with the new matrix by using M * R * v, the * rotation will be applied first! *

* This method is equivalent to calling: rotateZ(angleZ).rotateY(angleY).rotateX(angleX) * * @param angleZ * the angle to rotate about Z * @param angleY * the angle to rotate about Y * @param angleX * the angle to rotate about X * @return this */ public Matrix4d rotateZYX(double angleZ, double angleY, double angleX) { return rotateZYX(angleZ, angleY, angleX, this); } public Matrix4d rotateZYX(double angleZ, double angleY, double angleX, Matrix4d dest) { if ((properties & PROPERTY_IDENTITY) != 0) return dest.rotationZYX(angleZ, angleY, angleX); else if ((properties & PROPERTY_TRANSLATION) != 0) { double tx = m30, ty = m31, tz = m32; return dest.rotationZYX(angleZ, angleY, angleX).setTranslation(tx, ty, tz); } else if ((properties & PROPERTY_AFFINE) != 0) return dest.rotateAffineZYX(angleZ, angleY, angleX); return rotateZYXInternal(angleZ, angleY, angleX, dest); } private Matrix4d rotateZYXInternal(double angleZ, double angleY, double angleX, Matrix4d dest) { double sinX = Math.sin(angleX); double cosX = Math.cosFromSin(sinX, angleX); double sinY = Math.sin(angleY); double cosY = Math.cosFromSin(sinY, angleY); double sinZ = Math.sin(angleZ); double cosZ = Math.cosFromSin(sinZ, angleZ); double m_sinZ = -sinZ; double m_sinY = -sinY; double m_sinX = -sinX; // rotateZ double nm00 = m00 * cosZ + m10 * sinZ; double nm01 = m01 * cosZ + m11 * sinZ; double nm02 = m02 * cosZ + m12 * sinZ; double nm03 = m03 * cosZ + m13 * sinZ; double nm10 = m00 * m_sinZ + m10 * cosZ; double nm11 = m01 * m_sinZ + m11 * cosZ; double nm12 = m02 * m_sinZ + m12 * cosZ; double nm13 = m03 * m_sinZ + m13 * cosZ; // rotateY double nm20 = nm00 * sinY + m20 * cosY; double nm21 = nm01 * sinY + m21 * cosY; double nm22 = nm02 * sinY + m22 * cosY; double nm23 = nm03 * sinY + m23 * cosY; dest._m00(nm00 * cosY + m20 * m_sinY) ._m01(nm01 * cosY + m21 * m_sinY) ._m02(nm02 * cosY + m22 * m_sinY) ._m03(nm03 * cosY + m23 * m_sinY) // rotateX ._m10(nm10 * cosX + nm20 * sinX) ._m11(nm11 * cosX + nm21 * sinX) ._m12(nm12 * cosX + nm22 * sinX) ._m13(nm13 * cosX + nm23 * sinX) ._m20(nm10 * m_sinX + nm20 * cosX) ._m21(nm11 * m_sinX + nm21 * cosX) ._m22(nm12 * m_sinX + nm22 * cosX) ._m23(nm13 * m_sinX + nm23 * cosX) // copy last column from 'this' ._m30(m30) ._m31(m31) ._m32(m32) ._m33(m33) ._properties(properties & ~(PROPERTY_PERSPECTIVE | PROPERTY_IDENTITY | PROPERTY_TRANSLATION)); return dest; } /** * Apply rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and * followed by a rotation of angleX radians about the X axis. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* This method assumes that this matrix represents an {@link #isAffine() affine} transformation (i.e. its last row is equal to (0, 0, 0, 1)) * and can be used to speed up matrix multiplication if the matrix only represents affine transformations, such as translation, rotation, scaling and shearing (in any combination). *

* If M is this matrix and R the rotation matrix, * then the new matrix will be M * R. So when transforming a * vector v with the new matrix by using M * R * v, the * rotation will be applied first! * * @param angleZ * the angle to rotate about Z * @param angleY * the angle to rotate about Y * @param angleX * the angle to rotate about X * @return this */ public Matrix4d rotateAffineZYX(double angleZ, double angleY, double angleX) { return rotateAffineZYX(angleZ, angleY, angleX, this); } public Matrix4d rotateAffineZYX(double angleZ, double angleY, double angleX, Matrix4d dest) { double sinX = Math.sin(angleX); double cosX = Math.cosFromSin(sinX, angleX); double sinY = Math.sin(angleY); double cosY = Math.cosFromSin(sinY, angleY); double sinZ = Math.sin(angleZ); double cosZ = Math.cosFromSin(sinZ, angleZ); double m_sinZ = -sinZ; double m_sinY = -sinY; double m_sinX = -sinX; // rotateZ double nm00 = m00 * cosZ + m10 * sinZ; double nm01 = m01 * cosZ + m11 * sinZ; double nm02 = m02 * cosZ + m12 * sinZ; double nm10 = m00 * m_sinZ + m10 * cosZ; double nm11 = m01 * m_sinZ + m11 * cosZ; double nm12 = m02 * m_sinZ + m12 * cosZ; // rotateY double nm20 = nm00 * sinY + m20 * cosY; double nm21 = nm01 * sinY + m21 * cosY; double nm22 = nm02 * sinY + m22 * cosY; dest._m00(nm00 * cosY + m20 * m_sinY) ._m01(nm01 * cosY + m21 * m_sinY) ._m02(nm02 * cosY + m22 * m_sinY) ._m03(0.0) // rotateX ._m10(nm10 * cosX + nm20 * sinX) ._m11(nm11 * cosX + nm21 * sinX) ._m12(nm12 * cosX + nm22 * sinX) ._m13(0.0) ._m20(nm10 * m_sinX + nm20 * cosX) ._m21(nm11 * m_sinX + nm21 * cosX) ._m22(nm12 * m_sinX + nm22 * cosX) ._m23(0.0) // copy last column from 'this' ._m30(m30) ._m31(m31) ._m32(m32) ._m33(m33) ._properties(properties & ~(PROPERTY_PERSPECTIVE | PROPERTY_IDENTITY | PROPERTY_TRANSLATION)); return dest; } /** * Apply rotation of angles.y radians about the Y axis, followed by a rotation of angles.x radians about the X axis and * followed by a rotation of angles.z radians about the Z axis. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and R the rotation matrix, * then the new matrix will be M * R. So when transforming a * vector v with the new matrix by using M * R * v, the * rotation will be applied first! *

* This method is equivalent to calling: rotateY(angles.y).rotateX(angles.x).rotateZ(angles.z) * * @param angles * the Euler angles * @return this */ public Matrix4d rotateYXZ(Vector3d angles) { return rotateYXZ(angles.y, angles.x, angles.z); } /** * Apply rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and * followed by a rotation of angleZ radians about the Z axis. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and R the rotation matrix, * then the new matrix will be M * R. So when transforming a * vector v with the new matrix by using M * R * v, the * rotation will be applied first! *

* This method is equivalent to calling: rotateY(angleY).rotateX(angleX).rotateZ(angleZ) * * @param angleY * the angle to rotate about Y * @param angleX * the angle to rotate about X * @param angleZ * the angle to rotate about Z * @return this */ public Matrix4d rotateYXZ(double angleY, double angleX, double angleZ) { return rotateYXZ(angleY, angleX, angleZ, this); } public Matrix4d rotateYXZ(double angleY, double angleX, double angleZ, Matrix4d dest) { if ((properties & PROPERTY_IDENTITY) != 0) return dest.rotationYXZ(angleY, angleX, angleZ); else if ((properties & PROPERTY_TRANSLATION) != 0) { double tx = m30, ty = m31, tz = m32; return dest.rotationYXZ(angleY, angleX, angleZ).setTranslation(tx, ty, tz); } else if ((properties & PROPERTY_AFFINE) != 0) return dest.rotateAffineYXZ(angleY, angleX, angleZ); return rotateYXZInternal(angleY, angleX, angleZ, dest); } private Matrix4d rotateYXZInternal(double angleY, double angleX, double angleZ, Matrix4d dest) { double sinX = Math.sin(angleX); double cosX = Math.cosFromSin(sinX, angleX); double sinY = Math.sin(angleY); double cosY = Math.cosFromSin(sinY, angleY); double sinZ = Math.sin(angleZ); double cosZ = Math.cosFromSin(sinZ, angleZ); double m_sinY = -sinY; double m_sinX = -sinX; double m_sinZ = -sinZ; // rotateY double nm20 = m00 * sinY + m20 * cosY; double nm21 = m01 * sinY + m21 * cosY; double nm22 = m02 * sinY + m22 * cosY; double nm23 = m03 * sinY + m23 * cosY; double nm00 = m00 * cosY + m20 * m_sinY; double nm01 = m01 * cosY + m21 * m_sinY; double nm02 = m02 * cosY + m22 * m_sinY; double nm03 = m03 * cosY + m23 * m_sinY; // rotateX double nm10 = m10 * cosX + nm20 * sinX; double nm11 = m11 * cosX + nm21 * sinX; double nm12 = m12 * cosX + nm22 * sinX; double nm13 = m13 * cosX + nm23 * sinX; dest._m20(m10 * m_sinX + nm20 * cosX) ._m21(m11 * m_sinX + nm21 * cosX) ._m22(m12 * m_sinX + nm22 * cosX) ._m23(m13 * m_sinX + nm23 * cosX) // rotateZ ._m00(nm00 * cosZ + nm10 * sinZ) ._m01(nm01 * cosZ + nm11 * sinZ) ._m02(nm02 * cosZ + nm12 * sinZ) ._m03(nm03 * cosZ + nm13 * sinZ) ._m10(nm00 * m_sinZ + nm10 * cosZ) ._m11(nm01 * m_sinZ + nm11 * cosZ) ._m12(nm02 * m_sinZ + nm12 * cosZ) ._m13(nm03 * m_sinZ + nm13 * cosZ) // copy last column from 'this' ._m30(m30) ._m31(m31) ._m32(m32) ._m33(m33) ._properties(properties & ~(PROPERTY_PERSPECTIVE | PROPERTY_IDENTITY | PROPERTY_TRANSLATION)); return dest; } /** * Apply rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and * followed by a rotation of angleZ radians about the Z axis. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* This method assumes that this matrix represents an {@link #isAffine() affine} transformation (i.e. its last row is equal to (0, 0, 0, 1)) * and can be used to speed up matrix multiplication if the matrix only represents affine transformations, such as translation, rotation, scaling and shearing (in any combination). *

* If M is this matrix and R the rotation matrix, * then the new matrix will be M * R. So when transforming a * vector v with the new matrix by using M * R * v, the * rotation will be applied first! * * @param angleY * the angle to rotate about Y * @param angleX * the angle to rotate about X * @param angleZ * the angle to rotate about Z * @return this */ public Matrix4d rotateAffineYXZ(double angleY, double angleX, double angleZ) { return rotateAffineYXZ(angleY, angleX, angleZ, this); } public Matrix4d rotateAffineYXZ(double angleY, double angleX, double angleZ, Matrix4d dest) { double sinX = Math.sin(angleX); double cosX = Math.cosFromSin(sinX, angleX); double sinY = Math.sin(angleY); double cosY = Math.cosFromSin(sinY, angleY); double sinZ = Math.sin(angleZ); double cosZ = Math.cosFromSin(sinZ, angleZ); double m_sinY = -sinY; double m_sinX = -sinX; double m_sinZ = -sinZ; // rotateY double nm20 = m00 * sinY + m20 * cosY; double nm21 = m01 * sinY + m21 * cosY; double nm22 = m02 * sinY + m22 * cosY; double nm00 = m00 * cosY + m20 * m_sinY; double nm01 = m01 * cosY + m21 * m_sinY; double nm02 = m02 * cosY + m22 * m_sinY; // rotateX double nm10 = m10 * cosX + nm20 * sinX; double nm11 = m11 * cosX + nm21 * sinX; double nm12 = m12 * cosX + nm22 * sinX; dest._m20(m10 * m_sinX + nm20 * cosX) ._m21(m11 * m_sinX + nm21 * cosX) ._m22(m12 * m_sinX + nm22 * cosX) ._m23(0.0) // rotateZ ._m00(nm00 * cosZ + nm10 * sinZ) ._m01(nm01 * cosZ + nm11 * sinZ) ._m02(nm02 * cosZ + nm12 * sinZ) ._m03(0.0) ._m10(nm00 * m_sinZ + nm10 * cosZ) ._m11(nm01 * m_sinZ + nm11 * cosZ) ._m12(nm02 * m_sinZ + nm12 * cosZ) ._m13(0.0) // copy last column from 'this' ._m30(m30) ._m31(m31) ._m32(m32) ._m33(m33) ._properties(properties & ~(PROPERTY_PERSPECTIVE | PROPERTY_IDENTITY | PROPERTY_TRANSLATION)); return dest; } /** * Set this matrix to a rotation transformation using the given {@link AxisAngle4f}. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* The resulting matrix can be multiplied against another transformation * matrix to obtain an additional rotation. *

* In order to apply the rotation transformation to an existing transformation, * use {@link #rotate(AxisAngle4f) rotate()} instead. *

* Reference: http://en.wikipedia.org * * @see #rotate(AxisAngle4f) * * @param angleAxis * the {@link AxisAngle4f} (needs to be {@link AxisAngle4f#normalize() normalized}) * @return this */ public Matrix4d rotation(AxisAngle4f angleAxis) { return rotation(angleAxis.angle, angleAxis.x, angleAxis.y, angleAxis.z); } /** * Set this matrix to a rotation transformation using the given {@link AxisAngle4d}. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* The resulting matrix can be multiplied against another transformation * matrix to obtain an additional rotation. *

* In order to apply the rotation transformation to an existing transformation, * use {@link #rotate(AxisAngle4d) rotate()} instead. *

* Reference: http://en.wikipedia.org * * @see #rotate(AxisAngle4d) * * @param angleAxis * the {@link AxisAngle4d} (needs to be {@link AxisAngle4d#normalize() normalized}) * @return this */ public Matrix4d rotation(AxisAngle4d angleAxis) { return rotation(angleAxis.angle, angleAxis.x, angleAxis.y, angleAxis.z); } /** * Set this matrix to the rotation - and possibly scaling - transformation of the given {@link Quaterniondc}. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* The resulting matrix can be multiplied against another transformation * matrix to obtain an additional rotation. *

* In order to apply the rotation transformation to an existing transformation, * use {@link #rotate(Quaterniondc) rotate()} instead. *

* Reference: http://en.wikipedia.org * * @see #rotate(Quaterniondc) * * @param quat * the {@link Quaterniondc} * @return this */ public Matrix4d rotation(Quaterniondc quat) { double w2 = quat.w() * quat.w(); double x2 = quat.x() * quat.x(); double y2 = quat.y() * quat.y(); double z2 = quat.z() * quat.z(); double zw = quat.z() * quat.w(), dzw = zw + zw; double xy = quat.x() * quat.y(), dxy = xy + xy; double xz = quat.x() * quat.z(), dxz = xz + xz; double yw = quat.y() * quat.w(), dyw = yw + yw; double yz = quat.y() * quat.z(), dyz = yz + yz; double xw = quat.x() * quat.w(), dxw = xw + xw; if ((properties & PROPERTY_IDENTITY) == 0) this._identity(); _m00(w2 + x2 - z2 - y2). _m01(dxy + dzw). _m02(dxz - dyw). _m10(-dzw + dxy). _m11(y2 - z2 + w2 - x2). _m12(dyz + dxw). _m20(dyw + dxz). _m21(dyz - dxw). _m22(z2 - y2 - x2 + w2). _properties(PROPERTY_AFFINE | PROPERTY_ORTHONORMAL); return this; } /** * Set this matrix to the rotation - and possibly scaling - transformation of the given {@link Quaternionfc}. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* The resulting matrix can be multiplied against another transformation * matrix to obtain an additional rotation. *

* In order to apply the rotation transformation to an existing transformation, * use {@link #rotate(Quaternionfc) rotate()} instead. *

* Reference: http://en.wikipedia.org * * @see #rotate(Quaternionfc) * * @param quat * the {@link Quaternionfc} * @return this */ public Matrix4d rotation(Quaternionfc quat) { double w2 = quat.w() * quat.w(); double x2 = quat.x() * quat.x(); double y2 = quat.y() * quat.y(); double z2 = quat.z() * quat.z(); double zw = quat.z() * quat.w(), dzw = zw + zw; double xy = quat.x() * quat.y(), dxy = xy + xy; double xz = quat.x() * quat.z(), dxz = xz + xz; double yw = quat.y() * quat.w(), dyw = yw + yw; double yz = quat.y() * quat.z(), dyz = yz + yz; double xw = quat.x() * quat.w(), dxw = xw + xw; if ((properties & PROPERTY_IDENTITY) == 0) this._identity(); _m00(w2 + x2 - z2 - y2). _m01(dxy + dzw). _m02(dxz - dyw). _m10(-dzw + dxy). _m11(y2 - z2 + w2 - x2). _m12(dyz + dxw). _m20(dyw + dxz). _m21(dyz - dxw). _m22(z2 - y2 - x2 + w2). _properties(PROPERTY_AFFINE | PROPERTY_ORTHONORMAL); return this; } /** * Set this matrix to T * R * S, where T is a translation by the given (tx, ty, tz), * R is a rotation transformation specified by the quaternion (qx, qy, qz, qw), and S is a scaling transformation * which scales the three axes x, y and z by (sx, sy, sz). *

* When transforming a vector by the resulting matrix the scaling transformation will be applied first, then the rotation and * at last the translation. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* This method is equivalent to calling: translation(tx, ty, tz).rotate(quat).scale(sx, sy, sz) * * @see #translation(double, double, double) * @see #rotate(Quaterniondc) * @see #scale(double, double, double) * * @param tx * the number of units by which to translate the x-component * @param ty * the number of units by which to translate the y-component * @param tz * the number of units by which to translate the z-component * @param qx * the x-coordinate of the vector part of the quaternion * @param qy * the y-coordinate of the vector part of the quaternion * @param qz * the z-coordinate of the vector part of the quaternion * @param qw * the scalar part of the quaternion * @param sx * the scaling factor for the x-axis * @param sy * the scaling factor for the y-axis * @param sz * the scaling factor for the z-axis * @return this */ public Matrix4d translationRotateScale(double tx, double ty, double tz, double qx, double qy, double qz, double qw, double sx, double sy, double sz) { double dqx = qx + qx, dqy = qy + qy, dqz = qz + qz; double q00 = dqx * qx; double q11 = dqy * qy; double q22 = dqz * qz; double q01 = dqx * qy; double q02 = dqx * qz; double q03 = dqx * qw; double q12 = dqy * qz; double q13 = dqy * qw; double q23 = dqz * qw; boolean one = Math.absEqualsOne(sx) && Math.absEqualsOne(sy) && Math.absEqualsOne(sz); _m00(sx - (q11 + q22) * sx). _m01((q01 + q23) * sx). _m02((q02 - q13) * sx). _m03(0.0). _m10((q01 - q23) * sy). _m11(sy - (q22 + q00) * sy). _m12((q12 + q03) * sy). _m13(0.0). _m20((q02 + q13) * sz). _m21((q12 - q03) * sz). _m22(sz - (q11 + q00) * sz). _m23(0.0). _m30(tx). _m31(ty). _m32(tz). _m33(1.0). properties = PROPERTY_AFFINE | (one ? PROPERTY_ORTHONORMAL : 0); return this; } /** * Set this matrix to T * R * S, where T is the given translation, * R is a rotation transformation specified by the given quaternion, and S is a scaling transformation * which scales the axes by scale. *

* When transforming a vector by the resulting matrix the scaling transformation will be applied first, then the rotation and * at last the translation. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* This method is equivalent to calling: translation(translation).rotate(quat).scale(scale) * * @see #translation(Vector3fc) * @see #rotate(Quaternionfc) * * @param translation * the translation * @param quat * the quaternion representing a rotation * @param scale * the scaling factors * @return this */ public Matrix4d translationRotateScale(Vector3fc translation, Quaternionfc quat, Vector3fc scale) { return translationRotateScale(translation.x(), translation.y(), translation.z(), quat.x(), quat.y(), quat.z(), quat.w(), scale.x(), scale.y(), scale.z()); } /** * Set this matrix to T * R * S, where T is the given translation, * R is a rotation transformation specified by the given quaternion, and S is a scaling transformation * which scales the axes by scale. *

* When transforming a vector by the resulting matrix the scaling transformation will be applied first, then the rotation and * at last the translation. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* This method is equivalent to calling: translation(translation).rotate(quat).scale(scale) * * @see #translation(Vector3dc) * @see #rotate(Quaterniondc) * @see #scale(Vector3dc) * * @param translation * the translation * @param quat * the quaternion representing a rotation * @param scale * the scaling factors * @return this */ public Matrix4d translationRotateScale(Vector3dc translation, Quaterniondc quat, Vector3dc scale) { return translationRotateScale(translation.x(), translation.y(), translation.z(), quat.x(), quat.y(), quat.z(), quat.w(), scale.x(), scale.y(), scale.z()); } /** * Set this matrix to T * R * S, where T is a translation by the given (tx, ty, tz), * R is a rotation transformation specified by the quaternion (qx, qy, qz, qw), and S is a scaling transformation * which scales all three axes by scale. *

* When transforming a vector by the resulting matrix the scaling transformation will be applied first, then the rotation and * at last the translation. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* This method is equivalent to calling: translation(tx, ty, tz).rotate(quat).scale(scale) * * @see #translation(double, double, double) * @see #rotate(Quaterniondc) * @see #scale(double) * * @param tx * the number of units by which to translate the x-component * @param ty * the number of units by which to translate the y-component * @param tz * the number of units by which to translate the z-component * @param qx * the x-coordinate of the vector part of the quaternion * @param qy * the y-coordinate of the vector part of the quaternion * @param qz * the z-coordinate of the vector part of the quaternion * @param qw * the scalar part of the quaternion * @param scale * the scaling factor for all three axes * @return this */ public Matrix4d translationRotateScale(double tx, double ty, double tz, double qx, double qy, double qz, double qw, double scale) { return translationRotateScale(tx, ty, tz, qx, qy, qz, qw, scale, scale, scale); } /** * Set this matrix to T * R * S, where T is the given translation, * R is a rotation transformation specified by the given quaternion, and S is a scaling transformation * which scales all three axes by scale. *

* When transforming a vector by the resulting matrix the scaling transformation will be applied first, then the rotation and * at last the translation. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* This method is equivalent to calling: translation(translation).rotate(quat).scale(scale) * * @see #translation(Vector3dc) * @see #rotate(Quaterniondc) * @see #scale(double) * * @param translation * the translation * @param quat * the quaternion representing a rotation * @param scale * the scaling factors * @return this */ public Matrix4d translationRotateScale(Vector3dc translation, Quaterniondc quat, double scale) { return translationRotateScale(translation.x(), translation.y(), translation.z(), quat.x(), quat.y(), quat.z(), quat.w(), scale, scale, scale); } /** * Set this matrix to T * R * S, where T is the given translation, * R is a rotation transformation specified by the given quaternion, and S is a scaling transformation * which scales all three axes by scale. *

* When transforming a vector by the resulting matrix the scaling transformation will be applied first, then the rotation and * at last the translation. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* This method is equivalent to calling: translation(translation).rotate(quat).scale(scale) * * @see #translation(Vector3fc) * @see #rotate(Quaternionfc) * @see #scale(double) * * @param translation * the translation * @param quat * the quaternion representing a rotation * @param scale * the scaling factors * @return this */ public Matrix4d translationRotateScale(Vector3fc translation, Quaternionfc quat, double scale) { return translationRotateScale(translation.x(), translation.y(), translation.z(), quat.x(), quat.y(), quat.z(), quat.w(), scale, scale, scale); } /** * Set this matrix to (T * R * S)-1, where T is a translation by the given (tx, ty, tz), * R is a rotation transformation specified by the quaternion (qx, qy, qz, qw), and S is a scaling transformation * which scales the three axes x, y and z by (sx, sy, sz). *

* This method is equivalent to calling: translationRotateScale(...).invert() * * @see #translationRotateScale(double, double, double, double, double, double, double, double, double, double) * @see #invert() * * @param tx * the number of units by which to translate the x-component * @param ty * the number of units by which to translate the y-component * @param tz * the number of units by which to translate the z-component * @param qx * the x-coordinate of the vector part of the quaternion * @param qy * the y-coordinate of the vector part of the quaternion * @param qz * the z-coordinate of the vector part of the quaternion * @param qw * the scalar part of the quaternion * @param sx * the scaling factor for the x-axis * @param sy * the scaling factor for the y-axis * @param sz * the scaling factor for the z-axis * @return this */ public Matrix4d translationRotateScaleInvert(double tx, double ty, double tz, double qx, double qy, double qz, double qw, double sx, double sy, double sz) { boolean one = Math.absEqualsOne(sx) && Math.absEqualsOne(sy) && Math.absEqualsOne(sz); if (one) return translationRotateInvert(tx, ty, tz, qx, qy, qz, qw); double nqx = -qx, nqy = -qy, nqz = -qz; double dqx = nqx + nqx; double dqy = nqy + nqy; double dqz = nqz + nqz; double q00 = dqx * nqx; double q11 = dqy * nqy; double q22 = dqz * nqz; double q01 = dqx * nqy; double q02 = dqx * nqz; double q03 = dqx * qw; double q12 = dqy * nqz; double q13 = dqy * qw; double q23 = dqz * qw; double isx = 1/sx, isy = 1/sy, isz = 1/sz; _m00(isx * (1.0 - q11 - q22)). _m01(isy * (q01 + q23)). _m02(isz * (q02 - q13)). _m03(0.0). _m10(isx * (q01 - q23)). _m11(isy * (1.0 - q22 - q00)). _m12(isz * (q12 + q03)). _m13(0.0). _m20(isx * (q02 + q13)). _m21(isy * (q12 - q03)). _m22(isz * (1.0 - q11 - q00)). _m23(0.0). _m30(-m00 * tx - m10 * ty - m20 * tz). _m31(-m01 * tx - m11 * ty - m21 * tz). _m32(-m02 * tx - m12 * ty - m22 * tz). _m33(1.0). properties = PROPERTY_AFFINE; return this; } /** * Set this matrix to (T * R * S)-1, where T is the given translation, * R is a rotation transformation specified by the given quaternion, and S is a scaling transformation * which scales the axes by scale. *

* This method is equivalent to calling: translationRotateScale(...).invert() * * @see #translationRotateScale(Vector3dc, Quaterniondc, Vector3dc) * @see #invert() * * @param translation * the translation * @param quat * the quaternion representing a rotation * @param scale * the scaling factors * @return this */ public Matrix4d translationRotateScaleInvert(Vector3dc translation, Quaterniondc quat, Vector3dc scale) { return translationRotateScaleInvert(translation.x(), translation.y(), translation.z(), quat.x(), quat.y(), quat.z(), quat.w(), scale.x(), scale.y(), scale.z()); } /** * Set this matrix to (T * R * S)-1, where T is the given translation, * R is a rotation transformation specified by the given quaternion, and S is a scaling transformation * which scales the axes by scale. *

* This method is equivalent to calling: translationRotateScale(...).invert() * * @see #translationRotateScale(Vector3fc, Quaternionfc, Vector3fc) * @see #invert() * * @param translation * the translation * @param quat * the quaternion representing a rotation * @param scale * the scaling factors * @return this */ public Matrix4d translationRotateScaleInvert(Vector3fc translation, Quaternionfc quat, Vector3fc scale) { return translationRotateScaleInvert(translation.x(), translation.y(), translation.z(), quat.x(), quat.y(), quat.z(), quat.w(), scale.x(), scale.y(), scale.z()); } /** * Set this matrix to (T * R * S)-1, where T is the given translation, * R is a rotation transformation specified by the given quaternion, and S is a scaling transformation * which scales all three axes by scale. *

* This method is equivalent to calling: translationRotateScale(...).invert() * * @see #translationRotateScale(Vector3dc, Quaterniondc, double) * @see #invert() * * @param translation * the translation * @param quat * the quaternion representing a rotation * @param scale * the scaling factors * @return this */ public Matrix4d translationRotateScaleInvert(Vector3dc translation, Quaterniondc quat, double scale) { return translationRotateScaleInvert(translation.x(), translation.y(), translation.z(), quat.x(), quat.y(), quat.z(), quat.w(), scale, scale, scale); } /** * Set this matrix to (T * R * S)-1, where T is the given translation, * R is a rotation transformation specified by the given quaternion, and S is a scaling transformation * which scales all three axes by scale. *

* This method is equivalent to calling: translationRotateScale(...).invert() * * @see #translationRotateScale(Vector3fc, Quaternionfc, double) * @see #invert() * * @param translation * the translation * @param quat * the quaternion representing a rotation * @param scale * the scaling factors * @return this */ public Matrix4d translationRotateScaleInvert(Vector3fc translation, Quaternionfc quat, double scale) { return translationRotateScaleInvert(translation.x(), translation.y(), translation.z(), quat.x(), quat.y(), quat.z(), quat.w(), scale, scale, scale); } /** * Set this matrix to T * R * S * M, where T is a translation by the given (tx, ty, tz), * R is a rotation - and possibly scaling - transformation specified by the quaternion (qx, qy, qz, qw), S is a scaling transformation * which scales the three axes x, y and z by (sx, sy, sz) and M is an {@link #isAffine() affine} matrix. *

* When transforming a vector by the resulting matrix the transformation described by M will be applied first, then the scaling, then rotation and * at last the translation. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* This method is equivalent to calling: translation(tx, ty, tz).rotate(quat).scale(sx, sy, sz).mulAffine(m) * * @see #translation(double, double, double) * @see #rotate(Quaterniondc) * @see #scale(double, double, double) * @see #mulAffine(Matrix4dc) * * @param tx * the number of units by which to translate the x-component * @param ty * the number of units by which to translate the y-component * @param tz * the number of units by which to translate the z-component * @param qx * the x-coordinate of the vector part of the quaternion * @param qy * the y-coordinate of the vector part of the quaternion * @param qz * the z-coordinate of the vector part of the quaternion * @param qw * the scalar part of the quaternion * @param sx * the scaling factor for the x-axis * @param sy * the scaling factor for the y-axis * @param sz * the scaling factor for the z-axis * @param m * the {@link #isAffine() affine} matrix to multiply by * @return this */ public Matrix4d translationRotateScaleMulAffine(double tx, double ty, double tz, double qx, double qy, double qz, double qw, double sx, double sy, double sz, Matrix4d m) { double w2 = qw * qw; double x2 = qx * qx; double y2 = qy * qy; double z2 = qz * qz; double zw = qz * qw; double xy = qx * qy; double xz = qx * qz; double yw = qy * qw; double yz = qy * qz; double xw = qx * qw; double nm00 = w2 + x2 - z2 - y2; double nm01 = xy + zw + zw + xy; double nm02 = xz - yw + xz - yw; double nm10 = -zw + xy - zw + xy; double nm11 = y2 - z2 + w2 - x2; double nm12 = yz + yz + xw + xw; double nm20 = yw + xz + xz + yw; double nm21 = yz + yz - xw - xw; double nm22 = z2 - y2 - x2 + w2; double m00 = nm00 * m.m00 + nm10 * m.m01 + nm20 * m.m02; double m01 = nm01 * m.m00 + nm11 * m.m01 + nm21 * m.m02; this.m02 = nm02 * m.m00 + nm12 * m.m01 + nm22 * m.m02; this.m00 = m00; this.m01 = m01; this.m03 = 0.0; double m10 = nm00 * m.m10 + nm10 * m.m11 + nm20 * m.m12; double m11 = nm01 * m.m10 + nm11 * m.m11 + nm21 * m.m12; this.m12 = nm02 * m.m10 + nm12 * m.m11 + nm22 * m.m12; this.m10 = m10; this.m11 = m11; this.m13 = 0.0; double m20 = nm00 * m.m20 + nm10 * m.m21 + nm20 * m.m22; double m21 = nm01 * m.m20 + nm11 * m.m21 + nm21 * m.m22; this.m22 = nm02 * m.m20 + nm12 * m.m21 + nm22 * m.m22; this.m20 = m20; this.m21 = m21; this.m23 = 0.0; double m30 = nm00 * m.m30 + nm10 * m.m31 + nm20 * m.m32 + tx; double m31 = nm01 * m.m30 + nm11 * m.m31 + nm21 * m.m32 + ty; this.m32 = nm02 * m.m30 + nm12 * m.m31 + nm22 * m.m32 + tz; this.m30 = m30; this.m31 = m31; this.m33 = 1.0; boolean one = Math.absEqualsOne(sx) && Math.absEqualsOne(sy) && Math.absEqualsOne(sz); properties = PROPERTY_AFFINE | (one && (m.properties & PROPERTY_ORTHONORMAL) != 0 ? PROPERTY_ORTHONORMAL : 0); return this; } /** * Set this matrix to T * R * S * M, where T is the given translation, * R is a rotation - and possibly scaling - transformation specified by the given quaternion, S is a scaling transformation * which scales the axes by scale and M is an {@link #isAffine() affine} matrix. *

* When transforming a vector by the resulting matrix the transformation described by M will be applied first, then the scaling, then rotation and * at last the translation. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* This method is equivalent to calling: translation(translation).rotate(quat).scale(scale).mulAffine(m) * * @see #translation(Vector3fc) * @see #rotate(Quaterniondc) * @see #mulAffine(Matrix4dc) * * @param translation * the translation * @param quat * the quaternion representing a rotation * @param scale * the scaling factors * @param m * the {@link #isAffine() affine} matrix to multiply by * @return this */ public Matrix4d translationRotateScaleMulAffine(Vector3fc translation, Quaterniondc quat, Vector3fc scale, Matrix4d m) { return translationRotateScaleMulAffine(translation.x(), translation.y(), translation.z(), quat.x(), quat.y(), quat.z(), quat.w(), scale.x(), scale.y(), scale.z(), m); } /** * Set this matrix to T * R, where T is a translation by the given (tx, ty, tz) and * R is a rotation - and possibly scaling - transformation specified by the quaternion (qx, qy, qz, qw). *

* When transforming a vector by the resulting matrix the rotation - and possibly scaling - transformation will be applied first and then the translation. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* This method is equivalent to calling: translation(tx, ty, tz).rotate(quat) * * @see #translation(double, double, double) * @see #rotate(Quaterniondc) * * @param tx * the number of units by which to translate the x-component * @param ty * the number of units by which to translate the y-component * @param tz * the number of units by which to translate the z-component * @param qx * the x-coordinate of the vector part of the quaternion * @param qy * the y-coordinate of the vector part of the quaternion * @param qz * the z-coordinate of the vector part of the quaternion * @param qw * the scalar part of the quaternion * @return this */ public Matrix4d translationRotate(double tx, double ty, double tz, double qx, double qy, double qz, double qw) { double w2 = qw * qw; double x2 = qx * qx; double y2 = qy * qy; double z2 = qz * qz; double zw = qz * qw; double xy = qx * qy; double xz = qx * qz; double yw = qy * qw; double yz = qy * qz; double xw = qx * qw; this.m00 = w2 + x2 - z2 - y2; this.m01 = xy + zw + zw + xy; this.m02 = xz - yw + xz - yw; this.m10 = -zw + xy - zw + xy; this.m11 = y2 - z2 + w2 - x2; this.m12 = yz + yz + xw + xw; this.m20 = yw + xz + xz + yw; this.m21 = yz + yz - xw - xw; this.m22 = z2 - y2 - x2 + w2; this.m30 = tx; this.m31 = ty; this.m32 = tz; this.m33 = 1.0; this.properties = PROPERTY_AFFINE | PROPERTY_ORTHONORMAL; return this; } /** * Set this matrix to T * R, where T is a translation by the given (tx, ty, tz) and * R is a rotation - and possibly scaling - transformation specified by the given quaternion. *

* When transforming a vector by the resulting matrix the rotation - and possibly scaling - transformation will be applied first and then the translation. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* This method is equivalent to calling: translation(tx, ty, tz).rotate(quat) * * @see #translation(double, double, double) * @see #rotate(Quaterniondc) * * @param tx * the number of units by which to translate the x-component * @param ty * the number of units by which to translate the y-component * @param tz * the number of units by which to translate the z-component * @param quat * the quaternion representing a rotation * @return this */ public Matrix4d translationRotate(double tx, double ty, double tz, Quaterniondc quat) { return translationRotate(tx, ty, tz, quat.x(), quat.y(), quat.z(), quat.w()); } /** * Set this matrix to T * R, where T is the given translation and * R is a rotation transformation specified by the given quaternion. *

* When transforming a vector by the resulting matrix the scaling transformation will be applied first, then the rotation and * at last the translation. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* This method is equivalent to calling: translation(translation).rotate(quat) * * @see #translation(Vector3dc) * @see #rotate(Quaterniondc) * * @param translation * the translation * @param quat * the quaternion representing a rotation * @return this */ public Matrix4d translationRotate(Vector3dc translation, Quaterniondc quat) { return translationRotate(translation.x(), translation.y(), translation.z(), quat.x(), quat.y(), quat.z(), quat.w()); } /** * Set this matrix to (T * R)-1, where T is a translation by the given (tx, ty, tz) and * R is a rotation transformation specified by the quaternion (qx, qy, qz, qw). *

* This method is equivalent to calling: translationRotate(...).invert() * * @see #translationRotate(double, double, double, double, double, double, double) * @see #invert() * * @param tx * the number of units by which to translate the x-component * @param ty * the number of units by which to translate the y-component * @param tz * the number of units by which to translate the z-component * @param qx * the x-coordinate of the vector part of the quaternion * @param qy * the y-coordinate of the vector part of the quaternion * @param qz * the z-coordinate of the vector part of the quaternion * @param qw * the scalar part of the quaternion * @return this */ public Matrix4d translationRotateInvert(double tx, double ty, double tz, double qx, double qy, double qz, double qw) { double nqx = -qx, nqy = -qy, nqz = -qz; double dqx = nqx + nqx; double dqy = nqy + nqy; double dqz = nqz + nqz; double q00 = dqx * nqx; double q11 = dqy * nqy; double q22 = dqz * nqz; double q01 = dqx * nqy; double q02 = dqx * nqz; double q03 = dqx * qw; double q12 = dqy * nqz; double q13 = dqy * qw; double q23 = dqz * qw; return this ._m00(1.0 - q11 - q22) ._m01(q01 + q23) ._m02(q02 - q13) ._m03(0.0) ._m10(q01 - q23) ._m11(1.0 - q22 - q00) ._m12(q12 + q03) ._m13(0.0) ._m20(q02 + q13) ._m21(q12 - q03) ._m22(1.0 - q11 - q00) ._m23(0.0) ._m30(-m00 * tx - m10 * ty - m20 * tz) ._m31(-m01 * tx - m11 * ty - m21 * tz) ._m32(-m02 * tx - m12 * ty - m22 * tz) ._m33(1.0) ._properties(PROPERTY_AFFINE | PROPERTY_ORTHONORMAL); } /** * Set this matrix to (T * R)-1, where T is the given translation and * R is a rotation transformation specified by the given quaternion. *

* This method is equivalent to calling: translationRotate(...).invert() * * @see #translationRotate(Vector3dc, Quaterniondc) * @see #invert() * * @param translation * the translation * @param quat * the quaternion representing a rotation * @return this */ public Matrix4d translationRotateInvert(Vector3fc translation, Quaternionfc quat) { return translationRotateInvert(translation.x(), translation.y(), translation.z(), quat.x(), quat.y(), quat.z(), quat.w()); } /** * Apply the rotation - and possibly scaling - transformation of the given {@link Quaterniondc} to this matrix and store * the result in dest. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and Q the rotation matrix obtained from the given quaternion, * then the new matrix will be M * Q. So when transforming a * vector v with the new matrix by using M * Q * v, * the quaternion rotation will be applied first! *

* In order to set the matrix to a rotation transformation without post-multiplying, * use {@link #rotation(Quaterniondc)}. *

* Reference: http://en.wikipedia.org * * @see #rotation(Quaterniondc) * * @param quat * the {@link Quaterniondc} * @param dest * will hold the result * @return dest */ public Matrix4d rotate(Quaterniondc quat, Matrix4d dest) { if ((properties & PROPERTY_IDENTITY) != 0) return dest.rotation(quat); else if ((properties & PROPERTY_TRANSLATION) != 0) return rotateTranslation(quat, dest); else if ((properties & PROPERTY_AFFINE) != 0) return rotateAffine(quat, dest); return rotateGeneric(quat, dest); } private Matrix4d rotateGeneric(Quaterniondc quat, Matrix4d dest) { double w2 = quat.w() * quat.w(), x2 = quat.x() * quat.x(); double y2 = quat.y() * quat.y(), z2 = quat.z() * quat.z(); double zw = quat.z() * quat.w(), dzw = zw + zw, xy = quat.x() * quat.y(), dxy = xy + xy; double xz = quat.x() * quat.z(), dxz = xz + xz, yw = quat.y() * quat.w(), dyw = yw + yw; double yz = quat.y() * quat.z(), dyz = yz + yz, xw = quat.x() * quat.w(), dxw = xw + xw; double rm00 = w2 + x2 - z2 - y2; double rm01 = dxy + dzw; double rm02 = dxz - dyw; double rm10 = -dzw + dxy; double rm11 = y2 - z2 + w2 - x2; double rm12 = dyz + dxw; double rm20 = dyw + dxz; double rm21 = dyz - dxw; double rm22 = z2 - y2 - x2 + w2; double nm00 = m00 * rm00 + m10 * rm01 + m20 * rm02; double nm01 = m01 * rm00 + m11 * rm01 + m21 * rm02; double nm02 = m02 * rm00 + m12 * rm01 + m22 * rm02; double nm03 = m03 * rm00 + m13 * rm01 + m23 * rm02; double nm10 = m00 * rm10 + m10 * rm11 + m20 * rm12; double nm11 = m01 * rm10 + m11 * rm11 + m21 * rm12; double nm12 = m02 * rm10 + m12 * rm11 + m22 * rm12; double nm13 = m03 * rm10 + m13 * rm11 + m23 * rm12; dest._m20(m00 * rm20 + m10 * rm21 + m20 * rm22) ._m21(m01 * rm20 + m11 * rm21 + m21 * rm22) ._m22(m02 * rm20 + m12 * rm21 + m22 * rm22) ._m23(m03 * rm20 + m13 * rm21 + m23 * rm22) ._m00(nm00) ._m01(nm01) ._m02(nm02) ._m03(nm03) ._m10(nm10) ._m11(nm11) ._m12(nm12) ._m13(nm13) ._m30(m30) ._m31(m31) ._m32(m32) ._m33(m33) ._properties(properties & ~(PROPERTY_PERSPECTIVE | PROPERTY_IDENTITY | PROPERTY_TRANSLATION)); return dest; } /** * Apply the rotation - and possibly scaling - transformation of the given {@link Quaternionfc} to this matrix and store * the result in dest. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and Q the rotation matrix obtained from the given quaternion, * then the new matrix will be M * Q. So when transforming a * vector v with the new matrix by using M * Q * v, * the quaternion rotation will be applied first! *

* In order to set the matrix to a rotation transformation without post-multiplying, * use {@link #rotation(Quaternionfc)}. *

* Reference: http://en.wikipedia.org * * @see #rotation(Quaternionfc) * * @param quat * the {@link Quaternionfc} * @param dest * will hold the result * @return dest */ public Matrix4d rotate(Quaternionfc quat, Matrix4d dest) { if ((properties & PROPERTY_IDENTITY) != 0) return dest.rotation(quat); else if ((properties & PROPERTY_TRANSLATION) != 0) return rotateTranslation(quat, dest); else if ((properties & PROPERTY_AFFINE) != 0) return rotateAffine(quat, dest); return rotateGeneric(quat, dest); } private Matrix4d rotateGeneric(Quaternionfc quat, Matrix4d dest) { double w2 = quat.w() * quat.w(); double x2 = quat.x() * quat.x(); double y2 = quat.y() * quat.y(); double z2 = quat.z() * quat.z(); double zw = quat.z() * quat.w(); double xy = quat.x() * quat.y(); double xz = quat.x() * quat.z(); double yw = quat.y() * quat.w(); double yz = quat.y() * quat.z(); double xw = quat.x() * quat.w(); double rm00 = w2 + x2 - z2 - y2; double rm01 = xy + zw + zw + xy; double rm02 = xz - yw + xz - yw; double rm10 = -zw + xy - zw + xy; double rm11 = y2 - z2 + w2 - x2; double rm12 = yz + yz + xw + xw; double rm20 = yw + xz + xz + yw; double rm21 = yz + yz - xw - xw; double rm22 = z2 - y2 - x2 + w2; double nm00 = m00 * rm00 + m10 * rm01 + m20 * rm02; double nm01 = m01 * rm00 + m11 * rm01 + m21 * rm02; double nm02 = m02 * rm00 + m12 * rm01 + m22 * rm02; double nm03 = m03 * rm00 + m13 * rm01 + m23 * rm02; double nm10 = m00 * rm10 + m10 * rm11 + m20 * rm12; double nm11 = m01 * rm10 + m11 * rm11 + m21 * rm12; double nm12 = m02 * rm10 + m12 * rm11 + m22 * rm12; double nm13 = m03 * rm10 + m13 * rm11 + m23 * rm12; dest._m20(m00 * rm20 + m10 * rm21 + m20 * rm22) ._m21(m01 * rm20 + m11 * rm21 + m21 * rm22) ._m22(m02 * rm20 + m12 * rm21 + m22 * rm22) ._m23(m03 * rm20 + m13 * rm21 + m23 * rm22) ._m00(nm00) ._m01(nm01) ._m02(nm02) ._m03(nm03) ._m10(nm10) ._m11(nm11) ._m12(nm12) ._m13(nm13) ._m30(m30) ._m31(m31) ._m32(m32) ._m33(m33) ._properties(properties & ~(PROPERTY_PERSPECTIVE | PROPERTY_IDENTITY | PROPERTY_TRANSLATION)); return dest; } /** * Apply the rotation - and possibly scaling - transformation of the given {@link Quaterniondc} to this matrix. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and Q the rotation matrix obtained from the given quaternion, * then the new matrix will be M * Q. So when transforming a * vector v with the new matrix by using M * Q * v, * the quaternion rotation will be applied first! *

* In order to set the matrix to a rotation transformation without post-multiplying, * use {@link #rotation(Quaterniondc)}. *

* Reference: http://en.wikipedia.org * * @see #rotation(Quaterniondc) * * @param quat * the {@link Quaterniondc} * @return this */ public Matrix4d rotate(Quaterniondc quat) { return rotate(quat, this); } /** * Apply the rotation - and possibly scaling - transformation of the given {@link Quaternionfc} to this matrix. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and Q the rotation matrix obtained from the given quaternion, * then the new matrix will be M * Q. So when transforming a * vector v with the new matrix by using M * Q * v, * the quaternion rotation will be applied first! *

* In order to set the matrix to a rotation transformation without post-multiplying, * use {@link #rotation(Quaternionfc)}. *

* Reference: http://en.wikipedia.org * * @see #rotation(Quaternionfc) * * @param quat * the {@link Quaternionfc} * @return this */ public Matrix4d rotate(Quaternionfc quat) { return rotate(quat, this); } /** * Apply the rotation - and possibly scaling - transformation of the given {@link Quaterniondc} to this {@link #isAffine() affine} matrix and store * the result in dest. *

* This method assumes this to be {@link #isAffine() affine}. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and Q the rotation matrix obtained from the given quaternion, * then the new matrix will be M * Q. So when transforming a * vector v with the new matrix by using M * Q * v, * the quaternion rotation will be applied first! *

* In order to set the matrix to a rotation transformation without post-multiplying, * use {@link #rotation(Quaterniondc)}. *

* Reference: http://en.wikipedia.org * * @see #rotation(Quaterniondc) * * @param quat * the {@link Quaterniondc} * @param dest * will hold the result * @return dest */ public Matrix4d rotateAffine(Quaterniondc quat, Matrix4d dest) { double w2 = quat.w() * quat.w(), x2 = quat.x() * quat.x(); double y2 = quat.y() * quat.y(), z2 = quat.z() * quat.z(); double zw = quat.z() * quat.w(), dzw = zw + zw, xy = quat.x() * quat.y(), dxy = xy + xy; double xz = quat.x() * quat.z(), dxz = xz + xz, yw = quat.y() * quat.w(), dyw = yw + yw; double yz = quat.y() * quat.z(), dyz = yz + yz, xw = quat.x() * quat.w(), dxw = xw + xw; double rm00 = w2 + x2 - z2 - y2; double rm01 = dxy + dzw; double rm02 = dxz - dyw; double rm10 = -dzw + dxy; double rm11 = y2 - z2 + w2 - x2; double rm12 = dyz + dxw; double rm20 = dyw + dxz; double rm21 = dyz - dxw; double rm22 = z2 - y2 - x2 + w2; double nm00 = m00 * rm00 + m10 * rm01 + m20 * rm02; double nm01 = m01 * rm00 + m11 * rm01 + m21 * rm02; double nm02 = m02 * rm00 + m12 * rm01 + m22 * rm02; double nm10 = m00 * rm10 + m10 * rm11 + m20 * rm12; double nm11 = m01 * rm10 + m11 * rm11 + m21 * rm12; double nm12 = m02 * rm10 + m12 * rm11 + m22 * rm12; dest._m20(m00 * rm20 + m10 * rm21 + m20 * rm22) ._m21(m01 * rm20 + m11 * rm21 + m21 * rm22) ._m22(m02 * rm20 + m12 * rm21 + m22 * rm22) ._m23(0.0) ._m00(nm00) ._m01(nm01) ._m02(nm02) ._m03(0.0) ._m10(nm10) ._m11(nm11) ._m12(nm12) ._m13(0.0) ._m30(m30) ._m31(m31) ._m32(m32) ._m33(m33) ._properties(properties & ~(PROPERTY_PERSPECTIVE | PROPERTY_IDENTITY | PROPERTY_TRANSLATION)); return dest; } /** * Apply the rotation - and possibly scaling - transformation of the given {@link Quaterniondc} to this matrix. *

* This method assumes this to be {@link #isAffine() affine}. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and Q the rotation matrix obtained from the given quaternion, * then the new matrix will be M * Q. So when transforming a * vector v with the new matrix by using M * Q * v, * the quaternion rotation will be applied first! *

* In order to set the matrix to a rotation transformation without post-multiplying, * use {@link #rotation(Quaterniondc)}. *

* Reference: http://en.wikipedia.org * * @see #rotation(Quaterniondc) * * @param quat * the {@link Quaterniondc} * @return this */ public Matrix4d rotateAffine(Quaterniondc quat) { return rotateAffine(quat, this); } /** * Apply the rotation - and possibly scaling - transformation of the given {@link Quaterniondc} to this matrix, which is assumed to only contain a translation, and store * the result in dest. *

* This method assumes this to only contain a translation. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and Q the rotation matrix obtained from the given quaternion, * then the new matrix will be M * Q. So when transforming a * vector v with the new matrix by using M * Q * v, * the quaternion rotation will be applied first! *

* In order to set the matrix to a rotation transformation without post-multiplying, * use {@link #rotation(Quaterniondc)}. *

* Reference: http://en.wikipedia.org * * @see #rotation(Quaterniondc) * * @param quat * the {@link Quaterniondc} * @param dest * will hold the result * @return dest */ public Matrix4d rotateTranslation(Quaterniondc quat, Matrix4d dest) { double w2 = quat.w() * quat.w(), x2 = quat.x() * quat.x(); double y2 = quat.y() * quat.y(), z2 = quat.z() * quat.z(); double zw = quat.z() * quat.w(), dzw = zw + zw, xy = quat.x() * quat.y(), dxy = xy + xy; double xz = quat.x() * quat.z(), dxz = xz + xz, yw = quat.y() * quat.w(), dyw = yw + yw; double yz = quat.y() * quat.z(), dyz = yz + yz, xw = quat.x() * quat.w(), dxw = xw + xw; double rm00 = w2 + x2 - z2 - y2; double rm01 = dxy + dzw; double rm02 = dxz - dyw; double rm10 = -dzw + dxy; double rm11 = y2 - z2 + w2 - x2; double rm12 = dyz + dxw; double rm20 = dyw + dxz; double rm21 = dyz - dxw; double rm22 = z2 - y2 - x2 + w2; dest._m20(rm20) ._m21(rm21) ._m22(rm22) ._m23(0.0) ._m00(rm00) ._m01(rm01) ._m02(rm02) ._m03(0.0) ._m10(rm10) ._m11(rm11) ._m12(rm12) ._m13(0.0) ._m30(m30) ._m31(m31) ._m32(m32) ._m33(1.0) ._properties(properties & ~(PROPERTY_PERSPECTIVE | PROPERTY_IDENTITY | PROPERTY_TRANSLATION)); return dest; } /** * Apply the rotation - and possibly scaling - transformation of the given {@link Quaternionfc} to this matrix, which is assumed to only contain a translation, and store * the result in dest. *

* This method assumes this to only contain a translation. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and Q the rotation matrix obtained from the given quaternion, * then the new matrix will be M * Q. So when transforming a * vector v with the new matrix by using M * Q * v, * the quaternion rotation will be applied first! *

* In order to set the matrix to a rotation transformation without post-multiplying, * use {@link #rotation(Quaternionfc)}. *

* Reference: http://en.wikipedia.org * * @see #rotation(Quaternionfc) * * @param quat * the {@link Quaternionfc} * @param dest * will hold the result * @return dest */ public Matrix4d rotateTranslation(Quaternionfc quat, Matrix4d dest) { double w2 = quat.w() * quat.w(); double x2 = quat.x() * quat.x(); double y2 = quat.y() * quat.y(); double z2 = quat.z() * quat.z(); double zw = quat.z() * quat.w(); double xy = quat.x() * quat.y(); double xz = quat.x() * quat.z(); double yw = quat.y() * quat.w(); double yz = quat.y() * quat.z(); double xw = quat.x() * quat.w(); double rm00 = w2 + x2 - z2 - y2; double rm01 = xy + zw + zw + xy; double rm02 = xz - yw + xz - yw; double rm10 = -zw + xy - zw + xy; double rm11 = y2 - z2 + w2 - x2; double rm12 = yz + yz + xw + xw; double rm20 = yw + xz + xz + yw; double rm21 = yz + yz - xw - xw; double rm22 = z2 - y2 - x2 + w2; double nm00 = rm00; double nm01 = rm01; double nm02 = rm02; double nm10 = rm10; double nm11 = rm11; double nm12 = rm12; dest._m20(rm20) ._m21(rm21) ._m22(rm22) ._m23(0.0) ._m00(nm00) ._m01(nm01) ._m02(nm02) ._m03(0.0) ._m10(nm10) ._m11(nm11) ._m12(nm12) ._m13(0.0) ._m30(m30) ._m31(m31) ._m32(m32) ._m33(1.0) ._properties(properties & ~(PROPERTY_PERSPECTIVE | PROPERTY_IDENTITY | PROPERTY_TRANSLATION)); return dest; } /** * Pre-multiply the rotation - and possibly scaling - transformation of the given {@link Quaterniondc} to this matrix and store * the result in dest. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and Q the rotation matrix obtained from the given quaternion, * then the new matrix will be Q * M. So when transforming a * vector v with the new matrix by using Q * M * v, * the quaternion rotation will be applied last! *

* In order to set the matrix to a rotation transformation without pre-multiplying, * use {@link #rotation(Quaterniondc)}. *

* Reference: http://en.wikipedia.org * * @see #rotation(Quaterniondc) * * @param quat * the {@link Quaterniondc} * @param dest * will hold the result * @return dest */ public Matrix4d rotateLocal(Quaterniondc quat, Matrix4d dest) { double w2 = quat.w() * quat.w(), x2 = quat.x() * quat.x(); double y2 = quat.y() * quat.y(), z2 = quat.z() * quat.z(); double zw = quat.z() * quat.w(), dzw = zw + zw, xy = quat.x() * quat.y(), dxy = xy + xy; double xz = quat.x() * quat.z(), dxz = xz + xz, yw = quat.y() * quat.w(), dyw = yw + yw; double yz = quat.y() * quat.z(), dyz = yz + yz, xw = quat.x() * quat.w(), dxw = xw + xw; double lm00 = w2 + x2 - z2 - y2; double lm01 = dxy + dzw; double lm02 = dxz - dyw; double lm10 = -dzw + dxy; double lm11 = y2 - z2 + w2 - x2; double lm12 = dyz + dxw; double lm20 = dyw + dxz; double lm21 = dyz - dxw; double lm22 = z2 - y2 - x2 + w2; double nm00 = lm00 * m00 + lm10 * m01 + lm20 * m02; double nm01 = lm01 * m00 + lm11 * m01 + lm21 * m02; double nm02 = lm02 * m00 + lm12 * m01 + lm22 * m02; double nm03 = m03; double nm10 = lm00 * m10 + lm10 * m11 + lm20 * m12; double nm11 = lm01 * m10 + lm11 * m11 + lm21 * m12; double nm12 = lm02 * m10 + lm12 * m11 + lm22 * m12; double nm13 = m13; double nm20 = lm00 * m20 + lm10 * m21 + lm20 * m22; double nm21 = lm01 * m20 + lm11 * m21 + lm21 * m22; double nm22 = lm02 * m20 + lm12 * m21 + lm22 * m22; double nm23 = m23; double nm30 = lm00 * m30 + lm10 * m31 + lm20 * m32; double nm31 = lm01 * m30 + lm11 * m31 + lm21 * m32; double nm32 = lm02 * m30 + lm12 * m31 + lm22 * m32; dest._m00(nm00) ._m01(nm01) ._m02(nm02) ._m03(nm03) ._m10(nm10) ._m11(nm11) ._m12(nm12) ._m13(nm13) ._m20(nm20) ._m21(nm21) ._m22(nm22) ._m23(nm23) ._m30(nm30) ._m31(nm31) ._m32(nm32) ._m33(m33) ._properties(properties & ~(PROPERTY_PERSPECTIVE | PROPERTY_IDENTITY | PROPERTY_TRANSLATION)); return dest; } /** * Pre-multiply the rotation - and possibly scaling - transformation of the given {@link Quaterniondc} to this matrix. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and Q the rotation matrix obtained from the given quaternion, * then the new matrix will be Q * M. So when transforming a * vector v with the new matrix by using Q * M * v, * the quaternion rotation will be applied last! *

* In order to set the matrix to a rotation transformation without pre-multiplying, * use {@link #rotation(Quaterniondc)}. *

* Reference: http://en.wikipedia.org * * @see #rotation(Quaterniondc) * * @param quat * the {@link Quaterniondc} * @return this */ public Matrix4d rotateLocal(Quaterniondc quat) { return rotateLocal(quat, this); } /** * Apply the rotation - and possibly scaling - transformation of the given {@link Quaternionfc} to this {@link #isAffine() affine} matrix and store * the result in dest. *

* This method assumes this to be {@link #isAffine() affine}. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and Q the rotation matrix obtained from the given quaternion, * then the new matrix will be M * Q. So when transforming a * vector v with the new matrix by using M * Q * v, * the quaternion rotation will be applied first! *

* In order to set the matrix to a rotation transformation without post-multiplying, * use {@link #rotation(Quaternionfc)}. *

* Reference: http://en.wikipedia.org * * @see #rotation(Quaternionfc) * * @param quat * the {@link Quaternionfc} * @param dest * will hold the result * @return dest */ public Matrix4d rotateAffine(Quaternionfc quat, Matrix4d dest) { double w2 = quat.w() * quat.w(); double x2 = quat.x() * quat.x(); double y2 = quat.y() * quat.y(); double z2 = quat.z() * quat.z(); double zw = quat.z() * quat.w(); double xy = quat.x() * quat.y(); double xz = quat.x() * quat.z(); double yw = quat.y() * quat.w(); double yz = quat.y() * quat.z(); double xw = quat.x() * quat.w(); double rm00 = w2 + x2 - z2 - y2; double rm01 = xy + zw + zw + xy; double rm02 = xz - yw + xz - yw; double rm10 = -zw + xy - zw + xy; double rm11 = y2 - z2 + w2 - x2; double rm12 = yz + yz + xw + xw; double rm20 = yw + xz + xz + yw; double rm21 = yz + yz - xw - xw; double rm22 = z2 - y2 - x2 + w2; double nm00 = m00 * rm00 + m10 * rm01 + m20 * rm02; double nm01 = m01 * rm00 + m11 * rm01 + m21 * rm02; double nm02 = m02 * rm00 + m12 * rm01 + m22 * rm02; double nm10 = m00 * rm10 + m10 * rm11 + m20 * rm12; double nm11 = m01 * rm10 + m11 * rm11 + m21 * rm12; double nm12 = m02 * rm10 + m12 * rm11 + m22 * rm12; dest._m20(m00 * rm20 + m10 * rm21 + m20 * rm22) ._m21(m01 * rm20 + m11 * rm21 + m21 * rm22) ._m22(m02 * rm20 + m12 * rm21 + m22 * rm22) ._m23(0.0) ._m00(nm00) ._m01(nm01) ._m02(nm02) ._m03(0.0) ._m10(nm10) ._m11(nm11) ._m12(nm12) ._m13(0.0) ._m30(m30) ._m31(m31) ._m32(m32) ._m33(m33) ._properties(properties & ~(PROPERTY_PERSPECTIVE | PROPERTY_IDENTITY | PROPERTY_TRANSLATION)); return dest; } /** * Apply the rotation - and possibly scaling - transformation of the given {@link Quaternionfc} to this matrix. *

* This method assumes this to be {@link #isAffine() affine}. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and Q the rotation matrix obtained from the given quaternion, * then the new matrix will be M * Q. So when transforming a * vector v with the new matrix by using M * Q * v, * the quaternion rotation will be applied first! *

* In order to set the matrix to a rotation transformation without post-multiplying, * use {@link #rotation(Quaternionfc)}. *

* Reference: http://en.wikipedia.org * * @see #rotation(Quaternionfc) * * @param quat * the {@link Quaternionfc} * @return this */ public Matrix4d rotateAffine(Quaternionfc quat) { return rotateAffine(quat, this); } /** * Pre-multiply the rotation - and possibly scaling - transformation of the given {@link Quaternionfc} to this matrix and store * the result in dest. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and Q the rotation matrix obtained from the given quaternion, * then the new matrix will be Q * M. So when transforming a * vector v with the new matrix by using Q * M * v, * the quaternion rotation will be applied last! *

* In order to set the matrix to a rotation transformation without pre-multiplying, * use {@link #rotation(Quaternionfc)}. *

* Reference: http://en.wikipedia.org * * @see #rotation(Quaternionfc) * * @param quat * the {@link Quaternionfc} * @param dest * will hold the result * @return dest */ public Matrix4d rotateLocal(Quaternionfc quat, Matrix4d dest) { double w2 = quat.w() * quat.w(); double x2 = quat.x() * quat.x(); double y2 = quat.y() * quat.y(); double z2 = quat.z() * quat.z(); double zw = quat.z() * quat.w(); double xy = quat.x() * quat.y(); double xz = quat.x() * quat.z(); double yw = quat.y() * quat.w(); double yz = quat.y() * quat.z(); double xw = quat.x() * quat.w(); double lm00 = w2 + x2 - z2 - y2; double lm01 = xy + zw + zw + xy; double lm02 = xz - yw + xz - yw; double lm10 = -zw + xy - zw + xy; double lm11 = y2 - z2 + w2 - x2; double lm12 = yz + yz + xw + xw; double lm20 = yw + xz + xz + yw; double lm21 = yz + yz - xw - xw; double lm22 = z2 - y2 - x2 + w2; double nm00 = lm00 * m00 + lm10 * m01 + lm20 * m02; double nm01 = lm01 * m00 + lm11 * m01 + lm21 * m02; double nm02 = lm02 * m00 + lm12 * m01 + lm22 * m02; double nm03 = m03; double nm10 = lm00 * m10 + lm10 * m11 + lm20 * m12; double nm11 = lm01 * m10 + lm11 * m11 + lm21 * m12; double nm12 = lm02 * m10 + lm12 * m11 + lm22 * m12; double nm13 = m13; double nm20 = lm00 * m20 + lm10 * m21 + lm20 * m22; double nm21 = lm01 * m20 + lm11 * m21 + lm21 * m22; double nm22 = lm02 * m20 + lm12 * m21 + lm22 * m22; double nm23 = m23; double nm30 = lm00 * m30 + lm10 * m31 + lm20 * m32; double nm31 = lm01 * m30 + lm11 * m31 + lm21 * m32; double nm32 = lm02 * m30 + lm12 * m31 + lm22 * m32; dest._m00(nm00) ._m01(nm01) ._m02(nm02) ._m03(nm03) ._m10(nm10) ._m11(nm11) ._m12(nm12) ._m13(nm13) ._m20(nm20) ._m21(nm21) ._m22(nm22) ._m23(nm23) ._m30(nm30) ._m31(nm31) ._m32(nm32) ._m33(m33) ._properties(properties & ~(PROPERTY_PERSPECTIVE | PROPERTY_IDENTITY | PROPERTY_TRANSLATION)); return dest; } /** * Pre-multiply the rotation - and possibly scaling - transformation of the given {@link Quaternionfc} to this matrix. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and Q the rotation matrix obtained from the given quaternion, * then the new matrix will be Q * M. So when transforming a * vector v with the new matrix by using Q * M * v, * the quaternion rotation will be applied last! *

* In order to set the matrix to a rotation transformation without pre-multiplying, * use {@link #rotation(Quaternionfc)}. *

* Reference: http://en.wikipedia.org * * @see #rotation(Quaternionfc) * * @param quat * the {@link Quaternionfc} * @return this */ public Matrix4d rotateLocal(Quaternionfc quat) { return rotateLocal(quat, this); } /** * Apply a rotation transformation, rotating about the given {@link AxisAngle4f}, to this matrix. *

* The axis described by the axis vector needs to be a unit vector. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and A the rotation matrix obtained from the given {@link AxisAngle4f}, * then the new matrix will be M * A. So when transforming a * vector v with the new matrix by using M * A * v, * the {@link AxisAngle4f} rotation will be applied first! *

* In order to set the matrix to a rotation transformation without post-multiplying, * use {@link #rotation(AxisAngle4f)}. *

* Reference: http://en.wikipedia.org * * @see #rotate(double, double, double, double) * @see #rotation(AxisAngle4f) * * @param axisAngle * the {@link AxisAngle4f} (needs to be {@link AxisAngle4f#normalize() normalized}) * @return this */ public Matrix4d rotate(AxisAngle4f axisAngle) { return rotate(axisAngle.angle, axisAngle.x, axisAngle.y, axisAngle.z); } /** * Apply a rotation transformation, rotating about the given {@link AxisAngle4f} and store the result in dest. *

* The axis described by the axis vector needs to be a unit vector. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and A the rotation matrix obtained from the given {@link AxisAngle4f}, * then the new matrix will be M * A. So when transforming a * vector v with the new matrix by using M * A * v, * the {@link AxisAngle4f} rotation will be applied first! *

* In order to set the matrix to a rotation transformation without post-multiplying, * use {@link #rotation(AxisAngle4f)}. *

* Reference: http://en.wikipedia.org * * @see #rotate(double, double, double, double) * @see #rotation(AxisAngle4f) * * @param axisAngle * the {@link AxisAngle4f} (needs to be {@link AxisAngle4f#normalize() normalized}) * @param dest * will hold the result * @return dest */ public Matrix4d rotate(AxisAngle4f axisAngle, Matrix4d dest) { return rotate(axisAngle.angle, axisAngle.x, axisAngle.y, axisAngle.z, dest); } /** * Apply a rotation transformation, rotating about the given {@link AxisAngle4d}, to this matrix. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and A the rotation matrix obtained from the given {@link AxisAngle4d}, * then the new matrix will be M * A. So when transforming a * vector v with the new matrix by using M * A * v, * the {@link AxisAngle4d} rotation will be applied first! *

* In order to set the matrix to a rotation transformation without post-multiplying, * use {@link #rotation(AxisAngle4d)}. *

* Reference: http://en.wikipedia.org * * @see #rotate(double, double, double, double) * @see #rotation(AxisAngle4d) * * @param axisAngle * the {@link AxisAngle4d} (needs to be {@link AxisAngle4d#normalize() normalized}) * @return this */ public Matrix4d rotate(AxisAngle4d axisAngle) { return rotate(axisAngle.angle, axisAngle.x, axisAngle.y, axisAngle.z); } /** * Apply a rotation transformation, rotating about the given {@link AxisAngle4d} and store the result in dest. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and A the rotation matrix obtained from the given {@link AxisAngle4d}, * then the new matrix will be M * A. So when transforming a * vector v with the new matrix by using M * A * v, * the {@link AxisAngle4d} rotation will be applied first! *

* In order to set the matrix to a rotation transformation without post-multiplying, * use {@link #rotation(AxisAngle4d)}. *

* Reference: http://en.wikipedia.org * * @see #rotate(double, double, double, double) * @see #rotation(AxisAngle4d) * * @param axisAngle * the {@link AxisAngle4d} (needs to be {@link AxisAngle4d#normalize() normalized}) * @param dest * will hold the result * @return dest */ public Matrix4d rotate(AxisAngle4d axisAngle, Matrix4d dest) { return rotate(axisAngle.angle, axisAngle.x, axisAngle.y, axisAngle.z, dest); } /** * Apply a rotation transformation, rotating the given radians about the specified axis, to this matrix. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and A the rotation matrix obtained from the given angle and axis, * then the new matrix will be M * A. So when transforming a * vector v with the new matrix by using M * A * v, * the axis-angle rotation will be applied first! *

* In order to set the matrix to a rotation transformation without post-multiplying, * use {@link #rotation(double, Vector3dc)}. *

* Reference: http://en.wikipedia.org * * @see #rotate(double, double, double, double) * @see #rotation(double, Vector3dc) * * @param angle * the angle in radians * @param axis * the rotation axis (needs to be {@link Vector3d#normalize() normalized}) * @return this */ public Matrix4d rotate(double angle, Vector3dc axis) { return rotate(angle, axis.x(), axis.y(), axis.z()); } /** * Apply a rotation transformation, rotating the given radians about the specified axis and store the result in dest. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and A the rotation matrix obtained from the given angle and axis, * then the new matrix will be M * A. So when transforming a * vector v with the new matrix by using M * A * v, * the axis-angle rotation will be applied first! *

* In order to set the matrix to a rotation transformation without post-multiplying, * use {@link #rotation(double, Vector3dc)}. *

* Reference: http://en.wikipedia.org * * @see #rotate(double, double, double, double) * @see #rotation(double, Vector3dc) * * @param angle * the angle in radians * @param axis * the rotation axis (needs to be {@link Vector3d#normalize() normalized}) * @param dest * will hold the result * @return dest */ public Matrix4d rotate(double angle, Vector3dc axis, Matrix4d dest) { return rotate(angle, axis.x(), axis.y(), axis.z(), dest); } /** * Apply a rotation transformation, rotating the given radians about the specified axis, to this matrix. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and A the rotation matrix obtained from the given angle and axis, * then the new matrix will be M * A. So when transforming a * vector v with the new matrix by using M * A * v, * the axis-angle rotation will be applied first! *

* In order to set the matrix to a rotation transformation without post-multiplying, * use {@link #rotation(double, Vector3fc)}. *

* Reference: http://en.wikipedia.org * * @see #rotate(double, double, double, double) * @see #rotation(double, Vector3fc) * * @param angle * the angle in radians * @param axis * the rotation axis (needs to be {@link Vector3f#normalize() normalized}) * @return this */ public Matrix4d rotate(double angle, Vector3fc axis) { return rotate(angle, axis.x(), axis.y(), axis.z()); } /** * Apply a rotation transformation, rotating the given radians about the specified axis and store the result in dest. *

* When used with a right-handed coordinate system, the produced rotation will rotate a vector * counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. * When used with a left-handed coordinate system, the rotation is clockwise. *

* If M is this matrix and A the rotation matrix obtained from the given angle and axis, * then the new matrix will be M * A. So when transforming a * vector v with the new matrix by using M * A * v, * the axis-angle rotation will be applied first! *

* In order to set the matrix to a rotation transformation without post-multiplying, * use {@link #rotation(double, Vector3fc)}. *

* Reference: http://en.wikipedia.org * * @see #rotate(double, double, double, double) * @see #rotation(double, Vector3fc) * * @param angle * the angle in radians * @param axis * the rotation axis (needs to be {@link Vector3f#normalize() normalized}) * @param dest * will hold the result * @return dest */ public Matrix4d rotate(double angle, Vector3fc axis, Matrix4d dest) { return rotate(angle, axis.x(), axis.y(), axis.z(), dest); } public Vector4d getRow(int row, Vector4d dest) throws IndexOutOfBoundsException { switch (row) { case 0: dest.x = m00; dest.y = m10; dest.z = m20; dest.w = m30; break; case 1: dest.x = m01; dest.y = m11; dest.z = m21; dest.w = m31; break; case 2: dest.x = m02; dest.y = m12; dest.z = m22; dest.w = m32; break; case 3: dest.x = m03; dest.y = m13; dest.z = m23; dest.w = m33; break; default: throw new IndexOutOfBoundsException(); } return dest; } public Vector3d getRow(int row, Vector3d dest) throws IndexOutOfBoundsException { switch (row) { case 0: dest.x = m00; dest.y = m10; dest.z = m20; break; case 1: dest.x = m01; dest.y = m11; dest.z = m21; break; case 2: dest.x = m02; dest.y = m12; dest.z = m22; break; case 3: dest.x = m03; dest.y = m13; dest.z = m23; break; default: throw new IndexOutOfBoundsException(); } return dest; } /** * Set the row at the given row index, starting with 0. * * @param row * the row index in [0..3] * @param src * the row components to set * @return this * @throws IndexOutOfBoundsException if row is not in [0..3] */ public Matrix4d setRow(int row, Vector4dc src) throws IndexOutOfBoundsException { switch (row) { case 0: return _m00(src.x())._m10(src.y())._m20(src.z())._m30(src.w())._properties(0); case 1: return _m01(src.x())._m11(src.y())._m21(src.z())._m31(src.w())._properties(0); case 2: return _m02(src.x())._m12(src.y())._m22(src.z())._m32(src.w())._properties(0); case 3: return _m03(src.x())._m13(src.y())._m23(src.z())._m33(src.w())._properties(0); default: throw new IndexOutOfBoundsException(); } } public Vector4d getColumn(int column, Vector4d dest) throws IndexOutOfBoundsException { switch (column) { case 0: dest.x = m00; dest.y = m01; dest.z = m02; dest.w = m03; break; case 1: dest.x = m10; dest.y = m11; dest.z = m12; dest.w = m13; break; case 2: dest.x = m20; dest.y = m21; dest.z = m22; dest.w = m23; break; case 3: dest.x = m30; dest.y = m31; dest.z = m32; dest.w = m33; break; default: throw new IndexOutOfBoundsException(); } return dest; } public Vector3d getColumn(int column, Vector3d dest) throws IndexOutOfBoundsException { switch (column) { case 0: dest.x = m00; dest.y = m01; dest.z = m02; break; case 1: dest.x = m10; dest.y = m11; dest.z = m12; break; case 2: dest.x = m20; dest.y = m21; dest.z = m22; break; case 3: dest.x = m30; dest.y = m31; dest.z = m32; break; default: throw new IndexOutOfBoundsException(); } return dest; } /** * Set the column at the given column index, starting with 0. * * @param column * the column index in [0..3] * @param src * the column components to set * @return this * @throws IndexOutOfBoundsException if column is not in [0..3] */ public Matrix4d setColumn(int column, Vector4dc src) throws IndexOutOfBoundsException { switch (column) { case 0: return _m00(src.x())._m01(src.y())._m02(src.z())._m03(src.w())._properties(0); case 1: return _m10(src.x())._m11(src.y())._m12(src.z())._m13(src.w())._properties(0); case 2: return _m20(src.x())._m21(src.y())._m22(src.z())._m23(src.w())._properties(0); case 3: return _m30(src.x())._m31(src.y())._m32(src.z())._m33(src.w())._properties(0); default: throw new IndexOutOfBoundsException(); } } public double get(int column, int row) { return MemUtil.INSTANCE.get(this, column, row); } /** * Set the matrix element at the given column and row to the specified value. * * @param column * the colum index in [0..3] * @param row * the row index in [0..3] * @param value * the value * @return this */ public Matrix4d set(int column, int row, double value) { return MemUtil.INSTANCE.set(this, column, row, value); } public double getRowColumn(int row, int column) { return MemUtil.INSTANCE.get(this, column, row); } /** * Set the matrix element at the given row and column to the specified value. * * @param row * the row index in [0..3] * @param column * the colum index in [0..3] * @param value * the value * @return this */ public Matrix4d setRowColumn(int row, int column, double value) { return MemUtil.INSTANCE.set(this, column, row, value); } /** * Compute a normal matrix from the upper left 3x3 submatrix of this * and store it into the upper left 3x3 submatrix of this. * All other values of this will be set to {@link #identity() identity}. *

* The normal matrix of m is the transpose of the inverse of m. *

* Please note that, if this is an orthogonal matrix or a matrix whose columns are orthogonal vectors, * then this method need not be invoked, since in that case this itself is its normal matrix. * In that case, use {@link #set3x3(Matrix4dc)} to set a given Matrix4f to only the upper left 3x3 submatrix * of this matrix. * * @see #set3x3(Matrix4dc) * * @return this */ public Matrix4d normal() { return normal(this); } /** * Compute a normal matrix from the upper left 3x3 submatrix of this * and store it into the upper left 3x3 submatrix of dest. * All other values of dest will be set to {@link #identity() identity}. *

* The normal matrix of m is the transpose of the inverse of m. *

* Please note that, if this is an orthogonal matrix or a matrix whose columns are orthogonal vectors, * then this method need not be invoked, since in that case this itself is its normal matrix. * In that case, use {@link #set3x3(Matrix4dc)} to set a given Matrix4d to only the upper left 3x3 submatrix * of a given matrix. * * @see #set3x3(Matrix4dc) * * @param dest * will hold the result * @return dest */ public Matrix4d normal(Matrix4d dest) { if ((properties & PROPERTY_IDENTITY) != 0) return dest.identity(); else if ((properties & PROPERTY_ORTHONORMAL) != 0) return normalOrthonormal(dest); return normalGeneric(dest); } private Matrix4d normalOrthonormal(Matrix4d dest) { if (dest != this) dest.set(this); return dest._properties(PROPERTY_AFFINE | PROPERTY_ORTHONORMAL); } private Matrix4d normalGeneric(Matrix4d dest) { double m00m11 = m00 * m11; double m01m10 = m01 * m10; double m02m10 = m02 * m10; double m00m12 = m00 * m12; double m01m12 = m01 * m12; double m02m11 = m02 * m11; double det = (m00m11 - m01m10) * m22 + (m02m10 - m00m12) * m21 + (m01m12 - m02m11) * m20; double s = 1.0 / det; /* Invert and transpose in one go */ double nm00 = (m11 * m22 - m21 * m12) * s; double nm01 = (m20 * m12 - m10 * m22) * s; double nm02 = (m10 * m21 - m20 * m11) * s; double nm10 = (m21 * m02 - m01 * m22) * s; double nm11 = (m00 * m22 - m20 * m02) * s; double nm12 = (m20 * m01 - m00 * m21) * s; double nm20 = (m01m12 - m02m11) * s; double nm21 = (m02m10 - m00m12) * s; double nm22 = (m00m11 - m01m10) * s; return dest ._m00(nm00) ._m01(nm01) ._m02(nm02) ._m03(0.0) ._m10(nm10) ._m11(nm11) ._m12(nm12) ._m13(0.0) ._m20(nm20) ._m21(nm21) ._m22(nm22) ._m23(0.0) ._m30(0.0) ._m31(0.0) ._m32(0.0) ._m33(1.0) ._properties((properties | PROPERTY_AFFINE) & ~(PROPERTY_TRANSLATION | PROPERTY_PERSPECTIVE)); } /** * Compute a normal matrix from the upper left 3x3 submatrix of this * and store it into dest. *

* The normal matrix of m is the transpose of the inverse of m. *

* Please note that, if this is an orthogonal matrix or a matrix whose columns are orthogonal vectors, * then this method need not be invoked, since in that case this itself is its normal matrix. * In that case, use {@link Matrix3d#set(Matrix4dc)} to set a given Matrix3d to only the upper left 3x3 submatrix * of this matrix. * * @see Matrix3d#set(Matrix4dc) * @see #get3x3(Matrix3d) * * @param dest * will hold the result * @return dest */ public Matrix3d normal(Matrix3d dest) { if ((properties & PROPERTY_ORTHONORMAL) != 0) return normalOrthonormal(dest); return normalGeneric(dest); } private Matrix3d normalOrthonormal(Matrix3d dest) { dest.set(this); return dest; } private Matrix3d normalGeneric(Matrix3d dest) { double m00m11 = m00 * m11; double m01m10 = m01 * m10; double m02m10 = m02 * m10; double m00m12 = m00 * m12; double m01m12 = m01 * m12; double m02m11 = m02 * m11; double det = (m00m11 - m01m10) * m22 + (m02m10 - m00m12) * m21 + (m01m12 - m02m11) * m20; double s = 1.0 / det; /* Invert and transpose in one go */ return dest._m00((m11 * m22 - m21 * m12) * s) ._m01((m20 * m12 - m10 * m22) * s) ._m02((m10 * m21 - m20 * m11) * s) ._m10((m21 * m02 - m01 * m22) * s) ._m11((m00 * m22 - m20 * m02) * s) ._m12((m20 * m01 - m00 * m21) * s) ._m20((m01m12 - m02m11) * s) ._m21((m02m10 - m00m12) * s) ._m22((m00m11 - m01m10) * s); } /** * Compute the cofactor matrix of the upper left 3x3 submatrix of this. *

* The cofactor matrix can be used instead of {@link #normal()} to transform normals * when the orientation of the normals with respect to the surface should be preserved. * * @return this */ public Matrix4d cofactor3x3() { return cofactor3x3(this); } /** * Compute the cofactor matrix of the upper left 3x3 submatrix of this * and store it into dest. *

* The cofactor matrix can be used instead of {@link #normal(Matrix3d)} to transform normals * when the orientation of the normals with respect to the surface should be preserved. * * @param dest * will hold the result * @return dest */ public Matrix3d cofactor3x3(Matrix3d dest) { return dest._m00(m11 * m22 - m21 * m12) ._m01(m20 * m12 - m10 * m22) ._m02(m10 * m21 - m20 * m11) ._m10(m21 * m02 - m01 * m22) ._m11(m00 * m22 - m20 * m02) ._m12(m20 * m01 - m00 * m21) ._m20(m01 * m12 - m02 * m11) ._m21(m02 * m10 - m00 * m12) ._m22(m00 * m11 - m01 * m10); } /** * Compute the cofactor matrix of the upper left 3x3 submatrix of this * and store it into dest. * All other values of dest will be set to {@link #identity() identity}. *

* The cofactor matrix can be used instead of {@link #normal(Matrix4d)} to transform normals * when the orientation of the normals with respect to the surface should be preserved. * * @param dest * will hold the result * @return dest */ public Matrix4d cofactor3x3(Matrix4d dest) { double nm10 = m21 * m02 - m01 * m22; double nm11 = m00 * m22 - m20 * m02; double nm12 = m20 * m01 - m00 * m21; double nm20 = m01 * m12 - m11 * m02; double nm21 = m02 * m10 - m12 * m00; double nm22 = m00 * m11 - m10 * m01; return dest ._m00(m11 * m22 - m21 * m12) ._m01(m20 * m12 - m10 * m22) ._m02(m10 * m21 - m20 * m11) ._m03(0.0) ._m10(nm10) ._m11(nm11) ._m12(nm12) ._m13(0.0) ._m20(nm20) ._m21(nm21) ._m22(nm22) ._m23(0.0) ._m30(0.0) ._m31(0.0) ._m32(0.0) ._m33(1.0) ._properties((properties | PROPERTY_AFFINE) & ~(PROPERTY_TRANSLATION | PROPERTY_PERSPECTIVE)); } /** * Normalize the upper left 3x3 submatrix of this matrix. *

* The resulting matrix will map unit vectors to unit vectors, though a pair of orthogonal input unit * vectors need not be mapped to a pair of orthogonal output vectors if the original matrix was not orthogonal itself * (i.e. had skewing). * * @return this */ public Matrix4d normalize3x3() { return normalize3x3(this); } public Matrix4d normalize3x3(Matrix4d dest) { double invXlen = Math.invsqrt(m00 * m00 + m01 * m01 + m02 * m02); double invYlen = Math.invsqrt(m10 * m10 + m11 * m11 + m12 * m12); double invZlen = Math.invsqrt(m20 * m20 + m21 * m21 + m22 * m22); dest._m00(m00 * invXlen)._m01(m01 * invXlen)._m02(m02 * invXlen) ._m10(m10 * invYlen)._m11(m11 * invYlen)._m12(m12 * invYlen) ._m20(m20 * invZlen)._m21(m21 * invZlen)._m22(m22 * invZlen) ._m30(m30)._m31(m31)._m32(m32)._m33(m33) ._properties(properties); return dest; } public Matrix3d normalize3x3(Matrix3d dest) { double invXlen = Math.invsqrt(m00 * m00 + m01 * m01 + m02 * m02); double invYlen = Math.invsqrt(m10 * m10 + m11 * m11 + m12 * m12); double invZlen = Math.invsqrt(m20 * m20 + m21 * m21 + m22 * m22); dest.m00(m00 * invXlen); dest.m01(m01 * invXlen); dest.m02(m02 * invXlen); dest.m10(m10 * invYlen); dest.m11(m11 * invYlen); dest.m12(m12 * invYlen); dest.m20(m20 * invZlen); dest.m21(m21 * invZlen); dest.m22(m22 * invZlen); return dest; } public Vector4d unproject(double winX, double winY, double winZ, int[] viewport, Vector4d dest) { double a = m00 * m11 - m01 * m10; double b = m00 * m12 - m02 * m10; double c = m00 * m13 - m03 * m10; double d = m01 * m12 - m02 * m11; double e = m01 * m13 - m03 * m11; double f = m02 * m13 - m03 * m12; double g = m20 * m31 - m21 * m30; double h = m20 * m32 - m22 * m30; double i = m20 * m33 - m23 * m30; double j = m21 * m32 - m22 * m31; double k = m21 * m33 - m23 * m31; double l = m22 * m33 - m23 * m32; double det = a * l - b * k + c * j + d * i - e * h + f * g; det = 1.0 / det; double im00 = ( m11 * l - m12 * k + m13 * j) * det; double im01 = (-m01 * l + m02 * k - m03 * j) * det; double im02 = ( m31 * f - m32 * e + m33 * d) * det; double im03 = (-m21 * f + m22 * e - m23 * d) * det; double im10 = (-m10 * l + m12 * i - m13 * h) * det; double im11 = ( m00 * l - m02 * i + m03 * h) * det; double im12 = (-m30 * f + m32 * c - m33 * b) * det; double im13 = ( m20 * f - m22 * c + m23 * b) * det; double im20 = ( m10 * k - m11 * i + m13 * g) * det; double im21 = (-m00 * k + m01 * i - m03 * g) * det; double im22 = ( m30 * e - m31 * c + m33 * a) * det; double im23 = (-m20 * e + m21 * c - m23 * a) * det; double im30 = (-m10 * j + m11 * h - m12 * g) * det; double im31 = ( m00 * j - m01 * h + m02 * g) * det; double im32 = (-m30 * d + m31 * b - m32 * a) * det; double im33 = ( m20 * d - m21 * b + m22 * a) * det; double ndcX = (winX-viewport[0])/viewport[2]*2.0-1.0; double ndcY = (winY-viewport[1])/viewport[3]*2.0-1.0; double ndcZ = winZ+winZ-1.0; double invW = 1.0 / (im03 * ndcX + im13 * ndcY + im23 * ndcZ + im33); dest.x = (im00 * ndcX + im10 * ndcY + im20 * ndcZ + im30) * invW; dest.y = (im01 * ndcX + im11 * ndcY + im21 * ndcZ + im31) * invW; dest.z = (im02 * ndcX + im12 * ndcY + im22 * ndcZ + im32) * invW; dest.w = 1.0; return dest; } public Vector3d unproject(double winX, double winY, double winZ, int[] viewport, Vector3d dest) { double a = m00 * m11 - m01 * m10; double b = m00 * m12 - m02 * m10; double c = m00 * m13 - m03 * m10; double d = m01 * m12 - m02 * m11; double e = m01 * m13 - m03 * m11; double f = m02 * m13 - m03 * m12; double g = m20 * m31 - m21 * m30; double h = m20 * m32 - m22 * m30; double i = m20 * m33 - m23 * m30; double j = m21 * m32 - m22 * m31; double k = m21 * m33 - m23 * m31; double l = m22 * m33 - m23 * m32; double det = a * l - b * k + c * j + d * i - e * h + f * g; det = 1.0 / det; double im00 = ( m11 * l - m12 * k + m13 * j) * det; double im01 = (-m01 * l + m02 * k - m03 * j) * det; double im02 = ( m31 * f - m32 * e + m33 * d) * det; double im03 = (-m21 * f + m22 * e - m23 * d) * det; double im10 = (-m10 * l + m12 * i - m13 * h) * det; double im11 = ( m00 * l - m02 * i + m03 * h) * det; double im12 = (-m30 * f + m32 * c - m33 * b) * det; double im13 = ( m20 * f - m22 * c + m23 * b) * det; double im20 = ( m10 * k - m11 * i + m13 * g) * det; double im21 = (-m00 * k + m01 * i - m03 * g) * det; double im22 = ( m30 * e - m31 * c + m33 * a) * det; double im23 = (-m20 * e + m21 * c - m23 * a) * det; double im30 = (-m10 * j + m11 * h - m12 * g) * det; double im31 = ( m00 * j - m01 * h + m02 * g) * det; double im32 = (-m30 * d + m31 * b - m32 * a) * det; double im33 = ( m20 * d - m21 * b + m22 * a) * det; double ndcX = (winX-viewport[0])/viewport[2]*2.0-1.0; double ndcY = (winY-viewport[1])/viewport[3]*2.0-1.0; double ndcZ = winZ+winZ-1.0; double invW = 1.0 / (im03 * ndcX + im13 * ndcY + im23 * ndcZ + im33); dest.x = (im00 * ndcX + im10 * ndcY + im20 * ndcZ + im30) * invW; dest.y = (im01 * ndcX + im11 * ndcY + im21 * ndcZ + im31) * invW; dest.z = (im02 * ndcX + im12 * ndcY + im22 * ndcZ + im32) * invW; return dest; } public Vector4d unproject(Vector3dc winCoords, int[] viewport, Vector4d dest) { return unproject(winCoords.x(), winCoords.y(), winCoords.z(), viewport, dest); } public Vector3d unproject(Vector3dc winCoords, int[] viewport, Vector3d dest) { return unproject(winCoords.x(), winCoords.y(), winCoords.z(), viewport, dest); } public Matrix4d unprojectRay(double winX, double winY, int[] viewport, Vector3d originDest, Vector3d dirDest) { double a = m00 * m11 - m01 * m10; double b = m00 * m12 - m02 * m10; double c = m00 * m13 - m03 * m10; double d = m01 * m12 - m02 * m11; double e = m01 * m13 - m03 * m11; double f = m02 * m13 - m03 * m12; double g = m20 * m31 - m21 * m30; double h = m20 * m32 - m22 * m30; double i = m20 * m33 - m23 * m30; double j = m21 * m32 - m22 * m31; double k = m21 * m33 - m23 * m31; double l = m22 * m33 - m23 * m32; double det = a * l - b * k + c * j + d * i - e * h + f * g; det = 1.0 / det; double im00 = ( m11 * l - m12 * k + m13 * j) * det; double im01 = (-m01 * l + m02 * k - m03 * j) * det; double im02 = ( m31 * f - m32 * e + m33 * d) * det; double im03 = (-m21 * f + m22 * e - m23 * d) * det; double im10 = (-m10 * l + m12 * i - m13 * h) * det; double im11 = ( m00 * l - m02 * i + m03 * h) * det; double im12 = (-m30 * f + m32 * c - m33 * b) * det; double im13 = ( m20 * f - m22 * c + m23 * b) * det; double im20 = ( m10 * k - m11 * i + m13 * g) * det; double im21 = (-m00 * k + m01 * i - m03 * g) * det; double im22 = ( m30 * e - m31 * c + m33 * a) * det; double im23 = (-m20 * e + m21 * c - m23 * a) * det; double im30 = (-m10 * j + m11 * h - m12 * g) * det; double im31 = ( m00 * j - m01 * h + m02 * g) * det; double im32 = (-m30 * d + m31 * b - m32 * a) * det; double im33 = ( m20 * d - m21 * b + m22 * a) * det; double ndcX = (winX-viewport[0])/viewport[2]*2.0-1.0; double ndcY = (winY-viewport[1])/viewport[3]*2.0-1.0; double px = im00 * ndcX + im10 * ndcY + im30; double py = im01 * ndcX + im11 * ndcY + im31; double pz = im02 * ndcX + im12 * ndcY + im32; double invNearW = 1.0 / (im03 * ndcX + im13 * ndcY - im23 + im33); double nearX = (px - im20) * invNearW; double nearY = (py - im21) * invNearW; double nearZ = (pz - im22) * invNearW; double invW0 = 1.0 / (im03 * ndcX + im13 * ndcY + im33); double x0 = px * invW0; double y0 = py * invW0; double z0 = pz * invW0; originDest.x = nearX; originDest.y = nearY; originDest.z = nearZ; dirDest.x = x0 - nearX; dirDest.y = y0 - nearY; dirDest.z = z0 - nearZ; return this; } public Matrix4d unprojectRay(Vector2dc winCoords, int[] viewport, Vector3d originDest, Vector3d dirDest) { return unprojectRay(winCoords.x(), winCoords.y(), viewport, originDest, dirDest); } public Vector4d unprojectInv(Vector3dc winCoords, int[] viewport, Vector4d dest) { return unprojectInv(winCoords.x(), winCoords.y(), winCoords.z(), viewport, dest); } public Vector4d unprojectInv(double winX, double winY, double winZ, int[] viewport, Vector4d dest) { double ndcX = (winX-viewport[0])/viewport[2]*2.0-1.0; double ndcY = (winY-viewport[1])/viewport[3]*2.0-1.0; double ndcZ = winZ+winZ-1.0; double invW = 1.0 / (m03 * ndcX + m13 * ndcY + m23 * ndcZ + m33); dest.x = (m00 * ndcX + m10 * ndcY + m20 * ndcZ + m30) * invW; dest.y = (m01 * ndcX + m11 * ndcY + m21 * ndcZ + m31) * invW; dest.z = (m02 * ndcX + m12 * ndcY + m22 * ndcZ + m32) * invW; dest.w = 1.0; return dest; } public Vector3d unprojectInv(Vector3dc winCoords, int[] viewport, Vector3d dest) { return unprojectInv(winCoords.x(), winCoords.y(), winCoords.z(), viewport, dest); } public Vector3d unprojectInv(double winX, double winY, double winZ, int[] viewport, Vector3d dest) { double ndcX = (winX-viewport[0])/viewport[2]*2.0-1.0; double ndcY = (winY-viewport[1])/viewport[3]*2.0-1.0; double ndcZ = winZ+winZ-1.0; double invW = 1.0 / (m03 * ndcX + m13 * ndcY + m23 * ndcZ + m33); dest.x = (m00 * ndcX + m10 * ndcY + m20 * ndcZ + m30) * invW; dest.y = (m01 * ndcX + m11 * ndcY + m21 * ndcZ + m31) * invW; dest.z = (m02 * ndcX + m12 * ndcY + m22 * ndcZ + m32) * invW; return dest; } public Matrix4d unprojectInvRay(Vector2dc winCoords, int[] viewport, Vector3d originDest, Vector3d dirDest) { return unprojectInvRay(winCoords.x(), winCoords.y(), viewport, originDest, dirDest); } public Matrix4d unprojectInvRay(double winX, double winY, int[] viewport, Vector3d originDest, Vector3d dirDest) { double ndcX = (winX-viewport[0])/viewport[2]*2.0-1.0; double ndcY = (winY-viewport[1])/viewport[3]*2.0-1.0; double px = m00 * ndcX + m10 * ndcY + m30; double py = m01 * ndcX + m11 * ndcY + m31; double pz = m02 * ndcX + m12 * ndcY + m32; double invNearW = 1.0 / (m03 * ndcX + m13 * ndcY - m23 + m33); double nearX = (px - m20) * invNearW; double nearY = (py - m21) * invNearW; double nearZ = (pz - m22) * invNearW; double invW0 = 1.0 / (m03 * ndcX + m13 * ndcY + m33); double x0 = px * invW0; double y0 = py * invW0; double z0 = pz * invW0; originDest.x = nearX; originDest.y = nearY; originDest.z = nearZ; dirDest.x = x0 - nearX; dirDest.y = y0 - nearY; dirDest.z = z0 - nearZ; return this; } public Vector4d project(double x, double y, double z, int[] viewport, Vector4d winCoordsDest) { double invW = 1.0 / Math.fma(m03, x, Math.fma(m13, y, Math.fma(m23, z, m33))); double nx = Math.fma(m00, x, Math.fma(m10, y, Math.fma(m20, z, m30))) * invW; double ny = Math.fma(m01, x, Math.fma(m11, y, Math.fma(m21, z, m31))) * invW; double nz = Math.fma(m02, x, Math.fma(m12, y, Math.fma(m22, z, m32))) * invW; return winCoordsDest.set(Math.fma(Math.fma(nx, 0.5, 0.5), viewport[2], viewport[0]), Math.fma(Math.fma(ny, 0.5, 0.5), viewport[3], viewport[1]), Math.fma(0.5, nz, 0.5), 1.0); } public Vector3d project(double x, double y, double z, int[] viewport, Vector3d winCoordsDest) { double invW = 1.0 / Math.fma(m03, x, Math.fma(m13, y, Math.fma(m23, z, m33))); double nx = Math.fma(m00, x, Math.fma(m10, y, Math.fma(m20, z, m30))) * invW; double ny = Math.fma(m01, x, Math.fma(m11, y, Math.fma(m21, z, m31))) * invW; double nz = Math.fma(m02, x, Math.fma(m12, y, Math.fma(m22, z, m32))) * invW; winCoordsDest.x = Math.fma(Math.fma(nx, 0.5, 0.5), viewport[2], viewport[0]); winCoordsDest.y = Math.fma(Math.fma(ny, 0.5, 0.5), viewport[3], viewport[1]); winCoordsDest.z = Math.fma(0.5, nz, 0.5); return winCoordsDest; } public Vector4d project(Vector3dc position, int[] viewport, Vector4d dest) { return project(position.x(), position.y(), position.z(), viewport, dest); } public Vector3d project(Vector3dc position, int[] viewport, Vector3d dest) { return project(position.x(), position.y(), position.z(), viewport, dest); } public Matrix4d reflect(double a, double b, double c, double d, Matrix4d dest) { if ((properties & PROPERTY_IDENTITY) != 0) return dest.reflection(a, b, c, d); if ((properties & PROPERTY_IDENTITY) != 0) return dest.reflection(a, b, c, d); else if ((properties & PROPERTY_AFFINE) != 0) return reflectAffine(a, b, c, d, dest); return reflectGeneric(a, b, c, d, dest); } private Matrix4d reflectAffine(double a, double b, double c, double d, Matrix4d dest) { double da = a + a, db = b + b, dc = c + c, dd = d + d; double rm00 = 1.0 - da * a; double rm01 = -da * b; double rm02 = -da * c; double rm10 = -db * a; double rm11 = 1.0 - db * b; double rm12 = -db * c; double rm20 = -dc * a; double rm21 = -dc * b; double rm22 = 1.0 - dc * c; double rm30 = -dd * a; double rm31 = -dd * b; double rm32 = -dd * c; double nm00 = m00 * rm00 + m10 * rm01 + m20 * rm02; double nm01 = m01 * rm00 + m11 * rm01 + m21 * rm02; double nm02 = m02 * rm00 + m12 * rm01 + m22 * rm02; double nm10 = m00 * rm10 + m10 * rm11 + m20 * rm12; double nm11 = m01 * rm10 + m11 * rm11 + m21 * rm12; double nm12 = m02 * rm10 + m12 * rm11 + m22 * rm12; // matrix multiplication dest._m30(m00 * rm30 + m10 * rm31 + m20 * rm32 + m30) ._m31(m01 * rm30 + m11 * rm31 + m21 * rm32 + m31) ._m32(m02 * rm30 + m12 * rm31 + m22 * rm32 + m32) ._m33(m33) ._m20(m00 * rm20 + m10 * rm21 + m20 * rm22) ._m21(m01 * rm20 + m11 * rm21 + m21 * rm22) ._m22(m02 * rm20 + m12 * rm21 + m22 * rm22) ._m23(0.0) ._m00(nm00) ._m01(nm01) ._m02(nm02) ._m03(0.0) ._m10(nm10) ._m11(nm11) ._m12(nm12) ._m13(0.0) ._properties(properties & ~(PROPERTY_PERSPECTIVE | PROPERTY_IDENTITY | PROPERTY_TRANSLATION)); return dest; } private Matrix4d reflectGeneric(double a, double b, double c, double d, Matrix4d dest) { double da = a + a, db = b + b, dc = c + c, dd = d + d; double rm00 = 1.0 - da * a; double rm01 = -da * b; double rm02 = -da * c; double rm10 = -db * a; double rm11 = 1.0 - db * b; double rm12 = -db * c; double rm20 = -dc * a; double rm21 = -dc * b; double rm22 = 1.0 - dc * c; double rm30 = -dd * a; double rm31 = -dd * b; double rm32 = -dd * c; double nm00 = m00 * rm00 + m10 * rm01 + m20 * rm02; double nm01 = m01 * rm00 + m11 * rm01 + m21 * rm02; double nm02 = m02 * rm00 + m12 * rm01 + m22 * rm02; double nm03 = m03 * rm00 + m13 * rm01 + m23 * rm02; double nm10 = m00 * rm10 + m10 * rm11 + m20 * rm12; double nm11 = m01 * rm10 + m11 * rm11 + m21 * rm12; double nm12 = m02 * rm10 + m12 * rm11 + m22 * rm12; double nm13 = m03 * rm10 + m13 * rm11 + m23 * rm12; // matrix multiplication dest._m30(m00 * rm30 + m10 * rm31 + m20 * rm32 + m30) ._m31(m01 * rm30 + m11 * rm31 + m21 * rm32 + m31) ._m32(m02 * rm30 + m12 * rm31 + m22 * rm32 + m32) ._m33(m03 * rm30 + m13 * rm31 + m23 * rm32 + m33) ._m20(m00 * rm20 + m10 * rm21 + m20 * rm22) ._m21(m01 * rm20 + m11 * rm21 + m21 * rm22) ._m22(m02 * rm20 + m12 * rm21 + m22 * rm22) ._m23(m03 * rm20 + m13 * rm21 + m23 * rm22) ._m00(nm00) ._m01(nm01) ._m02(nm02) ._m03(nm03) ._m10(nm10) ._m11(nm11) ._m12(nm12) ._m13(nm13) ._properties(properties & ~(PROPERTY_PERSPECTIVE | PROPERTY_IDENTITY | PROPERTY_TRANSLATION)); return dest; } /** * Apply a mirror/reflection transformation to this matrix that reflects about the given plane * specified via the equation x*a + y*b + z*c + d = 0. *

* The vector (a, b, c) must be a unit vector. *

* If M is this matrix and R the reflection matrix, * then the new matrix will be M * R. So when transforming a * vector v with the new matrix by using M * R * v, the * reflection will be applied first! *

* Reference: msdn.microsoft.com * * @param a * the x factor in the plane equation * @param b * the y factor in the plane equation * @param c * the z factor in the plane equation * @param d * the constant in the plane equation * @return this */ public Matrix4d reflect(double a, double b, double c, double d) { return reflect(a, b, c, d, this); } /** * Apply a mirror/reflection transformation to this matrix that reflects about the given plane * specified via the plane normal and a point on the plane. *

* If M is this matrix and R the reflection matrix, * then the new matrix will be M * R. So when transforming a * vector v with the new matrix by using M * R * v, the * reflection will be applied first! * * @param nx * the x-coordinate of the plane normal * @param ny * the y-coordinate of the plane normal * @param nz * the z-coordinate of the plane normal * @param px * the x-coordinate of a point on the plane * @param py * the y-coordinate of a point on the plane * @param pz * the z-coordinate of a point on the plane * @return this */ public Matrix4d reflect(double nx, double ny, double nz, double px, double py, double pz) { return reflect(nx, ny, nz, px, py, pz, this); } public Matrix4d reflect(double nx, double ny, double nz, double px, double py, double pz, Matrix4d dest) { double invLength = Math.invsqrt(nx * nx + ny * ny + nz * nz); double nnx = nx * invLength; double nny = ny * invLength; double nnz = nz * invLength; /* See: http://mathworld.wolfram.com/Plane.html */ return reflect(nnx, nny, nnz, -nnx * px - nny * py - nnz * pz, dest); } /** * Apply a mirror/reflection transformation to this matrix that reflects about the given plane * specified via the plane normal and a point on the plane. *

* If M is this matrix and R the reflection matrix, * then the new matrix will be M * R. So when transforming a * vector v with the new matrix by using M * R * v, the * reflection will be applied first! * * @param normal * the plane normal * @param point * a point on the plane * @return this */ public Matrix4d reflect(Vector3dc normal, Vector3dc point) { return reflect(normal.x(), normal.y(), normal.z(), point.x(), point.y(), point.z()); } /** * Apply a mirror/reflection transformation to this matrix that reflects about a plane * specified via the plane orientation and a point on the plane. *

* This method can be used to build a reflection transformation based on the orientation of a mirror object in the scene. * It is assumed that the default mirror plane's normal is (0, 0, 1). So, if the given {@link Quaterniondc} is * the identity (does not apply any additional rotation), the reflection plane will be z=0, offset by the given point. *

* If M is this matrix and R the reflection matrix, * then the new matrix will be M * R. So when transforming a * vector v with the new matrix by using M * R * v, the * reflection will be applied first! * * @param orientation * the plane orientation relative to an implied normal vector of (0, 0, 1) * @param point * a point on the plane * @return this */ public Matrix4d reflect(Quaterniondc orientation, Vector3dc point) { return reflect(orientation, point, this); } public Matrix4d reflect(Quaterniondc orientation, Vector3dc point, Matrix4d dest) { double num1 = orientation.x() + orientation.x(); double num2 = orientation.y() + orientation.y(); double num3 = orientation.z() + orientation.z(); double normalX = orientation.x() * num3 + orientation.w() * num2; double normalY = orientation.y() * num3 - orientation.w() * num1; double normalZ = 1.0 - (orientation.x() * num1 + orientation.y() * num2); return reflect(normalX, normalY, normalZ, point.x(), point.y(), point.z(), dest); } public Matrix4d reflect(Vector3dc normal, Vector3dc point, Matrix4d dest) { return reflect(normal.x(), normal.y(), normal.z(), point.x(), point.y(), point.z(), dest); } /** * Set this matrix to a mirror/reflection transformation that reflects about the given plane * specified via the equation x*a + y*b + z*c + d = 0. *

* The vector (a, b, c) must be a unit vector. *

* Reference: msdn.microsoft.com * * @param a * the x factor in the plane equation * @param b * the y factor in the plane equation * @param c * the z factor in the plane equation * @param d * the constant in the plane equation * @return this */ public Matrix4d reflection(double a, double b, double c, double d) { double da = a + a, db = b + b, dc = c + c, dd = d + d; _m00(1.0 - da * a). _m01(-da * b). _m02(-da * c). _m03(0.0). _m10(-db * a). _m11(1.0 - db * b). _m12(-db * c). _m13(0.0). _m20(-dc * a). _m21(-dc * b). _m22(1.0 - dc * c). _m23(0.0). _m30(-dd * a). _m31(-dd * b). _m32(-dd * c). _m33(1.0). properties = PROPERTY_AFFINE | PROPERTY_ORTHONORMAL; return this; } /** * Set this matrix to a mirror/reflection transformation that reflects about the given plane * specified via the plane normal and a point on the plane. * * @param nx * the x-coordinate of the plane normal * @param ny * the y-coordinate of the plane normal * @param nz * the z-coordinate of the plane normal * @param px * the x-coordinate of a point on the plane * @param py * the y-coordinate of a point on the plane * @param pz * the z-coordinate of a point on the plane * @return this */ public Matrix4d reflection(double nx, double ny, double nz, double px, double py, double pz) { double invLength = Math.invsqrt(nx * nx + ny * ny + nz * nz); double nnx = nx * invLength; double nny = ny * invLength; double nnz = nz * invLength; /* See: http://mathworld.wolfram.com/Plane.html */ return reflection(nnx, nny, nnz, -nnx * px - nny * py - nnz * pz); } /** * Set this matrix to a mirror/reflection transformation that reflects about the given plane * specified via the plane normal and a point on the plane. * * @param normal * the plane normal * @param point * a point on the plane * @return this */ public Matrix4d reflection(Vector3dc normal, Vector3dc point) { return reflection(normal.x(), normal.y(), normal.z(), point.x(), point.y(), point.z()); } /** * Set this matrix to a mirror/reflection transformation that reflects about a plane * specified via the plane orientation and a point on the plane. *

* This method can be used to build a reflection transformation based on the orientation of a mirror object in the scene. * It is assumed that the default mirror plane's normal is (0, 0, 1). So, if the given {@link Quaterniondc} is * the identity (does not apply any additional rotation), the reflection plane will be z=0, offset by the given point. * * @param orientation * the plane orientation * @param point * a point on the plane * @return this */ public Matrix4d reflection(Quaterniondc orientation, Vector3dc point) { double num1 = orientation.x() + orientation.x(); double num2 = orientation.y() + orientation.y(); double num3 = orientation.z() + orientation.z(); double normalX = orientation.x() * num3 + orientation.w() * num2; double normalY = orientation.y() * num3 - orientation.w() * num1; double normalZ = 1.0 - (orientation.x() * num1 + orientation.y() * num2); return reflection(normalX, normalY, normalZ, point.x(), point.y(), point.z()); } /** * Apply an orthographic projection transformation for a right-handed coordinate system * using the given NDC z range to this matrix and store the result in dest. *

* If M is this matrix and O the orthographic projection matrix, * then the new matrix will be M * O. So when transforming a * vector v with the new matrix by using M * O * v, the * orthographic projection transformation will be applied first! *

* In order to set the matrix to an orthographic projection without post-multiplying it, * use {@link #setOrtho(double, double, double, double, double, double, boolean) setOrtho()}. *

* Reference: http://www.songho.ca * * @see #setOrtho(double, double, double, double, double, double, boolean) * * @param left * the distance from the center to the left frustum edge * @param right * the distance from the center to the right frustum edge * @param bottom * the distance from the center to the bottom frustum edge * @param top * the distance from the center to the top frustum edge * @param zNear * near clipping plane distance * @param zFar * far clipping plane distance * @param zZeroToOne * whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true * or whether to use OpenGL's NDC z range of [-1..+1] when false * @param dest * will hold the result * @return dest */ public Matrix4d ortho(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne, Matrix4d dest) { if ((properties & PROPERTY_IDENTITY) != 0) return dest.setOrtho(left, right, bottom, top, zNear, zFar, zZeroToOne); return orthoGeneric(left, right, bottom, top, zNear, zFar, zZeroToOne, dest); } private Matrix4d orthoGeneric(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne, Matrix4d dest) { // calculate right matrix elements double rm00 = 2.0 / (right - left); double rm11 = 2.0 / (top - bottom); double rm22 = (zZeroToOne ? 1.0 : 2.0) / (zNear - zFar); double rm30 = (left + right) / (left - right); double rm31 = (top + bottom) / (bottom - top); double rm32 = (zZeroToOne ? zNear : (zFar + zNear)) / (zNear - zFar); // perform optimized multiplication // compute the last column first, because other columns do not depend on it dest._m30(m00 * rm30 + m10 * rm31 + m20 * rm32 + m30) ._m31(m01 * rm30 + m11 * rm31 + m21 * rm32 + m31) ._m32(m02 * rm30 + m12 * rm31 + m22 * rm32 + m32) ._m33(m03 * rm30 + m13 * rm31 + m23 * rm32 + m33) ._m00(m00 * rm00) ._m01(m01 * rm00) ._m02(m02 * rm00) ._m03(m03 * rm00) ._m10(m10 * rm11) ._m11(m11 * rm11) ._m12(m12 * rm11) ._m13(m13 * rm11) ._m20(m20 * rm22) ._m21(m21 * rm22) ._m22(m22 * rm22) ._m23(m23 * rm22) ._properties(properties & ~(PROPERTY_PERSPECTIVE | PROPERTY_IDENTITY | PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL)); return dest; } /** * Apply an orthographic projection transformation for a right-handed coordinate system * using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest. *

* If M is this matrix and O the orthographic projection matrix, * then the new matrix will be M * O. So when transforming a * vector v with the new matrix by using M * O * v, the * orthographic projection transformation will be applied first! *

* In order to set the matrix to an orthographic projection without post-multiplying it, * use {@link #setOrtho(double, double, double, double, double, double) setOrtho()}. *

* Reference: http://www.songho.ca * * @see #setOrtho(double, double, double, double, double, double) * * @param left * the distance from the center to the left frustum edge * @param right * the distance from the center to the right frustum edge * @param bottom * the distance from the center to the bottom frustum edge * @param top * the distance from the center to the top frustum edge * @param zNear * near clipping plane distance * @param zFar * far clipping plane distance * @param dest * will hold the result * @return dest */ public Matrix4d ortho(double left, double right, double bottom, double top, double zNear, double zFar, Matrix4d dest) { return ortho(left, right, bottom, top, zNear, zFar, false, dest); } /** * Apply an orthographic projection transformation for a right-handed coordinate system * using the given NDC z range to this matrix. *

* If M is this matrix and O the orthographic projection matrix, * then the new matrix will be M * O. So when transforming a * vector v with the new matrix by using M * O * v, the * orthographic projection transformation will be applied first! *

* In order to set the matrix to an orthographic projection without post-multiplying it, * use {@link #setOrtho(double, double, double, double, double, double, boolean) setOrtho()}. *

* Reference: http://www.songho.ca * * @see #setOrtho(double, double, double, double, double, double, boolean) * * @param left * the distance from the center to the left frustum edge * @param right * the distance from the center to the right frustum edge * @param bottom * the distance from the center to the bottom frustum edge * @param top * the distance from the center to the top frustum edge * @param zNear * near clipping plane distance * @param zFar * far clipping plane distance * @param zZeroToOne * whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true * or whether to use OpenGL's NDC z range of [-1..+1] when false * @return this */ public Matrix4d ortho(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne) { return ortho(left, right, bottom, top, zNear, zFar, zZeroToOne, this); } /** * Apply an orthographic projection transformation for a right-handed coordinate system * using OpenGL's NDC z range of [-1..+1] to this matrix. *

* If M is this matrix and O the orthographic projection matrix, * then the new matrix will be M * O. So when transforming a * vector v with the new matrix by using M * O * v, the * orthographic projection transformation will be applied first! *

* In order to set the matrix to an orthographic projection without post-multiplying it, * use {@link #setOrtho(double, double, double, double, double, double) setOrtho()}. *

* Reference: http://www.songho.ca * * @see #setOrtho(double, double, double, double, double, double) * * @param left * the distance from the center to the left frustum edge * @param right * the distance from the center to the right frustum edge * @param bottom * the distance from the center to the bottom frustum edge * @param top * the distance from the center to the top frustum edge * @param zNear * near clipping plane distance * @param zFar * far clipping plane distance * @return this */ public Matrix4d ortho(double left, double right, double bottom, double top, double zNear, double zFar) { return ortho(left, right, bottom, top, zNear, zFar, false); } /** * Apply an orthographic projection transformation for a left-handed coordiante system * using the given NDC z range to this matrix and store the result in dest. *

* If M is this matrix and O the orthographic projection matrix, * then the new matrix will be M * O. So when transforming a * vector v with the new matrix by using M * O * v, the * orthographic projection transformation will be applied first! *

* In order to set the matrix to an orthographic projection without post-multiplying it, * use {@link #setOrthoLH(double, double, double, double, double, double, boolean) setOrthoLH()}. *

* Reference: http://www.songho.ca * * @see #setOrthoLH(double, double, double, double, double, double, boolean) * * @param left * the distance from the center to the left frustum edge * @param right * the distance from the center to the right frustum edge * @param bottom * the distance from the center to the bottom frustum edge * @param top * the distance from the center to the top frustum edge * @param zNear * near clipping plane distance * @param zFar * far clipping plane distance * @param zZeroToOne * whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true * or whether to use OpenGL's NDC z range of [-1..+1] when false * @param dest * will hold the result * @return dest */ public Matrix4d orthoLH(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne, Matrix4d dest) { if ((properties & PROPERTY_IDENTITY) != 0) return dest.setOrthoLH(left, right, bottom, top, zNear, zFar, zZeroToOne); return orthoLHGeneric(left, right, bottom, top, zNear, zFar, zZeroToOne, dest); } private Matrix4d orthoLHGeneric(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne, Matrix4d dest) { // calculate right matrix elements double rm00 = 2.0 / (right - left); double rm11 = 2.0 / (top - bottom); double rm22 = (zZeroToOne ? 1.0 : 2.0) / (zFar - zNear); double rm30 = (left + right) / (left - right); double rm31 = (top + bottom) / (bottom - top); double rm32 = (zZeroToOne ? zNear : (zFar + zNear)) / (zNear - zFar); // perform optimized multiplication // compute the last column first, because other columns do not depend on it dest._m30(m00 * rm30 + m10 * rm31 + m20 * rm32 + m30) ._m31(m01 * rm30 + m11 * rm31 + m21 * rm32 + m31) ._m32(m02 * rm30 + m12 * rm31 + m22 * rm32 + m32) ._m33(m03 * rm30 + m13 * rm31 + m23 * rm32 + m33) ._m00(m00 * rm00) ._m01(m01 * rm00) ._m02(m02 * rm00) ._m03(m03 * rm00) ._m10(m10 * rm11) ._m11(m11 * rm11) ._m12(m12 * rm11) ._m13(m13 * rm11) ._m20(m20 * rm22) ._m21(m21 * rm22) ._m22(m22 * rm22) ._m23(m23 * rm22) ._properties(properties & ~(PROPERTY_PERSPECTIVE | PROPERTY_IDENTITY | PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL)); return dest; } /** * Apply an orthographic projection transformation for a left-handed coordiante system * using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest. *

* If M is this matrix and O the orthographic projection matrix, * then the new matrix will be M * O. So when transforming a * vector v with the new matrix by using M * O * v, the * orthographic projection transformation will be applied first! *

* In order to set the matrix to an orthographic projection without post-multiplying it, * use {@link #setOrthoLH(double, double, double, double, double, double) setOrthoLH()}. *

* Reference: http://www.songho.ca * * @see #setOrthoLH(double, double, double, double, double, double) * * @param left * the distance from the center to the left frustum edge * @param right * the distance from the center to the right frustum edge * @param bottom * the distance from the center to the bottom frustum edge * @param top * the distance from the center to the top frustum edge * @param zNear * near clipping plane distance * @param zFar * far clipping plane distance * @param dest * will hold the result * @return dest */ public Matrix4d orthoLH(double left, double right, double bottom, double top, double zNear, double zFar, Matrix4d dest) { return orthoLH(left, right, bottom, top, zNear, zFar, false, dest); } /** * Apply an orthographic projection transformation for a left-handed coordiante system * using the given NDC z range to this matrix. *

* If M is this matrix and O the orthographic projection matrix, * then the new matrix will be M * O. So when transforming a * vector v with the new matrix by using M * O * v, the * orthographic projection transformation will be applied first! *

* In order to set the matrix to an orthographic projection without post-multiplying it, * use {@link #setOrthoLH(double, double, double, double, double, double, boolean) setOrthoLH()}. *

* Reference: http://www.songho.ca * * @see #setOrthoLH(double, double, double, double, double, double, boolean) * * @param left * the distance from the center to the left frustum edge * @param right * the distance from the center to the right frustum edge * @param bottom * the distance from the center to the bottom frustum edge * @param top * the distance from the center to the top frustum edge * @param zNear * near clipping plane distance * @param zFar * far clipping plane distance * @param zZeroToOne * whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true * or whether to use OpenGL's NDC z range of [-1..+1] when false * @return this */ public Matrix4d orthoLH(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne) { return orthoLH(left, right, bottom, top, zNear, zFar, zZeroToOne, this); } /** * Apply an orthographic projection transformation for a left-handed coordiante system * using OpenGL's NDC z range of [-1..+1] to this matrix. *

* If M is this matrix and O the orthographic projection matrix, * then the new matrix will be M * O. So when transforming a * vector v with the new matrix by using M * O * v, the * orthographic projection transformation will be applied first! *

* In order to set the matrix to an orthographic projection without post-multiplying it, * use {@link #setOrthoLH(double, double, double, double, double, double) setOrthoLH()}. *

* Reference: http://www.songho.ca * * @see #setOrthoLH(double, double, double, double, double, double) * * @param left * the distance from the center to the left frustum edge * @param right * the distance from the center to the right frustum edge * @param bottom * the distance from the center to the bottom frustum edge * @param top * the distance from the center to the top frustum edge * @param zNear * near clipping plane distance * @param zFar * far clipping plane distance * @return this */ public Matrix4d orthoLH(double left, double right, double bottom, double top, double zNear, double zFar) { return orthoLH(left, right, bottom, top, zNear, zFar, false); } /** * Set this matrix to be an orthographic projection transformation for a right-handed coordinate system * using the given NDC z range. *

* In order to apply the orthographic projection to an already existing transformation, * use {@link #ortho(double, double, double, double, double, double, boolean) ortho()}. *

* Reference: http://www.songho.ca * * @see #ortho(double, double, double, double, double, double, boolean) * * @param left * the distance from the center to the left frustum edge * @param right * the distance from the center to the right frustum edge * @param bottom * the distance from the center to the bottom frustum edge * @param top * the distance from the center to the top frustum edge * @param zNear * near clipping plane distance * @param zFar * far clipping plane distance * @param zZeroToOne * whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true * or whether to use OpenGL's NDC z range of [-1..+1] when false * @return this */ public Matrix4d setOrtho(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne) { if ((properties & PROPERTY_IDENTITY) == 0) _identity(); _m00(2.0 / (right - left)). _m11(2.0 / (top - bottom)). _m22((zZeroToOne ? 1.0 : 2.0) / (zNear - zFar)). _m30((right + left) / (left - right)). _m31((top + bottom) / (bottom - top)). _m32((zZeroToOne ? zNear : (zFar + zNear)) / (zNear - zFar)). properties = PROPERTY_AFFINE; return this; } /** * Set this matrix to be an orthographic projection transformation for a right-handed coordinate system * using OpenGL's NDC z range of [-1..+1]. *

* In order to apply the orthographic projection to an already existing transformation, * use {@link #ortho(double, double, double, double, double, double) ortho()}. *

* Reference: http://www.songho.ca * * @see #ortho(double, double, double, double, double, double) * * @param left * the distance from the center to the left frustum edge * @param right * the distance from the center to the right frustum edge * @param bottom * the distance from the center to the bottom frustum edge * @param top * the distance from the center to the top frustum edge * @param zNear * near clipping plane distance * @param zFar * far clipping plane distance * @return this */ public Matrix4d setOrtho(double left, double right, double bottom, double top, double zNear, double zFar) { return setOrtho(left, right, bottom, top, zNear, zFar, false); } /** * Set this matrix to be an orthographic projection transformation for a left-handed coordinate system * using the given NDC z range. *

* In order to apply the orthographic projection to an already existing transformation, * use {@link #orthoLH(double, double, double, double, double, double, boolean) orthoLH()}. *

* Reference: http://www.songho.ca * * @see #orthoLH(double, double, double, double, double, double, boolean) * * @param left * the distance from the center to the left frustum edge * @param right * the distance from the center to the right frustum edge * @param bottom * the distance from the center to the bottom frustum edge * @param top * the distance from the center to the top frustum edge * @param zNear * near clipping plane distance * @param zFar * far clipping plane distance * @param zZeroToOne * whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true * or whether to use OpenGL's NDC z range of [-1..+1] when false * @return this */ public Matrix4d setOrthoLH(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne) { if ((properties & PROPERTY_IDENTITY) == 0) _identity(); _m00(2.0 / (right - left)). _m11(2.0 / (top - bottom)). _m22((zZeroToOne ? 1.0 : 2.0) / (zFar - zNear)). _m30((right + left) / (left - right)). _m31((top + bottom) / (bottom - top)). _m32((zZeroToOne ? zNear : (zFar + zNear)) / (zNear - zFar)). properties = PROPERTY_AFFINE; return this; } /** * Set this matrix to be an orthographic projection transformation for a left-handed coordinate system * using OpenGL's NDC z range of [-1..+1]. *

* In order to apply the orthographic projection to an already existing transformation, * use {@link #orthoLH(double, double, double, double, double, double) orthoLH()}. *

* Reference: http://www.songho.ca * * @see #orthoLH(double, double, double, double, double, double) * * @param left * the distance from the center to the left frustum edge * @param right * the distance from the center to the right frustum edge * @param bottom * the distance from the center to the bottom frustum edge * @param top * the distance from the center to the top frustum edge * @param zNear * near clipping plane distance * @param zFar * far clipping plane distance * @return this */ public Matrix4d setOrthoLH(double left, double right, double bottom, double top, double zNear, double zFar) { return setOrthoLH(left, right, bottom, top, zNear, zFar, false); } /** * Apply a symmetric orthographic projection transformation for a right-handed coordinate system * using the given NDC z range to this matrix and store the result in dest. *

* This method is equivalent to calling {@link #ortho(double, double, double, double, double, double, boolean, Matrix4d) ortho()} with * left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2. *

* If M is this matrix and O the orthographic projection matrix, * then the new matrix will be M * O. So when transforming a * vector v with the new matrix by using M * O * v, the * orthographic projection transformation will be applied first! *

* In order to set the matrix to a symmetric orthographic projection without post-multiplying it, * use {@link #setOrthoSymmetric(double, double, double, double, boolean) setOrthoSymmetric()}. *

* Reference: http://www.songho.ca * * @see #setOrthoSymmetric(double, double, double, double, boolean) * * @param width * the distance between the right and left frustum edges * @param height * the distance between the top and bottom frustum edges * @param zNear * near clipping plane distance * @param zFar * far clipping plane distance * @param dest * will hold the result * @param zZeroToOne * whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true * or whether to use OpenGL's NDC z range of [-1..+1] when false * @return dest */ public Matrix4d orthoSymmetric(double width, double height, double zNear, double zFar, boolean zZeroToOne, Matrix4d dest) { if ((properties & PROPERTY_IDENTITY) != 0) return dest.setOrthoSymmetric(width, height, zNear, zFar, zZeroToOne); return orthoSymmetricGeneric(width, height, zNear, zFar, zZeroToOne, dest); } private Matrix4d orthoSymmetricGeneric(double width, double height, double zNear, double zFar, boolean zZeroToOne, Matrix4d dest) { // calculate right matrix elements double rm00 = 2.0 / width; double rm11 = 2.0 / height; double rm22 = (zZeroToOne ? 1.0 : 2.0) / (zNear - zFar); double rm32 = (zZeroToOne ? zNear : (zFar + zNear)) / (zNear - zFar); // perform optimized multiplication // compute the last column first, because other columns do not depend on it dest._m30(m20 * rm32 + m30) ._m31(m21 * rm32 + m31) ._m32(m22 * rm32 + m32) ._m33(m23 * rm32 + m33) ._m00(m00 * rm00) ._m01(m01 * rm00) ._m02(m02 * rm00) ._m03(m03 * rm00) ._m10(m10 * rm11) ._m11(m11 * rm11) ._m12(m12 * rm11) ._m13(m13 * rm11) ._m20(m20 * rm22) ._m21(m21 * rm22) ._m22(m22 * rm22) ._m23(m23 * rm22) ._properties(properties & ~(PROPERTY_PERSPECTIVE | PROPERTY_IDENTITY | PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL)); return dest; } /** * Apply a symmetric orthographic projection transformation for a right-handed coordinate system * using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest. *

* This method is equivalent to calling {@link #ortho(double, double, double, double, double, double, Matrix4d) ortho()} with * left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2. *

* If M is this matrix and O the orthographic projection matrix, * then the new matrix will be M * O. So when transforming a * vector v with the new matrix by using M * O * v, the * orthographic projection transformation will be applied first! *

* In order to set the matrix to a symmetric orthographic projection without post-multiplying it, * use {@link #setOrthoSymmetric(double, double, double, double) setOrthoSymmetric()}. *

* Reference: http://www.songho.ca * * @see #setOrthoSymmetric(double, double, double, double) * * @param width * the distance between the right and left frustum edges * @param height * the distance between the top and bottom frustum edges * @param zNear * near clipping plane distance * @param zFar * far clipping plane distance * @param dest * will hold the result * @return dest */ public Matrix4d orthoSymmetric(double width, double height, double zNear, double zFar, Matrix4d dest) { return orthoSymmetric(width, height, zNear, zFar, false, dest); } /** * Apply a symmetric orthographic projection transformation for a right-handed coordinate system * using the given NDC z range to this matrix. *

* This method is equivalent to calling {@link #ortho(double, double, double, double, double, double, boolean) ortho()} with * left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2. *

* If M is this matrix and O the orthographic projection matrix, * then the new matrix will be M * O. So when transforming a * vector v with the new matrix by using M * O * v, the * orthographic projection transformation will be applied first! *

* In order to set the matrix to a symmetric orthographic projection without post-multiplying it, * use {@link #setOrthoSymmetric(double, double, double, double, boolean) setOrthoSymmetric()}. *

* Reference: http://www.songho.ca * * @see #setOrthoSymmetric(double, double, double, double, boolean) * * @param width * the distance between the right and left frustum edges * @param height * the distance between the top and bottom frustum edges * @param zNear * near clipping plane distance * @param zFar * far clipping plane distance * @param zZeroToOne * whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true * or whether to use OpenGL's NDC z range of [-1..+1] when false * @return this */ public Matrix4d orthoSymmetric(double width, double height, double zNear, double zFar, boolean zZeroToOne) { return orthoSymmetric(width, height, zNear, zFar, zZeroToOne, this); } /** * Apply a symmetric orthographic projection transformation for a right-handed coordinate system * using OpenGL's NDC z range of [-1..+1] to this matrix. *

* This method is equivalent to calling {@link #ortho(double, double, double, double, double, double) ortho()} with * left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2. *

* If M is this matrix and O the orthographic projection matrix, * then the new matrix will be M * O. So when transforming a * vector v with the new matrix by using M * O * v, the * orthographic projection transformation will be applied first! *

* In order to set the matrix to a symmetric orthographic projection without post-multiplying it, * use {@link #setOrthoSymmetric(double, double, double, double) setOrthoSymmetric()}. *

* Reference: http://www.songho.ca * * @see #setOrthoSymmetric(double, double, double, double) * * @param width * the distance between the right and left frustum edges * @param height * the distance between the top and bottom frustum edges * @param zNear * near clipping plane distance * @param zFar * far clipping plane distance * @return this */ public Matrix4d orthoSymmetric(double width, double height, double zNear, double zFar) { return orthoSymmetric(width, height, zNear, zFar, false, this); } /** * Apply a symmetric orthographic projection transformation for a left-handed coordinate system * using the given NDC z range to this matrix and store the result in dest. *

* This method is equivalent to calling {@link #orthoLH(double, double, double, double, double, double, boolean, Matrix4d) orthoLH()} with * left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2. *

* If M is this matrix and O the orthographic projection matrix, * then the new matrix will be M * O. So when transforming a * vector v with the new matrix by using M * O * v, the * orthographic projection transformation will be applied first! *

* In order to set the matrix to a symmetric orthographic projection without post-multiplying it, * use {@link #setOrthoSymmetricLH(double, double, double, double, boolean) setOrthoSymmetricLH()}. *

* Reference: http://www.songho.ca * * @see #setOrthoSymmetricLH(double, double, double, double, boolean) * * @param width * the distance between the right and left frustum edges * @param height * the distance between the top and bottom frustum edges * @param zNear * near clipping plane distance * @param zFar * far clipping plane distance * @param dest * will hold the result * @param zZeroToOne * whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true * or whether to use OpenGL's NDC z range of [-1..+1] when false * @return dest */ public Matrix4d orthoSymmetricLH(double width, double height, double zNear, double zFar, boolean zZeroToOne, Matrix4d dest) { if ((properties & PROPERTY_IDENTITY) != 0) return dest.setOrthoSymmetricLH(width, height, zNear, zFar, zZeroToOne); return orthoSymmetricLHGeneric(width, height, zNear, zFar, zZeroToOne, dest); } private Matrix4d orthoSymmetricLHGeneric(double width, double height, double zNear, double zFar, boolean zZeroToOne, Matrix4d dest) { // calculate right matrix elements double rm00 = 2.0 / width; double rm11 = 2.0 / height; double rm22 = (zZeroToOne ? 1.0 : 2.0) / (zFar - zNear); double rm32 = (zZeroToOne ? zNear : (zFar + zNear)) / (zNear - zFar); // perform optimized multiplication // compute the last column first, because other columns do not depend on it dest._m30(m20 * rm32 + m30) ._m31(m21 * rm32 + m31) ._m32(m22 * rm32 + m32) ._m33(m23 * rm32 + m33) ._m00(m00 * rm00) ._m01(m01 * rm00) ._m02(m02 * rm00) ._m03(m03 * rm00) ._m10(m10 * rm11) ._m11(m11 * rm11) ._m12(m12 * rm11) ._m13(m13 * rm11) ._m20(m20 * rm22) ._m21(m21 * rm22) ._m22(m22 * rm22) ._m23(m23 * rm22) ._properties(properties & ~(PROPERTY_PERSPECTIVE | PROPERTY_IDENTITY | PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL)); return dest; } /** * Apply a symmetric orthographic projection transformation for a left-handed coordinate system * using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest. *

* This method is equivalent to calling {@link #orthoLH(double, double, double, double, double, double, Matrix4d) orthoLH()} with * left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2. *

* If M is this matrix and O the orthographic projection matrix, * then the new matrix will be M * O. So when transforming a * vector v with the new matrix by using M * O * v, the * orthographic projection transformation will be applied first! *

* In order to set the matrix to a symmetric orthographic projection without post-multiplying it, * use {@link #setOrthoSymmetricLH(double, double, double, double) setOrthoSymmetricLH()}. *

* Reference: http://www.songho.ca * * @see #setOrthoSymmetricLH(double, double, double, double) * * @param width * the distance between the right and left frustum edges * @param height * the distance between the top and bottom frustum edges * @param zNear * near clipping plane distance * @param zFar * far clipping plane distance * @param dest * will hold the result * @return dest */ public Matrix4d orthoSymmetricLH(double width, double height, double zNear, double zFar, Matrix4d dest) { return orthoSymmetricLH(width, height, zNear, zFar, false, dest); } /** * Apply a symmetric orthographic projection transformation for a left-handed coordinate system * using the given NDC z range to this matrix. *

* This method is equivalent to calling {@link #orthoLH(double, double, double, double, double, double, boolean) orthoLH()} with * left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2. *

* If M is this matrix and O the orthographic projection matrix, * then the new matrix will be M * O. So when transforming a * vector v with the new matrix by using M * O * v, the * orthographic projection transformation will be applied first! *

* In order to set the matrix to a symmetric orthographic projection without post-multiplying it, * use {@link #setOrthoSymmetricLH(double, double, double, double, boolean) setOrthoSymmetricLH()}. *

* Reference: http://www.songho.ca * * @see #setOrthoSymmetricLH(double, double, double, double, boolean) * * @param width * the distance between the right and left frustum edges * @param height * the distance between the top and bottom frustum edges * @param zNear * near clipping plane distance * @param zFar * far clipping plane distance * @param zZeroToOne * whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true * or whether to use OpenGL's NDC z range of [-1..+1] when false * @return this */ public Matrix4d orthoSymmetricLH(double width, double height, double zNear, double zFar, boolean zZeroToOne) { return orthoSymmetricLH(width, height, zNear, zFar, zZeroToOne, this); } /** * Apply a symmetric orthographic projection transformation for a left-handed coordinate system * using OpenGL's NDC z range of [-1..+1] to this matrix. *

* This method is equivalent to calling {@link #orthoLH(double, double, double, double, double, double) orthoLH()} with * left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2. *

* If M is this matrix and O the orthographic projection matrix, * then the new matrix will be M * O. So when transforming a * vector v with the new matrix by using M * O * v, the * orthographic projection transformation will be applied first! *

* In order to set the matrix to a symmetric orthographic projection without post-multiplying it, * use {@link #setOrthoSymmetricLH(double, double, double, double) setOrthoSymmetricLH()}. *

* Reference: http://www.songho.ca * * @see #setOrthoSymmetricLH(double, double, double, double) * * @param width * the distance between the right and left frustum edges * @param height * the distance between the top and bottom frustum edges * @param zNear * near clipping plane distance * @param zFar * far clipping plane distance * @return this */ public Matrix4d orthoSymmetricLH(double width, double height, double zNear, double zFar) { return orthoSymmetricLH(width, height, zNear, zFar, false, this); } /** * Set this matrix to be a symmetric orthographic projection transformation for a right-handed coordinate system * using the given NDC z range. *

* This method is equivalent to calling {@link #setOrtho(double, double, double, double, double, double, boolean) setOrtho()} with * left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2. *

* In order to apply the symmetric orthographic projection to an already existing transformation, * use {@link #orthoSymmetric(double, double, double, double, boolean) orthoSymmetric()}. *

* Reference: http://www.songho.ca * * @see #orthoSymmetric(double, double, double, double, boolean) * * @param width * the distance between the right and left frustum edges * @param height * the distance between the top and bottom frustum edges * @param zNear * near clipping plane distance * @param zFar * far clipping plane distance * @param zZeroToOne * whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true * or whether to use OpenGL's NDC z range of [-1..+1] when false * @return this */ public Matrix4d setOrthoSymmetric(double width, double height, double zNear, double zFar, boolean zZeroToOne) { if ((properties & PROPERTY_IDENTITY) == 0) _identity(); _m00(2.0 / width). _m11(2.0 / height). _m22((zZeroToOne ? 1.0 : 2.0) / (zNear - zFar)). _m32((zZeroToOne ? zNear : (zFar + zNear)) / (zNear - zFar)). properties = PROPERTY_AFFINE; return this; } /** * Set this matrix to be a symmetric orthographic projection transformation for a right-handed coordinate system * using OpenGL's NDC z range of [-1..+1]. *

* This method is equivalent to calling {@link #setOrtho(double, double, double, double, double, double) setOrtho()} with * left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2. *

* In order to apply the symmetric orthographic projection to an already existing transformation, * use {@link #orthoSymmetric(double, double, double, double) orthoSymmetric()}. *

* Reference: http://www.songho.ca * * @see #orthoSymmetric(double, double, double, double) * * @param width * the distance between the right and left frustum edges * @param height * the distance between the top and bottom frustum edges * @param zNear * near clipping plane distance * @param zFar * far clipping plane distance * @return this */ public Matrix4d setOrthoSymmetric(double width, double height, double zNear, double zFar) { return setOrthoSymmetric(width, height, zNear, zFar, false); } /** * Set this matrix to be a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range. *

* This method is equivalent to calling {@link #setOrtho(double, double, double, double, double, double, boolean) setOrtho()} with * left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2. *

* In order to apply the symmetric orthographic projection to an already existing transformation, * use {@link #orthoSymmetricLH(double, double, double, double, boolean) orthoSymmetricLH()}. *

* Reference: http://www.songho.ca * * @see #orthoSymmetricLH(double, double, double, double, boolean) * * @param width * the distance between the right and left frustum edges * @param height * the distance between the top and bottom frustum edges * @param zNear * near clipping plane distance * @param zFar * far clipping plane distance * @param zZeroToOne * whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true * or whether to use OpenGL's NDC z range of [-1..+1] when false * @return this */ public Matrix4d setOrthoSymmetricLH(double width, double height, double zNear, double zFar, boolean zZeroToOne) { if ((properties & PROPERTY_IDENTITY) == 0) _identity(); _m00(2.0 / width). _m11(2.0 / height). _m22((zZeroToOne ? 1.0 : 2.0) / (zFar - zNear)). _m32((zZeroToOne ? zNear : (zFar + zNear)) / (zNear - zFar)). properties = PROPERTY_AFFINE; return this; } /** * Set this matrix to be a symmetric orthographic projection transformation for a left-handed coordinate system * using OpenGL's NDC z range of [-1..+1]. *

* This method is equivalent to calling {@link #setOrthoLH(double, double, double, double, double, double) setOrthoLH()} with * left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2. *

* In order to apply the symmetric orthographic projection to an already existing transformation, * use {@link #orthoSymmetricLH(double, double, double, double) orthoSymmetricLH()}. *

* Reference: http://www.songho.ca * * @see #orthoSymmetricLH(double, double, double, double) * * @param width * the distance between the right and left frustum edges * @param height * the distance between the top and bottom frustum edges * @param zNear * near clipping plane distance * @param zFar * far clipping plane distance * @return this */ public Matrix4d setOrthoSymmetricLH(double width, double height, double zNear, double zFar) { return setOrthoSymmetricLH(width, height, zNear, zFar, false); } /** * Apply an orthographic projection transformation for a right-handed coordinate system * to this matrix and store the result in dest. *

* This method is equivalent to calling {@link #ortho(double, double, double, double, double, double, Matrix4d) ortho()} with * zNear=-1 and zFar=+1. *

* If M is this matrix and O the orthographic projection matrix, * then the new matrix will be M * O. So when transforming a * vector v with the new matrix by using M * O * v, the * orthographic projection transformation will be applied first! *

* In order to set the matrix to an orthographic projection without post-multiplying it, * use {@link #setOrtho2D(double, double, double, double) setOrtho()}. *

* Reference: http://www.songho.ca * * @see #ortho(double, double, double, double, double, double, Matrix4d) * @see #setOrtho2D(double, double, double, double) * * @param left * the distance from the center to the left frustum edge * @param right * the distance from the center to the right frustum edge * @param bottom * the distance from the center to the bottom frustum edge * @param top * the distance from the center to the top frustum edge * @param dest * will hold the result * @return dest */ public Matrix4d ortho2D(double left, double right, double bottom, double top, Matrix4d dest) { if ((properties & PROPERTY_IDENTITY) != 0) return dest.setOrtho2D(left, right, bottom, top); return ortho2DGeneric(left, right, bottom, top, dest); } private Matrix4d ortho2DGeneric(double left, double right, double bottom, double top, Matrix4d dest) { // calculate right matrix elements double rm00 = 2.0 / (right - left); double rm11 = 2.0 / (top - bottom); double rm30 = (right + left) / (left - right); double rm31 = (top + bottom) / (bottom - top); // perform optimized multiplication // compute the last column first, because other columns do not depend on it dest._m30(m00 * rm30 + m10 * rm31 + m30) ._m31(m01 * rm30 + m11 * rm31 + m31) ._m32(m02 * rm30 + m12 * rm31 + m32) ._m33(m03 * rm30 + m13 * rm31 + m33) ._m00(m00 * rm00) ._m01(m01 * rm00) ._m02(m02 * rm00) ._m03(m03 * rm00) ._m10(m10 * rm11) ._m11(m11 * rm11) ._m12(m12 * rm11) ._m13(m13 * rm11) ._m20(-m20) ._m21(-m21) ._m22(-m22) ._m23(-m23) ._properties(properties & ~(PROPERTY_PERSPECTIVE | PROPERTY_IDENTITY | PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL)); return dest; } /** * Apply an orthographic projection transformation for a right-handed coordinate system to this matrix. *

* This method is equivalent to calling {@link #ortho(double, double, double, double, double, double) ortho()} with * zNear=-1 and zFar=+1. *

* If M is this matrix and O the orthographic projection matrix, * then the new matrix will be M * O. So when transforming a * vector v with the new matrix by using M * O * v, the * orthographic projection transformation will be applied first! *

* In order to set the matrix to an orthographic projection without post-multiplying it, * use {@link #setOrtho2D(double, double, double, double) setOrtho2D()}. *

* Reference: http://www.songho.ca * * @see #ortho(double, double, double, double, double, double) * @see #setOrtho2D(double, double, double, double) * * @param left * the distance from the center to the left frustum edge * @param right * the distance from the center to the right frustum edge * @param bottom * the distance from the center to the bottom frustum edge * @param top * the distance from the center to the top frustum edge * @return this */ public Matrix4d ortho2D(double left, double right, double bottom, double top) { return ortho2D(left, right, bottom, top, this); } /** * Apply an orthographic projection transformation for a left-handed coordinate system to this matrix and store the result in dest. *

* This method is equivalent to calling {@link #orthoLH(double, double, double, double, double, double, Matrix4d) orthoLH()} with * zNear=-1 and zFar=+1. *

* If M is this matrix and O the orthographic projection matrix, * then the new matrix will be M * O. So when transforming a * vector v with the new matrix by using M * O * v, the * orthographic projection transformation will be applied first! *

* In order to set the matrix to an orthographic projection without post-multiplying it, * use {@link #setOrtho2DLH(double, double, double, double) setOrthoLH()}. *

* Reference: http://www.songho.ca * * @see #orthoLH(double, double, double, double, double, double, Matrix4d) * @see #setOrtho2DLH(double, double, double, double) * * @param left * the distance from the center to the left frustum edge * @param right * the distance from the center to the right frustum edge * @param bottom * the distance from the center to the bottom frustum edge * @param top * the distance from the center to the top frustum edge * @param dest * will hold the result * @return dest */ public Matrix4d ortho2DLH(double left, double right, double bottom, double top, Matrix4d dest) { if ((properties & PROPERTY_IDENTITY) != 0) return dest.setOrtho2DLH(left, right, bottom, top); return ortho2DLHGeneric(left, right, bottom, top, dest); } private Matrix4d ortho2DLHGeneric(double left, double right, double bottom, double top, Matrix4d dest) { // calculate right matrix elements double rm00 = 2.0 / (right - left); double rm11 = 2.0 / (top - bottom); double rm30 = (right + left) / (left - right); double rm31 = (top + bottom) / (bottom - top); // perform optimized multiplication // compute the last column first, because other columns do not depend on it dest._m30(m00 * rm30 + m10 * rm31 + m30) ._m31(m01 * rm30 + m11 * rm31 + m31) ._m32(m02 * rm30 + m12 * rm31 + m32) ._m33(m03 * rm30 + m13 * rm31 + m33) ._m00(m00 * rm00) ._m01(m01 * rm00) ._m02(m02 * rm00) ._m03(m03 * rm00) ._m10(m10 * rm11) ._m11(m11 * rm11) ._m12(m12 * rm11) ._m13(m13 * rm11) ._m20(m20) ._m21(m21) ._m22(m22) ._m23(m23) ._properties(properties & ~(PROPERTY_PERSPECTIVE | PROPERTY_IDENTITY | PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL)); return dest; } /** * Apply an orthographic projection transformation for a left-handed coordinate system to this matrix. *

* This method is equivalent to calling {@link #orthoLH(double, double, double, double, double, double) orthoLH()} with * zNear=-1 and zFar=+1. *

* If M is this matrix and O the orthographic projection matrix, * then the new matrix will be M * O. So when transforming a * vector v with the new matrix by using M * O * v, the * orthographic projection transformation will be applied first! *

* In order to set the matrix to an orthographic projection without post-multiplying it, * use {@link #setOrtho2DLH(double, double, double, double) setOrtho2DLH()}. *

* Reference: http://www.songho.ca * * @see #orthoLH(double, double, double, double, double, double) * @see #setOrtho2DLH(double, double, double, double) * * @param left * the distance from the center to the left frustum edge * @param right * the distance from the center to the right frustum edge * @param bottom * the distance from the center to the bottom frustum edge * @param top * the distance from the center to the top frustum edge * @return this */ public Matrix4d ortho2DLH(double left, double right, double bottom, double top) { return ortho2DLH(left, right, bottom, top, this); } /** * Set this matrix to be an orthographic projection transformation for a right-handed coordinate system. *

* This method is equivalent to calling {@link #setOrtho(double, double, double, double, double, double) setOrtho()} with * zNear=-1 and zFar=+1. *

* In order to apply the orthographic projection to an already existing transformation, * use {@link #ortho2D(double, double, double, double) ortho2D()}. *

* Reference: http://www.songho.ca * * @see #setOrtho(double, double, double, double, double, double) * @see #ortho2D(double, double, double, double) * * @param left * the distance from the center to the left frustum edge * @param right * the distance from the center to the right frustum edge * @param bottom * the distance from the center to the bottom frustum edge * @param top * the distance from the center to the top frustum edge * @return this */ public Matrix4d setOrtho2D(double left, double right, double bottom, double top) { if ((properties & PROPERTY_IDENTITY) == 0) _identity(); _m00(2.0 / (right - left)). _m11(2.0 / (top - bottom)). _m22(-1.0). _m30((right + left) / (left - right)). _m31((top + bottom) / (bottom - top)). properties = PROPERTY_AFFINE; return this; } /** * Set this matrix to be an orthographic projection transformation for a left-handed coordinate system. *

* This method is equivalent to calling {@link #setOrtho(double, double, double, double, double, double) setOrthoLH()} with * zNear=-1 and zFar=+1. *

* In order to apply the orthographic projection to an already existing transformation, * use {@link #ortho2DLH(double, double, double, double) ortho2DLH()}. *

* Reference: http://www.songho.ca * * @see #setOrthoLH(double, double, double, double, double, double) * @see #ortho2DLH(double, double, double, double) * * @param left * the distance from the center to the left frustum edge * @param right * the distance from the center to the right frustum edge * @param bottom * the distance from the center to the bottom frustum edge * @param top * the distance from the center to the top frustum edge * @return this */ public Matrix4d setOrtho2DLH(double left, double right, double bottom, double top) { if ((properties & PROPERTY_IDENTITY) == 0) _identity(); _m00(2.0 / (right - left)). _m11(2.0 / (top - bottom)). _m30((right + left) / (left - right)). _m31((top + bottom) / (bottom - top)). properties = PROPERTY_AFFINE; return this; } /** * Apply a rotation transformation to this matrix to make -z point along dir. *

* If M is this matrix and L the lookalong rotation matrix, * then the new matrix will be M * L. So when transforming a * vector v with the new matrix by using M * L * v, the * lookalong rotation transformation will be applied first! *

* This is equivalent to calling * {@link #lookAt(Vector3dc, Vector3dc, Vector3dc) lookAt} * with eye = (0, 0, 0) and center = dir. *

* In order to set the matrix to a lookalong transformation without post-multiplying it, * use {@link #setLookAlong(Vector3dc, Vector3dc) setLookAlong()}. * * @see #lookAlong(double, double, double, double, double, double) * @see #lookAt(Vector3dc, Vector3dc, Vector3dc) * @see #setLookAlong(Vector3dc, Vector3dc) * * @param dir * the direction in space to look along * @param up * the direction of 'up' * @return this */ public Matrix4d lookAlong(Vector3dc dir, Vector3dc up) { return lookAlong(dir.x(), dir.y(), dir.z(), up.x(), up.y(), up.z(), this); } /** * Apply a rotation transformation to this matrix to make -z point along dir * and store the result in dest. *

* If M is this matrix and L the lookalong rotation matrix, * then the new matrix will be M * L. So when transforming a * vector v with the new matrix by using M * L * v, the * lookalong rotation transformation will be applied first! *

* This is equivalent to calling * {@link #lookAt(Vector3dc, Vector3dc, Vector3dc) lookAt} * with eye = (0, 0, 0) and center = dir. *

* In order to set the matrix to a lookalong transformation without post-multiplying it, * use {@link #setLookAlong(Vector3dc, Vector3dc) setLookAlong()}. * * @see #lookAlong(double, double, double, double, double, double) * @see #lookAt(Vector3dc, Vector3dc, Vector3dc) * @see #setLookAlong(Vector3dc, Vector3dc) * * @param dir * the direction in space to look along * @param up * the direction of 'up' * @param dest * will hold the result * @return dest */ public Matrix4d lookAlong(Vector3dc dir, Vector3dc up, Matrix4d dest) { return lookAlong(dir.x(), dir.y(), dir.z(), up.x(), up.y(), up.z(), dest); } /** * Apply a rotation transformation to this matrix to make -z point along dir * and store the result in dest. *

* If M is this matrix and L the lookalong rotation matrix, * then the new matrix will be M * L. So when transforming a * vector v with the new matrix by using M * L * v, the * lookalong rotation transformation will be applied first! *

* This is equivalent to calling * {@link #lookAt(double, double, double, double, double, double, double, double, double) lookAt()} * with eye = (0, 0, 0) and center = dir. *

* In order to set the matrix to a lookalong transformation without post-multiplying it, * use {@link #setLookAlong(double, double, double, double, double, double) setLookAlong()} * * @see #lookAt(double, double, double, double, double, double, double, double, double) * @see #setLookAlong(double, double, double, double, double, double) * * @param dirX * the x-coordinate of the direction to look along * @param dirY * the y-coordinate of the direction to look along * @param dirZ * the z-coordinate of the direction to look along * @param upX * the x-coordinate of the up vector * @param upY * the y-coordinate of the up vector * @param upZ * the z-coordinate of the up vector * @param dest * will hold the result * @return dest */ public Matrix4d lookAlong(double dirX, double dirY, double dirZ, double upX, double upY, double upZ, Matrix4d dest) { if ((properties & PROPERTY_IDENTITY) != 0) return dest.setLookAlong(dirX, dirY, dirZ, upX, upY, upZ); return lookAlongGeneric(dirX, dirY, dirZ, upX, upY, upZ, dest); } private Matrix4d lookAlongGeneric(double dirX, double dirY, double dirZ, double upX, double upY, double upZ, Matrix4d dest) { // Normalize direction double invDirLength = Math.invsqrt(dirX * dirX + dirY * dirY + dirZ * dirZ); dirX *= -invDirLength; dirY *= -invDirLength; dirZ *= -invDirLength; // left = up x direction double leftX, leftY, leftZ; leftX = upY * dirZ - upZ * dirY; leftY = upZ * dirX - upX * dirZ; leftZ = upX * dirY - upY * dirX; // normalize left double invLeftLength = Math.invsqrt(leftX * leftX + leftY * leftY + leftZ * leftZ); leftX *= invLeftLength; leftY *= invLeftLength; leftZ *= invLeftLength; // up = direction x left double upnX = dirY * leftZ - dirZ * leftY; double upnY = dirZ * leftX - dirX * leftZ; double upnZ = dirX * leftY - dirY * leftX; // calculate right matrix elements double rm00 = leftX; double rm01 = upnX; double rm02 = dirX; double rm10 = leftY; double rm11 = upnY; double rm12 = dirY; double rm20 = leftZ; double rm21 = upnZ; double rm22 = dirZ; // perform optimized matrix multiplication // introduce temporaries for dependent results double nm00 = m00 * rm00 + m10 * rm01 + m20 * rm02; double nm01 = m01 * rm00 + m11 * rm01 + m21 * rm02; double nm02 = m02 * rm00 + m12 * rm01 + m22 * rm02; double nm03 = m03 * rm00 + m13 * rm01 + m23 * rm02; double nm10 = m00 * rm10 + m10 * rm11 + m20 * rm12; double nm11 = m01 * rm10 + m11 * rm11 + m21 * rm12; double nm12 = m02 * rm10 + m12 * rm11 + m22 * rm12; double nm13 = m03 * rm10 + m13 * rm11 + m23 * rm12; dest._m20(m00 * rm20 + m10 * rm21 + m20 * rm22) ._m21(m01 * rm20 + m11 * rm21 + m21 * rm22) ._m22(m02 * rm20 + m12 * rm21 + m22 * rm22) ._m23(m03 * rm20 + m13 * rm21 + m23 * rm22) // set the rest of the matrix elements ._m00(nm00) ._m01(nm01) ._m02(nm02) ._m03(nm03) ._m10(nm10) ._m11(nm11) ._m12(nm12) ._m13(nm13) ._m30(m30) ._m31(m31) ._m32(m32) ._m33(m33) ._properties(properties & ~(PROPERTY_PERSPECTIVE | PROPERTY_IDENTITY | PROPERTY_TRANSLATION)); return dest; } /** * Apply a rotation transformation to this matrix to make -z point along dir. *

* If M is this matrix and L the lookalong rotation matrix, * then the new matrix will be M * L. So when transforming a * vector v with the new matrix by using M * L * v, the * lookalong rotation transformation will be applied first! *

* This is equivalent to calling * {@link #lookAt(double, double, double, double, double, double, double, double, double) lookAt()} * with eye = (0, 0, 0) and center = dir. *

* In order to set the matrix to a lookalong transformation without post-multiplying it, * use {@link #setLookAlong(double, double, double, double, double, double) setLookAlong()} * * @see #lookAt(double, double, double, double, double, double, double, double, double) * @see #setLookAlong(double, double, double, double, double, double) * * @param dirX * the x-coordinate of the direction to look along * @param dirY * the y-coordinate of the direction to look along * @param dirZ * the z-coordinate of the direction to look along * @param upX * the x-coordinate of the up vector * @param upY * the y-coordinate of the up vector * @param upZ * the z-coordinate of the up vector * @return this */ public Matrix4d lookAlong(double dirX, double dirY, double dirZ, double upX, double upY, double upZ) { return lookAlong(dirX, dirY, dirZ, upX, upY, upZ, this); } /** * Set this matrix to a rotation transformation to make -z * point along dir. *

* This is equivalent to calling * {@link #setLookAt(Vector3dc, Vector3dc, Vector3dc) setLookAt()} * with eye = (0, 0, 0) and center = dir. *

* In order to apply the lookalong transformation to any previous existing transformation, * use {@link #lookAlong(Vector3dc, Vector3dc)}. * * @see #setLookAlong(Vector3dc, Vector3dc) * @see #lookAlong(Vector3dc, Vector3dc) * * @param dir * the direction in space to look along * @param up * the direction of 'up' * @return this */ public Matrix4d setLookAlong(Vector3dc dir, Vector3dc up) { return setLookAlong(dir.x(), dir.y(), dir.z(), up.x(), up.y(), up.z()); } /** * Set this matrix to a rotation transformation to make -z * point along dir. *

* This is equivalent to calling * {@link #setLookAt(double, double, double, double, double, double, double, double, double) * setLookAt()} with eye = (0, 0, 0) and center = dir. *

* In order to apply the lookalong transformation to any previous existing transformation, * use {@link #lookAlong(double, double, double, double, double, double) lookAlong()} * * @see #setLookAlong(double, double, double, double, double, double) * @see #lookAlong(double, double, double, double, double, double) * * @param dirX * the x-coordinate of the direction to look along * @param dirY * the y-coordinate of the direction to look along * @param dirZ * the z-coordinate of the direction to look along * @param upX * the x-coordinate of the up vector * @param upY * the y-coordinate of the up vector * @param upZ * the z-coordinate of the up vector * @return this */ public Matrix4d setLookAlong(double dirX, double dirY, double dirZ, double upX, double upY, double upZ) { // Normalize direction double invDirLength = Math.invsqrt(dirX * dirX + dirY * dirY + dirZ * dirZ); dirX *= -invDirLength; dirY *= -invDirLength; dirZ *= -invDirLength; // left = up x direction double leftX, leftY, leftZ; leftX = upY * dirZ - upZ * dirY; leftY = upZ * dirX - upX * dirZ; leftZ = upX * dirY - upY * dirX; // normalize left double invLeftLength = Math.invsqrt(leftX * leftX + leftY * leftY + leftZ * leftZ); leftX *= invLeftLength; leftY *= invLeftLength; leftZ *= invLeftLength; // up = direction x left double upnX = dirY * leftZ - dirZ * leftY; double upnY = dirZ * leftX - dirX * leftZ; double upnZ = dirX * leftY - dirY * leftX; _m00(leftX). _m01(upnX). _m02(dirX). _m03(0.0). _m10(leftY). _m11(upnY). _m12(dirY). _m13(0.0). _m20(leftZ). _m21(upnZ). _m22(dirZ). _m23(0.0). _m30(0.0). _m31(0.0). _m32(0.0). _m33(1.0). properties = PROPERTY_AFFINE | PROPERTY_ORTHONORMAL; return this; } /** * Set this matrix to be a "lookat" transformation for a right-handed coordinate system, that aligns * -z with center - eye. *

* In order to not make use of vectors to specify eye, center and up but use primitives, * like in the GLU function, use {@link #setLookAt(double, double, double, double, double, double, double, double, double) setLookAt()} * instead. *

* In order to apply the lookat transformation to a previous existing transformation, * use {@link #lookAt(Vector3dc, Vector3dc, Vector3dc) lookAt()}. * * @see #setLookAt(double, double, double, double, double, double, double, double, double) * @see #lookAt(Vector3dc, Vector3dc, Vector3dc) * * @param eye * the position of the camera * @param center * the point in space to look at * @param up * the direction of 'up' * @return this */ public Matrix4d setLookAt(Vector3dc eye, Vector3dc center, Vector3dc up) { return setLookAt(eye.x(), eye.y(), eye.z(), center.x(), center.y(), center.z(), up.x(), up.y(), up.z()); } /** * Set this matrix to be a "lookat" transformation for a right-handed coordinate system, * that aligns -z with center - eye. *

* In order to apply the lookat transformation to a previous existing transformation, * use {@link #lookAt(double, double, double, double, double, double, double, double, double) lookAt}. * * @see #setLookAt(Vector3dc, Vector3dc, Vector3dc) * @see #lookAt(double, double, double, double, double, double, double, double, double) * * @param eyeX * the x-coordinate of the eye/camera location * @param eyeY * the y-coordinate of the eye/camera location * @param eyeZ * the z-coordinate of the eye/camera location * @param centerX * the x-coordinate of the point to look at * @param centerY * the y-coordinate of the point to look at * @param centerZ * the z-coordinate of the point to look at * @param upX * the x-coordinate of the up vector * @param upY * the y-coordinate of the up vector * @param upZ * the z-coordinate of the up vector * @return this */ public Matrix4d setLookAt(double eyeX, double eyeY, double eyeZ, double centerX, double centerY, double centerZ, double upX, double upY, double upZ) { // Compute direction from position to lookAt double dirX, dirY, dirZ; dirX = eyeX - centerX; dirY = eyeY - centerY; dirZ = eyeZ - centerZ; // Normalize direction double invDirLength = Math.invsqrt(dirX * dirX + dirY * dirY + dirZ * dirZ); dirX *= invDirLength; dirY *= invDirLength; dirZ *= invDirLength; // left = up x direction double leftX, leftY, leftZ; leftX = upY * dirZ - upZ * dirY; leftY = upZ * dirX - upX * dirZ; leftZ = upX * dirY - upY * dirX; // normalize left double invLeftLength = Math.invsqrt(leftX * leftX + leftY * leftY + leftZ * leftZ); leftX *= invLeftLength; leftY *= invLeftLength; leftZ *= invLeftLength; // up = direction x left double upnX = dirY * leftZ - dirZ * leftY; double upnY = dirZ * leftX - dirX * leftZ; double upnZ = dirX * leftY - dirY * leftX; return this. _m00(leftX). _m01(upnX). _m02(dirX). _m03(0.0). _m10(leftY). _m11(upnY). _m12(dirY). _m13(0.0). _m20(leftZ). _m21(upnZ). _m22(dirZ). _m23(0.0). _m30(-(leftX * eyeX + leftY * eyeY + leftZ * eyeZ)). _m31(-(upnX * eyeX + upnY * eyeY + upnZ * eyeZ)). _m32(-(dirX * eyeX + dirY * eyeY + dirZ * eyeZ)). _m33(1.0). _properties(PROPERTY_AFFINE | PROPERTY_ORTHONORMAL); } /** * Apply a "lookat" transformation to this matrix for a right-handed coordinate system, * that aligns -z with center - eye and store the result in dest. *

* If M is this matrix and L the lookat matrix, * then the new matrix will be M * L. So when transforming a * vector v with the new matrix by using M * L * v, * the lookat transformation will be applied first! *

* In order to set the matrix to a lookat transformation without post-multiplying it, * use {@link #setLookAt(Vector3dc, Vector3dc, Vector3dc)}. * * @see #lookAt(double, double, double, double, double, double, double, double, double) * @see #setLookAlong(Vector3dc, Vector3dc) * * @param eye * the position of the camera * @param center * the point in space to look at * @param up * the direction of 'up' * @param dest * will hold the result * @return dest */ public Matrix4d lookAt(Vector3dc eye, Vector3dc center, Vector3dc up, Matrix4d dest) { return lookAt(eye.x(), eye.y(), eye.z(), center.x(), center.y(), center.z(), up.x(), up.y(), up.z(), dest); } /** * Apply a "lookat" transformation to this matrix for a right-handed coordinate system, * that aligns -z with center - eye. *

* If M is this matrix and L the lookat matrix, * then the new matrix will be M * L. So when transforming a * vector v with the new matrix by using M * L * v, * the lookat transformation will be applied first! *

* In order to set the matrix to a lookat transformation without post-multiplying it, * use {@link #setLookAt(Vector3dc, Vector3dc, Vector3dc)}. * * @see #lookAt(double, double, double, double, double, double, double, double, double) * @see #setLookAlong(Vector3dc, Vector3dc) * * @param eye * the position of the camera * @param center * the point in space to look at * @param up * the direction of 'up' * @return this */ public Matrix4d lookAt(Vector3dc eye, Vector3dc center, Vector3dc up) { return lookAt(eye.x(), eye.y(), eye.z(), center.x(), center.y(), center.z(), up.x(), up.y(), up.z(), this); } /** * Apply a "lookat" transformation to this matrix for a right-handed coordinate system, * that aligns -z with center - eye and store the result in dest. *

* If M is this matrix and L the lookat matrix, * then the new matrix will be M * L. So when transforming a * vector v with the new matrix by using M * L * v, * the lookat transformation will be applied first! *

* In order to set the matrix to a lookat transformation without post-multiplying it, * use {@link #setLookAt(double, double, double, double, double, double, double, double, double) setLookAt()}. * * @see #lookAt(Vector3dc, Vector3dc, Vector3dc) * @see #setLookAt(double, double, double, double, double, double, double, double, double) * * @param eyeX * the x-coordinate of the eye/camera location * @param eyeY * the y-coordinate of the eye/camera location * @param eyeZ * the z-coordinate of the eye/camera location * @param centerX * the x-coordinate of the point to look at * @param centerY * the y-coordinate of the point to look at * @param centerZ * the z-coordinate of the point to look at * @param upX * the x-coordinate of the up vector * @param upY * the y-coordinate of the up vector * @param upZ * the z-coordinate of the up vector * @param dest * will hold the result * @return dest */ public Matrix4d lookAt(double eyeX, double eyeY, double eyeZ, double centerX, double centerY, double centerZ, double upX, double upY, double upZ, Matrix4d dest) { if ((properties & PROPERTY_IDENTITY) != 0) return dest.setLookAt(eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ); else if ((properties & PROPERTY_PERSPECTIVE) != 0) return lookAtPerspective(eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ, dest); return lookAtGeneric(eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ, dest); } private Matrix4d lookAtGeneric(double eyeX, double eyeY, double eyeZ, double centerX, double centerY, double centerZ, double upX, double upY, double upZ, Matrix4d dest) { // Compute direction from position to lookAt double dirX, dirY, dirZ; dirX = eyeX - centerX; dirY = eyeY - centerY; dirZ = eyeZ - centerZ; // Normalize direction double invDirLength = Math.invsqrt(dirX * dirX + dirY * dirY + dirZ * dirZ); dirX *= invDirLength; dirY *= invDirLength; dirZ *= invDirLength; // left = up x direction double leftX, leftY, leftZ; leftX = upY * dirZ - upZ * dirY; leftY = upZ * dirX - upX * dirZ; leftZ = upX * dirY - upY * dirX; // normalize left double invLeftLength = Math.invsqrt(leftX * leftX + leftY * leftY + leftZ * leftZ); leftX *= invLeftLength; leftY *= invLeftLength; leftZ *= invLeftLength; // up = direction x left double upnX = dirY * leftZ - dirZ * leftY; double upnY = dirZ * leftX - dirX * leftZ; double upnZ = dirX * leftY - dirY * leftX; // calculate right matrix elements double rm00 = leftX; double rm01 = upnX; double rm02 = dirX; double rm10 = leftY; double rm11 = upnY; double rm12 = dirY; double rm20 = leftZ; double rm21 = upnZ; double rm22 = dirZ; double rm30 = -(leftX * eyeX + leftY * eyeY + leftZ * eyeZ); double rm31 = -(upnX * eyeX + upnY * eyeY + upnZ * eyeZ); double rm32 = -(dirX * eyeX + dirY * eyeY + dirZ * eyeZ); double nm00 = m00 * rm00 + m10 * rm01 + m20 * rm02; double nm01 = m01 * rm00 + m11 * rm01 + m21 * rm02; double nm02 = m02 * rm00 + m12 * rm01 + m22 * rm02; double nm03 = m03 * rm00 + m13 * rm01 + m23 * rm02; double nm10 = m00 * rm10 + m10 * rm11 + m20 * rm12; double nm11 = m01 * rm10 + m11 * rm11 + m21 * rm12; double nm12 = m02 * rm10 + m12 * rm11 + m22 * rm12; double nm13 = m03 * rm10 + m13 * rm11 + m23 * rm12; // perform optimized matrix multiplication // compute last column first, because others do not depend on it dest._m30(m00 * rm30 + m10 * rm31 + m20 * rm32 + m30) ._m31(m01 * rm30 + m11 * rm31 + m21 * rm32 + m31) ._m32(m02 * rm30 + m12 * rm31 + m22 * rm32 + m32) ._m33(m03 * rm30 + m13 * rm31 + m23 * rm32 + m33) // introduce temporaries for dependent results ._m20(m00 * rm20 + m10 * rm21 + m20 * rm22) ._m21(m01 * rm20 + m11 * rm21 + m21 * rm22) ._m22(m02 * rm20 + m12 * rm21 + m22 * rm22) ._m23(m03 * rm20 + m13 * rm21 + m23 * rm22) // set the rest of the matrix elements ._m00(nm00) ._m01(nm01) ._m02(nm02) ._m03(nm03) ._m10(nm10) ._m11(nm11) ._m12(nm12) ._m13(nm13) ._properties(properties & ~(PROPERTY_PERSPECTIVE | PROPERTY_IDENTITY | PROPERTY_TRANSLATION)); return dest; } /** * Apply a "lookat" transformation to this matrix for a right-handed coordinate system, * that aligns -z with center - eye. *

* If M is this matrix and L the lookat matrix, * then the new matrix will be M * L. So when transforming a * vector v with the new matrix by using M * L * v, * the lookat transformation will be applied first! *

* In order to set the matrix to a lookat transformation without post-multiplying it, * use {@link #setLookAt(double, double, double, double, double, double, double, double, double) setLookAt()}. * * @see #lookAt(Vector3dc, Vector3dc, Vector3dc) * @see #setLookAt(double, double, double, double, double, double, double, double, double) * * @param eyeX * the x-coordinate of the eye/camera location * @param eyeY * the y-coordinate of the eye/camera location * @param eyeZ * the z-coordinate of the eye/camera location * @param centerX * the x-coordinate of the point to look at * @param centerY * the y-coordinate of the point to look at * @param centerZ * the z-coordinate of the point to look at * @param upX * the x-coordinate of the up vector * @param upY * the y-coordinate of the up vector * @param upZ * the z-coordinate of the up vector * @return this */ public Matrix4d lookAt(double eyeX, double eyeY, double eyeZ, double centerX, double centerY, double centerZ, double upX, double upY, double upZ) { return lookAt(eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ, this); } /** * Apply a "lookat" transformation to this matrix for a right-handed coordinate system, * that aligns -z with center - eye and store the result in dest. *

* This method assumes this to be a perspective transformation, obtained via * {@link #frustum(double, double, double, double, double, double) frustum()} or {@link #perspective(double, double, double, double) perspective()} or * one of their overloads. *

* If M is this matrix and L the lookat matrix, * then the new matrix will be M * L. So when transforming a * vector v with the new matrix by using M * L * v, * the lookat transformation will be applied first! *

* In order to set the matrix to a lookat transformation without post-multiplying it, * use {@link #setLookAt(double, double, double, double, double, double, double, double, double) setLookAt()}. * * @see #setLookAt(double, double, double, double, double, double, double, double, double) * * @param eyeX * the x-coordinate of the eye/camera location * @param eyeY * the y-coordinate of the eye/camera location * @param eyeZ * the z-coordinate of the eye/camera location * @param centerX * the x-coordinate of the point to look at * @param centerY * the y-coordinate of the point to look at * @param centerZ * the z-coordinate of the point to look at * @param upX * the x-coordinate of the up vector * @param upY * the y-coordinate of the up vector * @param upZ * the z-coordinate of the up vector * @param dest * will hold the result * @return dest */ public Matrix4d lookAtPerspective(double eyeX, double eyeY, double eyeZ, double centerX, double centerY, double centerZ, double upX, double upY, double upZ, Matrix4d dest) { // Compute direction from position to lookAt double dirX, dirY, dirZ; dirX = eyeX - centerX; dirY = eyeY - centerY; dirZ = eyeZ - centerZ; // Normalize direction double invDirLength = Math.invsqrt(dirX * dirX + dirY * dirY + dirZ * dirZ); dirX *= invDirLength; dirY *= invDirLength; dirZ *= invDirLength; // left = up x direction double leftX, leftY, leftZ; leftX = upY * dirZ - upZ * dirY; leftY = upZ * dirX - upX * dirZ; leftZ = upX * dirY - upY * dirX; // normalize left double invLeftLength = Math.invsqrt(leftX * leftX + leftY * leftY + leftZ * leftZ); leftX *= invLeftLength; leftY *= invLeftLength; leftZ *= invLeftLength; // up = direction x left double upnX = dirY * leftZ - dirZ * leftY; double upnY = dirZ * leftX - dirX * leftZ; double upnZ = dirX * leftY - dirY * leftX; double rm30 = -(leftX * eyeX + leftY * eyeY + leftZ * eyeZ); double rm31 = -(upnX * eyeX + upnY * eyeY + upnZ * eyeZ); double rm32 = -(dirX * eyeX + dirY * eyeY + dirZ * eyeZ); double nm10 = m00 * leftY; double nm20 = m00 * leftZ; double nm21 = m11 * upnZ; double nm30 = m00 * rm30; double nm31 = m11 * rm31; double nm32 = m22 * rm32 + m32; double nm33 = m23 * rm32; return dest ._m00(m00 * leftX) ._m01(m11 * upnX) ._m02(m22 * dirX) ._m03(m23 * dirX) ._m10(nm10) ._m11(m11 * upnY) ._m12(m22 * dirY) ._m13(m23 * dirY) ._m20(nm20) ._m21(nm21) ._m22(m22 * dirZ) ._m23(m23 * dirZ) ._m30(nm30) ._m31(nm31) ._m32(nm32) ._m33(nm33) ._properties(0); } /** * Set this matrix to be a "lookat" transformation for a left-handed coordinate system, that aligns * +z with center - eye. *

* In order to not make use of vectors to specify eye, center and up but use primitives, * like in the GLU function, use {@link #setLookAtLH(double, double, double, double, double, double, double, double, double) setLookAtLH()} * instead. *

* In order to apply the lookat transformation to a previous existing transformation, * use {@link #lookAtLH(Vector3dc, Vector3dc, Vector3dc) lookAt()}. * * @see #setLookAtLH(double, double, double, double, double, double, double, double, double) * @see #lookAtLH(Vector3dc, Vector3dc, Vector3dc) * * @param eye * the position of the camera * @param center * the point in space to look at * @param up * the direction of 'up' * @return this */ public Matrix4d setLookAtLH(Vector3dc eye, Vector3dc center, Vector3dc up) { return setLookAtLH(eye.x(), eye.y(), eye.z(), center.x(), center.y(), center.z(), up.x(), up.y(), up.z()); } /** * Set this matrix to be a "lookat" transformation for a left-handed coordinate system, * that aligns +z with center - eye. *

* In order to apply the lookat transformation to a previous existing transformation, * use {@link #lookAtLH(double, double, double, double, double, double, double, double, double) lookAtLH}. * * @see #setLookAtLH(Vector3dc, Vector3dc, Vector3dc) * @see #lookAtLH(double, double, double, double, double, double, double, double, double) * * @param eyeX * the x-coordinate of the eye/camera location * @param eyeY * the y-coordinate of the eye/camera location * @param eyeZ * the z-coordinate of the eye/camera location * @param centerX * the x-coordinate of the point to look at * @param centerY * the y-coordinate of the point to look at * @param centerZ * the z-coordinate of the point to look at * @param upX * the x-coordinate of the up vector * @param upY * the y-coordinate of the up vector * @param upZ * the z-coordinate of the up vector * @return this */ public Matrix4d setLookAtLH(double eyeX, double eyeY, double eyeZ, double centerX, double centerY, double centerZ, double upX, double upY, double upZ) { // Compute direction from position to lookAt double dirX, dirY, dirZ; dirX = centerX - eyeX; dirY = centerY - eyeY; dirZ = centerZ - eyeZ; // Normalize direction double invDirLength = Math.invsqrt(dirX * dirX + dirY * dirY + dirZ * dirZ); dirX *= invDirLength; dirY *= invDirLength; dirZ *= invDirLength; // left = up x direction double leftX, leftY, leftZ; leftX = upY * dirZ - upZ * dirY; leftY = upZ * dirX - upX * dirZ; leftZ = upX * dirY - upY * dirX; // normalize left double invLeftLength = Math.invsqrt(leftX * leftX + leftY * leftY + leftZ * leftZ); leftX *= invLeftLength; leftY *= invLeftLength; leftZ *= invLeftLength; // up = direction x left double upnX = dirY * leftZ - dirZ * leftY; double upnY = dirZ * leftX - dirX * leftZ; double upnZ = dirX * leftY - dirY * leftX; _m00(leftX). _m01(upnX). _m02(dirX). _m03(0.0). _m10(leftY). _m11(upnY). _m12(dirY). _m13(0.0). _m20(leftZ). _m21(upnZ). _m22(dirZ). _m23(0.0). _m30(-(leftX * eyeX + leftY * eyeY + leftZ * eyeZ)). _m31(-(upnX * eyeX + upnY * eyeY + upnZ * eyeZ)). _m32(-(dirX * eyeX + dirY * eyeY + dirZ * eyeZ)). _m33(1.0). properties = PROPERTY_AFFINE | PROPERTY_ORTHONORMAL; return this; } /** * Apply a "lookat" transformation to this matrix for a left-handed coordinate system, * that aligns +z with center - eye and store the result in dest. *

* If M is this matrix and L the lookat matrix, * then the new matrix will be M * L. So when transforming a * vector v with the new matrix by using M * L * v, * the lookat transformation will be applied first! *

* In order to set the matrix to a lookat transformation without post-multiplying it, * use {@link #setLookAtLH(Vector3dc, Vector3dc, Vector3dc)}. * * @see #lookAtLH(double, double, double, double, double, double, double, double, double) * @see #setLookAtLH(Vector3dc, Vector3dc, Vector3dc) * * @param eye * the position of the camera * @param center * the point in space to look at * @param up * the direction of 'up' * @param dest * will hold the result * @return dest */ public Matrix4d lookAtLH(Vector3dc eye, Vector3dc center, Vector3dc up, Matrix4d dest) { return lookAtLH(eye.x(), eye.y(), eye.z(), center.x(), center.y(), center.z(), up.x(), up.y(), up.z(), dest); } /** * Apply a "lookat" transformation to this matrix for a left-handed coordinate system, * that aligns +z with center - eye. *

* If M is this matrix and L the lookat matrix, * then the new matrix will be M * L. So when transforming a * vector v with the new matrix by using M * L * v, * the lookat transformation will be applied first! *

* In order to set the matrix to a lookat transformation without post-multiplying it, * use {@link #setLookAtLH(Vector3dc, Vector3dc, Vector3dc)}. * * @see #lookAtLH(double, double, double, double, double, double, double, double, double) * * @param eye * the position of the camera * @param center * the point in space to look at * @param up * the direction of 'up' * @return this */ public Matrix4d lookAtLH(Vector3dc eye, Vector3dc center, Vector3dc up) { return lookAtLH(eye.x(), eye.y(), eye.z(), center.x(), center.y(), center.z(), up.x(), up.y(), up.z(), this); } /** * Apply a "lookat" transformation to this matrix for a left-handed coordinate system, * that aligns +z with center - eye and store the result in dest. *

* If M is this matrix and L the lookat matrix, * then the new matrix will be M * L. So when transforming a * vector v with the new matrix by using M * L * v, * the lookat transformation will be applied first! *

* In order to set the matrix to a lookat transformation without post-multiplying it, * use {@link #setLookAtLH(double, double, double, double, double, double, double, double, double) setLookAtLH()}. * * @see #lookAtLH(Vector3dc, Vector3dc, Vector3dc) * @see #setLookAtLH(double, double, double, double, double, double, double, double, double) * * @param eyeX * the x-coordinate of the eye/camera location * @param eyeY * the y-coordinate of the eye/camera location * @param eyeZ * the z-coordinate of the eye/camera location * @param centerX * the x-coordinate of the point to look at * @param centerY * the y-coordinate of the point to look at * @param centerZ * the z-coordinate of the point to look at * @param upX * the x-coordinate of the up vector * @param upY * the y-coordinate of the up vector * @param upZ * the z-coordinate of the up vector * @param dest * will hold the result * @return dest */ public Matrix4d lookAtLH(double eyeX, double eyeY, double eyeZ, double centerX, double centerY, double centerZ, double upX, double upY, double upZ, Matrix4d dest) { if ((properties & PROPERTY_IDENTITY) != 0) return dest.setLookAtLH(eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ); else if ((properties & PROPERTY_PERSPECTIVE) != 0) return lookAtPerspectiveLH(eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ, dest); return lookAtLHGeneric(eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ, dest); } private Matrix4d lookAtLHGeneric(double eyeX, double eyeY, double eyeZ, double centerX, double centerY, double centerZ, double upX, double upY, double upZ, Matrix4d dest) { // Compute direction from position to lookAt double dirX, dirY, dirZ; dirX = centerX - eyeX; dirY = centerY - eyeY; dirZ = centerZ - eyeZ; // Normalize direction double invDirLength = Math.invsqrt(dirX * dirX + dirY * dirY + dirZ * dirZ); dirX *= invDirLength; dirY *= invDirLength; dirZ *= invDirLength; // left = up x direction double leftX, leftY, leftZ; leftX = upY * dirZ - upZ * dirY; leftY = upZ * dirX - upX * dirZ; leftZ = upX * dirY - upY * dirX; // normalize left double invLeftLength = Math.invsqrt(leftX * leftX + leftY * leftY + leftZ * leftZ); leftX *= invLeftLength; leftY *= invLeftLength; leftZ *= invLeftLength; // up = direction x left double upnX = dirY * leftZ - dirZ * leftY; double upnY = dirZ * leftX - dirX * leftZ; double upnZ = dirX * leftY - dirY * leftX; // calculate right matrix elements double rm00 = leftX; double rm01 = upnX; double rm02 = dirX; double rm10 = leftY; double rm11 = upnY; double rm12 = dirY; double rm20 = leftZ; double rm21 = upnZ; double rm22 = dirZ; double rm30 = -(leftX * eyeX + leftY * eyeY + leftZ * eyeZ); double rm31 = -(upnX * eyeX + upnY * eyeY + upnZ * eyeZ); double rm32 = -(dirX * eyeX + dirY * eyeY + dirZ * eyeZ); // introduce temporaries for dependent results double nm00 = m00 * rm00 + m10 * rm01 + m20 * rm02; double nm01 = m01 * rm00 + m11 * rm01 + m21 * rm02; double nm02 = m02 * rm00 + m12 * rm01 + m22 * rm02; double nm03 = m03 * rm00 + m13 * rm01 + m23 * rm02; double nm10 = m00 * rm10 + m10 * rm11 + m20 * rm12; double nm11 = m01 * rm10 + m11 * rm11 + m21 * rm12; double nm12 = m02 * rm10 + m12 * rm11 + m22 * rm12; double nm13 = m03 * rm10 + m13 * rm11 + m23 * rm12; // perform optimized matrix multiplication // compute last column first, because others do not depend on it dest._m30(m00 * rm30 + m10 * rm31 + m20 * rm32 + m30) ._m31(m01 * rm30 + m11 * rm31 + m21 * rm32 + m31) ._m32(m02 * rm30 + m12 * rm31 + m22 * rm32 + m32) ._m33(m03 * rm30 + m13 * rm31 + m23 * rm32 + m33) ._m20(m00 * rm20 + m10 * rm21 + m20 * rm22) ._m21(m01 * rm20 + m11 * rm21 + m21 * rm22) ._m22(m02 * rm20 + m12 * rm21 + m22 * rm22) ._m23(m03 * rm20 + m13 * rm21 + m23 * rm22) // set the rest of the matrix elements ._m00(nm00) ._m01(nm01) ._m02(nm02) ._m03(nm03) ._m10(nm10) ._m11(nm11) ._m12(nm12) ._m13(nm13) ._properties(properties & ~(PROPERTY_PERSPECTIVE | PROPERTY_IDENTITY | PROPERTY_TRANSLATION)); return dest; } /** * Apply a "lookat" transformation to this matrix for a left-handed coordinate system, * that aligns +z with center - eye. *

* If M is this matrix and L the lookat matrix, * then the new matrix will be M * L. So when transforming a * vector v with the new matrix by using M * L * v, * the lookat transformation will be applied first! *

* In order to set the matrix to a lookat transformation without post-multiplying it, * use {@link #setLookAtLH(double, double, double, double, double, double, double, double, double) setLookAtLH()}. * * @see #lookAtLH(Vector3dc, Vector3dc, Vector3dc) * @see #setLookAtLH(double, double, double, double, double, double, double, double, double) * * @param eyeX * the x-coordinate of the eye/camera location * @param eyeY * the y-coordinate of the eye/camera location * @param eyeZ * the z-coordinate of the eye/camera location * @param centerX * the x-coordinate of the point to look at * @param centerY * the y-coordinate of the point to look at * @param centerZ * the z-coordinate of the point to look at * @param upX * the x-coordinate of the up vector * @param upY * the y-coordinate of the up vector * @param upZ * the z-coordinate of the up vector * @return this */ public Matrix4d lookAtLH(double eyeX, double eyeY, double eyeZ, double centerX, double centerY, double centerZ, double upX, double upY, double upZ) { return lookAtLH(eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ, this); } /** * Apply a "lookat" transformation to this matrix for a left-handed coordinate system, * that aligns +z with center - eye and store the result in dest. *

* This method assumes this to be a perspective transformation, obtained via * {@link #frustumLH(double, double, double, double, double, double) frustumLH()} or {@link #perspectiveLH(double, double, double, double) perspectiveLH()} or * one of their overloads. *

* If M is this matrix and L the lookat matrix, * then the new matrix will be M * L. So when transforming a * vector v with the new matrix by using M * L * v, * the lookat transformation will be applied first! *

* In order to set the matrix to a lookat transformation without post-multiplying it, * use {@link #setLookAtLH(double, double, double, double, double, double, double, double, double) setLookAtLH()}. * * @see #setLookAtLH(double, double, double, double, double, double, double, double, double) * * @param eyeX * the x-coordinate of the eye/camera location * @param eyeY * the y-coordinate of the eye/camera location * @param eyeZ * the z-coordinate of the eye/camera location * @param centerX * the x-coordinate of the point to look at * @param centerY * the y-coordinate of the point to look at * @param centerZ * the z-coordinate of the point to look at * @param upX * the x-coordinate of the up vector * @param upY * the y-coordinate of the up vector * @param upZ * the z-coordinate of the up vector * @param dest * will hold the result * @return dest */ public Matrix4d lookAtPerspectiveLH(double eyeX, double eyeY, double eyeZ, double centerX, double centerY, double centerZ, double upX, double upY, double upZ, Matrix4d dest) { // Compute direction from position to lookAt double dirX, dirY, dirZ; dirX = centerX - eyeX; dirY = centerY - eyeY; dirZ = centerZ - eyeZ; // Normalize direction double invDirLength = Math.invsqrt(dirX * dirX + dirY * dirY + dirZ * dirZ); dirX *= invDirLength; dirY *= invDirLength; dirZ *= invDirLength; // left = up x direction double leftX, leftY, leftZ; leftX = upY * dirZ - upZ * dirY; leftY = upZ * dirX - upX * dirZ; leftZ = upX * dirY - upY * dirX; // normalize left double invLeftLength = Math.invsqrt(leftX * leftX + leftY * leftY + leftZ * leftZ); leftX *= invLeftLength; leftY *= invLeftLength; leftZ *= invLeftLength; // up = direction x left double upnX = dirY * leftZ - dirZ * leftY; double upnY = dirZ * leftX - dirX * leftZ; double upnZ = dirX * leftY - dirY * leftX; // calculate right matrix elements double rm00 = leftX; double rm01 = upnX; double rm02 = dirX; double rm10 = leftY; double rm11 = upnY; double rm12 = dirY; double rm20 = leftZ; double rm21 = upnZ; double rm22 = dirZ; double rm30 = -(leftX * eyeX + leftY * eyeY + leftZ * eyeZ); double rm31 = -(upnX * eyeX + upnY * eyeY + upnZ * eyeZ); double rm32 = -(dirX * eyeX + dirY * eyeY + dirZ * eyeZ); double nm00 = m00 * rm00; double nm01 = m11 * rm01; double nm02 = m22 * rm02; double nm03 = m23 * rm02; double nm10 = m00 * rm10; double nm11 = m11 * rm11; double nm12 = m22 * rm12; double nm13 = m23 * rm12; double nm20 = m00 * rm20; double nm21 = m11 * rm21; double nm22 = m22 * rm22; double nm23 = m23 * rm22; double nm30 = m00 * rm30; double nm31 = m11 * rm31; double nm32 = m22 * rm32 + m32; double nm33 = m23 * rm32; dest._m00(nm00) ._m01(nm01) ._m02(nm02) ._m03(nm03) ._m10(nm10) ._m11(nm11) ._m12(nm12) ._m13(nm13) ._m20(nm20) ._m21(nm21) ._m22(nm22) ._m23(nm23) ._m30(nm30) ._m31(nm31) ._m32(nm32) ._m33(nm33) ._properties(0); return dest; } /** * This method is equivalent to calling: translate(w-1-2*x, h-1-2*y, 0).scale(w, h, 1) *

* If M is this matrix and T the created transformation matrix, * then the new matrix will be M * T. So when transforming a * vector v with the new matrix by using M * T * v, the * created transformation will be applied first! * * @param x * the tile's x coordinate/index (should be in [0..w)) * @param y * the tile's y coordinate/index (should be in [0..h)) * @param w * the number of tiles along the x axis * @param h * the number of tiles along the y axis * @return this */ public Matrix4d tile(int x, int y, int w, int h) { return tile(x, y, w, h, this); } public Matrix4d tile(int x, int y, int w, int h, Matrix4d dest) { float tx = w - 1 - (x<<1), ty = h - 1 - (y<<1); return dest ._m30(Math.fma(m00, tx, Math.fma(m10, ty, m30))) ._m31(Math.fma(m01, tx, Math.fma(m11, ty, m31))) ._m32(Math.fma(m02, tx, Math.fma(m12, ty, m32))) ._m33(Math.fma(m03, tx, Math.fma(m13, ty, m33))) ._m00(m00 * w) ._m01(m01 * w) ._m02(m02 * w) ._m03(m03 * w) ._m10(m10 * h) ._m11(m11 * h) ._m12(m12 * h) ._m13(m13 * h) ._m20(m20) ._m21(m21) ._m22(m22) ._m23(m23) ._properties(properties & ~(PROPERTY_PERSPECTIVE | PROPERTY_IDENTITY | PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL)); } /** * Apply a symmetric perspective projection frustum transformation for a right-handed coordinate system * using the given NDC z range to this matrix and store the result in dest. *

* If M is this matrix and P the perspective projection matrix, * then the new matrix will be M * P. So when transforming a * vector v with the new matrix by using M * P * v, * the perspective projection will be applied first! *

* In order to set the matrix to a perspective frustum transformation without post-multiplying, * use {@link #setPerspective(double, double, double, double, boolean) setPerspective}. * * @see #setPerspective(double, double, double, double, boolean) * * @param fovy * the vertical field of view in radians (must be greater than zero and less than {@link Math#PI PI}) * @param aspect * the aspect ratio (i.e. width / height; must be greater than zero) * @param zNear * near clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the near clipping plane will be at positive infinity. * In that case, zFar may not also be {@link Double#POSITIVE_INFINITY}. * @param zFar * far clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the far clipping plane will be at positive infinity. * In that case, zNear may not also be {@link Double#POSITIVE_INFINITY}. * @param dest * will hold the result * @param zZeroToOne * whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true * or whether to use OpenGL's NDC z range of [-1..+1] when false * @return dest */ public Matrix4d perspective(double fovy, double aspect, double zNear, double zFar, boolean zZeroToOne, Matrix4d dest) { if ((properties & PROPERTY_IDENTITY) != 0) return dest.setPerspective(fovy, aspect, zNear, zFar, zZeroToOne); return perspectiveGeneric(fovy, aspect, zNear, zFar, zZeroToOne, dest); } private Matrix4d perspectiveGeneric(double fovy, double aspect, double zNear, double zFar, boolean zZeroToOne, Matrix4d dest) { double h = Math.tan(fovy * 0.5); // calculate right matrix elements double rm00 = 1.0 / (h * aspect); double rm11 = 1.0 / h; double rm22; double rm32; boolean farInf = zFar > 0 && Double.isInfinite(zFar); boolean nearInf = zNear > 0 && Double.isInfinite(zNear); if (farInf) { // See: "Infinite Projection Matrix" (http://www.terathon.com/gdc07_lengyel.pdf) double e = 1E-6; rm22 = e - 1.0; rm32 = (e - (zZeroToOne ? 1.0 : 2.0)) * zNear; } else if (nearInf) { double e = 1E-6; rm22 = (zZeroToOne ? 0.0 : 1.0) - e; rm32 = ((zZeroToOne ? 1.0 : 2.0) - e) * zFar; } else { rm22 = (zZeroToOne ? zFar : zFar + zNear) / (zNear - zFar); rm32 = (zZeroToOne ? zFar : zFar + zFar) * zNear / (zNear - zFar); } // perform optimized matrix multiplication double nm20 = m20 * rm22 - m30; double nm21 = m21 * rm22 - m31; double nm22 = m22 * rm22 - m32; double nm23 = m23 * rm22 - m33; dest._m00(m00 * rm00) ._m01(m01 * rm00) ._m02(m02 * rm00) ._m03(m03 * rm00) ._m10(m10 * rm11) ._m11(m11 * rm11) ._m12(m12 * rm11) ._m13(m13 * rm11) ._m30(m20 * rm32) ._m31(m21 * rm32) ._m32(m22 * rm32) ._m33(m23 * rm32) ._m20(nm20) ._m21(nm21) ._m22(nm22) ._m23(nm23) ._properties(properties & ~(PROPERTY_AFFINE | PROPERTY_IDENTITY | PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL)); return dest; } /** * Apply a symmetric perspective projection frustum transformation for a right-handed coordinate system * using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest. *

* If M is this matrix and P the perspective projection matrix, * then the new matrix will be M * P. So when transforming a * vector v with the new matrix by using M * P * v, * the perspective projection will be applied first! *

* In order to set the matrix to a perspective frustum transformation without post-multiplying, * use {@link #setPerspective(double, double, double, double) setPerspective}. * * @see #setPerspective(double, double, double, double) * * @param fovy * the vertical field of view in radians (must be greater than zero and less than {@link Math#PI PI}) * @param aspect * the aspect ratio (i.e. width / height; must be greater than zero) * @param zNear * near clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the near clipping plane will be at positive infinity. * In that case, zFar may not also be {@link Double#POSITIVE_INFINITY}. * @param zFar * far clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the far clipping plane will be at positive infinity. * In that case, zNear may not also be {@link Double#POSITIVE_INFINITY}. * @param dest * will hold the result * @return dest */ public Matrix4d perspective(double fovy, double aspect, double zNear, double zFar, Matrix4d dest) { return perspective(fovy, aspect, zNear, zFar, false, dest); } /** * Apply a symmetric perspective projection frustum transformation using for a right-handed coordinate system * using the given NDC z range to this matrix. *

* If M is this matrix and P the perspective projection matrix, * then the new matrix will be M * P. So when transforming a * vector v with the new matrix by using M * P * v, * the perspective projection will be applied first! *

* In order to set the matrix to a perspective frustum transformation without post-multiplying, * use {@link #setPerspective(double, double, double, double, boolean) setPerspective}. * * @see #setPerspective(double, double, double, double, boolean) * * @param fovy * the vertical field of view in radians (must be greater than zero and less than {@link Math#PI PI}) * @param aspect * the aspect ratio (i.e. width / height; must be greater than zero) * @param zNear * near clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the near clipping plane will be at positive infinity. * In that case, zFar may not also be {@link Double#POSITIVE_INFINITY}. * @param zFar * far clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the far clipping plane will be at positive infinity. * In that case, zNear may not also be {@link Double#POSITIVE_INFINITY}. * @param zZeroToOne * whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true * or whether to use OpenGL's NDC z range of [-1..+1] when false * @return this */ public Matrix4d perspective(double fovy, double aspect, double zNear, double zFar, boolean zZeroToOne) { return perspective(fovy, aspect, zNear, zFar, zZeroToOne, this); } /** * Apply a symmetric perspective projection frustum transformation for a right-handed coordinate system * using OpenGL's NDC z range of [-1..+1] to this matrix. *

* If M is this matrix and P the perspective projection matrix, * then the new matrix will be M * P. So when transforming a * vector v with the new matrix by using M * P * v, * the perspective projection will be applied first! *

* In order to set the matrix to a perspective frustum transformation without post-multiplying, * use {@link #setPerspective(double, double, double, double) setPerspective}. * * @see #setPerspective(double, double, double, double) * * @param fovy * the vertical field of view in radians (must be greater than zero and less than {@link Math#PI PI}) * @param aspect * the aspect ratio (i.e. width / height; must be greater than zero) * @param zNear * near clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the near clipping plane will be at positive infinity. * In that case, zFar may not also be {@link Double#POSITIVE_INFINITY}. * @param zFar * far clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the far clipping plane will be at positive infinity. * In that case, zNear may not also be {@link Double#POSITIVE_INFINITY}. * @return this */ public Matrix4d perspective(double fovy, double aspect, double zNear, double zFar) { return perspective(fovy, aspect, zNear, zFar, this); } /** * Apply a symmetric perspective projection frustum transformation for a right-handed coordinate system * using the given NDC z range to this matrix and store the result in dest. *

* If M is this matrix and P the perspective projection matrix, * then the new matrix will be M * P. So when transforming a * vector v with the new matrix by using M * P * v, * the perspective projection will be applied first! *

* In order to set the matrix to a perspective frustum transformation without post-multiplying, * use {@link #setPerspectiveRect(double, double, double, double, boolean) setPerspectiveRect}. * * @see #setPerspectiveRect(double, double, double, double, boolean) * * @param width * the width of the near frustum plane * @param height * the height of the near frustum plane * @param zNear * near clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the near clipping plane will be at positive infinity. * In that case, zFar may not also be {@link Double#POSITIVE_INFINITY}. * @param zFar * far clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the far clipping plane will be at positive infinity. * In that case, zNear may not also be {@link Double#POSITIVE_INFINITY}. * @param dest * will hold the result * @param zZeroToOne * whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true * or whether to use OpenGL's NDC z range of [-1..+1] when false * @return dest */ public Matrix4d perspectiveRect(double width, double height, double zNear, double zFar, boolean zZeroToOne, Matrix4d dest) { if ((properties & PROPERTY_IDENTITY) != 0) return dest.setPerspectiveRect(width, height, zNear, zFar, zZeroToOne); return perspectiveRectGeneric(width, height, zNear, zFar, zZeroToOne, dest); } private Matrix4d perspectiveRectGeneric(double width, double height, double zNear, double zFar, boolean zZeroToOne, Matrix4d dest) { double rm00 = (zNear + zNear) / width; double rm11 = (zNear + zNear) / height; double rm22, rm32; boolean farInf = zFar > 0 && Double.isInfinite(zFar); boolean nearInf = zNear > 0 && Double.isInfinite(zNear); if (farInf) { // See: "Infinite Projection Matrix" (http://www.terathon.com/gdc07_lengyel.pdf) double e = 1E-6f; rm22 = e - 1.0; rm32 = (e - (zZeroToOne ? 1.0 : 2.0)) * zNear; } else if (nearInf) { double e = 1E-6f; rm22 = (zZeroToOne ? 0.0 : 1.0) - e; rm32 = ((zZeroToOne ? 1.0 : 2.0) - e) * zFar; } else { rm22 = (zZeroToOne ? zFar : zFar + zNear) / (zNear - zFar); rm32 = (zZeroToOne ? zFar : zFar + zFar) * zNear / (zNear - zFar); } // perform optimized matrix multiplication double nm20 = m20 * rm22 - m30; double nm21 = m21 * rm22 - m31; double nm22 = m22 * rm22 - m32; double nm23 = m23 * rm22 - m33; dest._m00(m00 * rm00) ._m01(m01 * rm00) ._m02(m02 * rm00) ._m03(m03 * rm00) ._m10(m10 * rm11) ._m11(m11 * rm11) ._m12(m12 * rm11) ._m13(m13 * rm11) ._m30(m20 * rm32) ._m31(m21 * rm32) ._m32(m22 * rm32) ._m33(m23 * rm32) ._m20(nm20) ._m21(nm21) ._m22(nm22) ._m23(nm23) ._properties(properties & ~(PROPERTY_AFFINE | PROPERTY_IDENTITY | PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL)); return dest; } /** * Apply a symmetric perspective projection frustum transformation for a right-handed coordinate system * using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest. *

* If M is this matrix and P the perspective projection matrix, * then the new matrix will be M * P. So when transforming a * vector v with the new matrix by using M * P * v, * the perspective projection will be applied first! *

* In order to set the matrix to a perspective frustum transformation without post-multiplying, * use {@link #setPerspectiveRect(double, double, double, double) setPerspectiveRect}. * * @see #setPerspectiveRect(double, double, double, double) * * @param width * the width of the near frustum plane * @param height * the height of the near frustum plane * @param zNear * near clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the near clipping plane will be at positive infinity. * In that case, zFar may not also be {@link Double#POSITIVE_INFINITY}. * @param zFar * far clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the far clipping plane will be at positive infinity. * In that case, zNear may not also be {@link Double#POSITIVE_INFINITY}. * @param dest * will hold the result * @return dest */ public Matrix4d perspectiveRect(double width, double height, double zNear, double zFar, Matrix4d dest) { return perspectiveRect(width, height, zNear, zFar, false, dest); } /** * Apply a symmetric perspective projection frustum transformation using for a right-handed coordinate system * using the given NDC z range to this matrix. *

* If M is this matrix and P the perspective projection matrix, * then the new matrix will be M * P. So when transforming a * vector v with the new matrix by using M * P * v, * the perspective projection will be applied first! *

* In order to set the matrix to a perspective frustum transformation without post-multiplying, * use {@link #setPerspectiveRect(double, double, double, double, boolean) setPerspectiveRect}. * * @see #setPerspectiveRect(double, double, double, double, boolean) * * @param width * the width of the near frustum plane * @param height * the height of the near frustum plane * @param zNear * near clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the near clipping plane will be at positive infinity. * In that case, zFar may not also be {@link Double#POSITIVE_INFINITY}. * @param zFar * far clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the far clipping plane will be at positive infinity. * In that case, zNear may not also be {@link Double#POSITIVE_INFINITY}. * @param zZeroToOne * whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true * or whether to use OpenGL's NDC z range of [-1..+1] when false * @return this */ public Matrix4d perspectiveRect(double width, double height, double zNear, double zFar, boolean zZeroToOne) { return perspectiveRect(width, height, zNear, zFar, zZeroToOne, this); } /** * Apply a symmetric perspective projection frustum transformation for a right-handed coordinate system * using OpenGL's NDC z range of [-1..+1] to this matrix. *

* If M is this matrix and P the perspective projection matrix, * then the new matrix will be M * P. So when transforming a * vector v with the new matrix by using M * P * v, * the perspective projection will be applied first! *

* In order to set the matrix to a perspective frustum transformation without post-multiplying, * use {@link #setPerspectiveRect(double, double, double, double) setPerspectiveRect}. * * @see #setPerspectiveRect(double, double, double, double) * * @param width * the width of the near frustum plane * @param height * the height of the near frustum plane * @param zNear * near clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the near clipping plane will be at positive infinity. * In that case, zFar may not also be {@link Double#POSITIVE_INFINITY}. * @param zFar * far clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the far clipping plane will be at positive infinity. * In that case, zNear may not also be {@link Double#POSITIVE_INFINITY}. * @return this */ public Matrix4d perspectiveRect(double width, double height, double zNear, double zFar) { return perspectiveRect(width, height, zNear, zFar, this); } /** * Apply an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system * using the given NDC z range to this matrix and store the result in dest. *

* The given angles offAngleX and offAngleY are the horizontal and vertical angles between * the line of sight and the line given by the center of the near and far frustum planes. So, when offAngleY * is just fovy/2 then the projection frustum is rotated towards +Y and the bottom frustum plane * is parallel to the XZ-plane. *

* If M is this matrix and P the perspective projection matrix, * then the new matrix will be M * P. So when transforming a * vector v with the new matrix by using M * P * v, * the perspective projection will be applied first! *

* In order to set the matrix to a perspective frustum transformation without post-multiplying, * use {@link #setPerspectiveOffCenter(double, double, double, double, double, double, boolean) setPerspectiveOffCenter}. * * @see #setPerspectiveOffCenter(double, double, double, double, double, double, boolean) * * @param fovy * the vertical field of view in radians (must be greater than zero and less than {@link Math#PI PI}) * @param offAngleX * the horizontal angle between the line of sight and the line crossing the center of the near and far frustum planes * @param offAngleY * the vertical angle between the line of sight and the line crossing the center of the near and far frustum planes * @param aspect * the aspect ratio (i.e. width / height; must be greater than zero) * @param zNear * near clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the near clipping plane will be at positive infinity. * In that case, zFar may not also be {@link Double#POSITIVE_INFINITY}. * @param zFar * far clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the far clipping plane will be at positive infinity. * In that case, zNear may not also be {@link Double#POSITIVE_INFINITY}. * @param dest * will hold the result * @param zZeroToOne * whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true * or whether to use OpenGL's NDC z range of [-1..+1] when false * @return dest */ public Matrix4d perspectiveOffCenter(double fovy, double offAngleX, double offAngleY, double aspect, double zNear, double zFar, boolean zZeroToOne, Matrix4d dest) { if ((properties & PROPERTY_IDENTITY) != 0) return dest.setPerspectiveOffCenter(fovy, offAngleX, offAngleY, aspect, zNear, zFar, zZeroToOne); return perspectiveOffCenterGeneric(fovy, offAngleX, offAngleY, aspect, zNear, zFar, zZeroToOne, dest); } private Matrix4d perspectiveOffCenterGeneric(double fovy, double offAngleX, double offAngleY, double aspect, double zNear, double zFar, boolean zZeroToOne, Matrix4d dest) { double h = Math.tan(fovy * 0.5); // calculate right matrix elements double xScale = 1.0 / (h * aspect); double yScale = 1.0 / h; double rm00 = xScale; double rm11 = yScale; double offX = Math.tan(offAngleX), offY = Math.tan(offAngleY); double rm20 = offX * xScale; double rm21 = offY * yScale; double rm22; double rm32; boolean farInf = zFar > 0 && Double.isInfinite(zFar); boolean nearInf = zNear > 0 && Double.isInfinite(zNear); if (farInf) { // See: "Infinite Projection Matrix" (http://www.terathon.com/gdc07_lengyel.pdf) double e = 1E-6; rm22 = e - 1.0; rm32 = (e - (zZeroToOne ? 1.0 : 2.0)) * zNear; } else if (nearInf) { double e = 1E-6; rm22 = (zZeroToOne ? 0.0 : 1.0) - e; rm32 = ((zZeroToOne ? 1.0 : 2.0) - e) * zFar; } else { rm22 = (zZeroToOne ? zFar : zFar + zNear) / (zNear - zFar); rm32 = (zZeroToOne ? zFar : zFar + zFar) * zNear / (zNear - zFar); } // perform optimized matrix multiplication double nm20 = m00 * rm20 + m10 * rm21 + m20 * rm22 - m30; double nm21 = m01 * rm20 + m11 * rm21 + m21 * rm22 - m31; double nm22 = m02 * rm20 + m12 * rm21 + m22 * rm22 - m32; double nm23 = m03 * rm20 + m13 * rm21 + m23 * rm22 - m33; dest._m00(m00 * rm00) ._m01(m01 * rm00) ._m02(m02 * rm00) ._m03(m03 * rm00) ._m10(m10 * rm11) ._m11(m11 * rm11) ._m12(m12 * rm11) ._m13(m13 * rm11) ._m30(m20 * rm32) ._m31(m21 * rm32) ._m32(m22 * rm32) ._m33(m23 * rm32) ._m20(nm20) ._m21(nm21) ._m22(nm22) ._m23(nm23) ._properties(properties & ~(PROPERTY_AFFINE | PROPERTY_IDENTITY | PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL | (rm20 == 0.0 && rm21 == 0.0 ? 0 : PROPERTY_PERSPECTIVE))); return dest; } /** * Apply an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system * using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest. *

* The given angles offAngleX and offAngleY are the horizontal and vertical angles between * the line of sight and the line given by the center of the near and far frustum planes. So, when offAngleY * is just fovy/2 then the projection frustum is rotated towards +Y and the bottom frustum plane * is parallel to the XZ-plane. *

* If M is this matrix and P the perspective projection matrix, * then the new matrix will be M * P. So when transforming a * vector v with the new matrix by using M * P * v, * the perspective projection will be applied first! *

* In order to set the matrix to a perspective frustum transformation without post-multiplying, * use {@link #setPerspectiveOffCenter(double, double, double, double, double, double) setPerspectiveOffCenter}. * * @see #setPerspectiveOffCenter(double, double, double, double, double, double) * * @param fovy * the vertical field of view in radians (must be greater than zero and less than {@link Math#PI PI}) * @param offAngleX * the horizontal angle between the line of sight and the line crossing the center of the near and far frustum planes * @param offAngleY * the vertical angle between the line of sight and the line crossing the center of the near and far frustum planes * @param aspect * the aspect ratio (i.e. width / height; must be greater than zero) * @param zNear * near clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the near clipping plane will be at positive infinity. * In that case, zFar may not also be {@link Double#POSITIVE_INFINITY}. * @param zFar * far clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the far clipping plane will be at positive infinity. * In that case, zNear may not also be {@link Double#POSITIVE_INFINITY}. * @param dest * will hold the result * @return dest */ public Matrix4d perspectiveOffCenter(double fovy, double offAngleX, double offAngleY, double aspect, double zNear, double zFar, Matrix4d dest) { return perspectiveOffCenter(fovy, offAngleX, offAngleY, aspect, zNear, zFar, false, dest); } /** * Apply an asymmetric off-center perspective projection frustum transformation using for a right-handed coordinate system * using the given NDC z range to this matrix. *

* The given angles offAngleX and offAngleY are the horizontal and vertical angles between * the line of sight and the line given by the center of the near and far frustum planes. So, when offAngleY * is just fovy/2 then the projection frustum is rotated towards +Y and the bottom frustum plane * is parallel to the XZ-plane. *

* If M is this matrix and P the perspective projection matrix, * then the new matrix will be M * P. So when transforming a * vector v with the new matrix by using M * P * v, * the perspective projection will be applied first! *

* In order to set the matrix to a perspective frustum transformation without post-multiplying, * use {@link #setPerspectiveOffCenter(double, double, double, double, double, double, boolean) setPerspectiveOffCenter}. * * @see #setPerspectiveOffCenter(double, double, double, double, double, double, boolean) * * @param fovy * the vertical field of view in radians (must be greater than zero and less than {@link Math#PI PI}) * @param offAngleX * the horizontal angle between the line of sight and the line crossing the center of the near and far frustum planes * @param offAngleY * the vertical angle between the line of sight and the line crossing the center of the near and far frustum planes * @param aspect * the aspect ratio (i.e. width / height; must be greater than zero) * @param zNear * near clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the near clipping plane will be at positive infinity. * In that case, zFar may not also be {@link Double#POSITIVE_INFINITY}. * @param zFar * far clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the far clipping plane will be at positive infinity. * In that case, zNear may not also be {@link Double#POSITIVE_INFINITY}. * @param zZeroToOne * whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true * or whether to use OpenGL's NDC z range of [-1..+1] when false * @return this */ public Matrix4d perspectiveOffCenter(double fovy, double offAngleX, double offAngleY, double aspect, double zNear, double zFar, boolean zZeroToOne) { return perspectiveOffCenter(fovy, offAngleX, offAngleY, aspect, zNear, zFar, zZeroToOne, this); } /** * Apply an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system * using OpenGL's NDC z range of [-1..+1] to this matrix. *

* The given angles offAngleX and offAngleY are the horizontal and vertical angles between * the line of sight and the line given by the center of the near and far frustum planes. So, when offAngleY * is just fovy/2 then the projection frustum is rotated towards +Y and the bottom frustum plane * is parallel to the XZ-plane. *

* If M is this matrix and P the perspective projection matrix, * then the new matrix will be M * P. So when transforming a * vector v with the new matrix by using M * P * v, * the perspective projection will be applied first! *

* In order to set the matrix to a perspective frustum transformation without post-multiplying, * use {@link #setPerspectiveOffCenter(double, double, double, double, double, double) setPerspectiveOffCenter}. * * @see #setPerspectiveOffCenter(double, double, double, double, double, double) * * @param fovy * the vertical field of view in radians (must be greater than zero and less than {@link Math#PI PI}) * @param offAngleX * the horizontal angle between the line of sight and the line crossing the center of the near and far frustum planes * @param offAngleY * the vertical angle between the line of sight and the line crossing the center of the near and far frustum planes * @param aspect * the aspect ratio (i.e. width / height; must be greater than zero) * @param zNear * near clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the near clipping plane will be at positive infinity. * In that case, zFar may not also be {@link Double#POSITIVE_INFINITY}. * @param zFar * far clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the far clipping plane will be at positive infinity. * In that case, zNear may not also be {@link Double#POSITIVE_INFINITY}. * @return this */ public Matrix4d perspectiveOffCenter(double fovy, double offAngleX, double offAngleY, double aspect, double zNear, double zFar) { return perspectiveOffCenter(fovy, offAngleX, offAngleY, aspect, zNear, zFar, this); } /** * Apply an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system * using the given NDC z range to this matrix. *

* The given angles angleLeft and angleRight are the horizontal angles between * the left and right frustum planes, respectively, and a line perpendicular to the near and far frustum planes. * The angles angleDown and angleUp are the vertical angles between * the bottom and top frustum planes, respectively, and a line perpendicular to the near and far frustum planes. *

* If M is this matrix and P the perspective projection matrix, * then the new matrix will be M * P. So when transforming a * vector v with the new matrix by using M * P * v, * the perspective projection will be applied first! *

* In order to set the matrix to a perspective frustum transformation without post-multiplying, * use {@link #setPerspectiveOffCenterFov(double, double, double, double, double, double, boolean) setPerspectiveOffCenterFov}. * * @see #setPerspectiveOffCenterFov(double, double, double, double, double, double, boolean) * * @param angleLeft * the horizontal angle between left frustum plane and a line perpendicular to the near/far frustum planes. * For a symmetric frustum, this value is negative. * @param angleRight * the horizontal angle between right frustum plane and a line perpendicular to the near/far frustum planes * @param angleDown * the vertical angle between bottom frustum plane and a line perpendicular to the near/far frustum planes. * For a symmetric frustum, this value is negative. * @param angleUp * the vertical angle between top frustum plane and a line perpendicular to the near/far frustum planes * @param zNear * near clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the near clipping plane will be at positive infinity. * In that case, zFar may not also be {@link Double#POSITIVE_INFINITY}. * @param zFar * far clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the far clipping plane will be at positive infinity. * In that case, zNear may not also be {@link Double#POSITIVE_INFINITY}. * @param zZeroToOne * whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true * or whether to use OpenGL's NDC z range of [-1..+1] when false * @return this */ public Matrix4d perspectiveOffCenterFov(double angleLeft, double angleRight, double angleDown, double angleUp, double zNear, double zFar, boolean zZeroToOne) { return perspectiveOffCenterFov(angleLeft, angleRight, angleDown, angleUp, zNear, zFar, zZeroToOne, this); } public Matrix4d perspectiveOffCenterFov(double angleLeft, double angleRight, double angleDown, double angleUp, double zNear, double zFar, boolean zZeroToOne, Matrix4d dest) { return frustum(Math.tan(angleLeft)*zNear, Math.tan(angleRight)*zNear, Math.tan(angleDown)*zNear, Math.tan(angleUp)*zNear, zNear, zFar, zZeroToOne, dest); } /** * Apply an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system * using OpenGL's NDC z range of [-1..+1] to this matrix. *

* The given angles angleLeft and angleRight are the horizontal angles between * the left and right frustum planes, respectively, and a line perpendicular to the near and far frustum planes. * The angles angleDown and angleUp are the vertical angles between * the bottom and top frustum planes, respectively, and a line perpendicular to the near and far frustum planes. *

* If M is this matrix and P the perspective projection matrix, * then the new matrix will be M * P. So when transforming a * vector v with the new matrix by using M * P * v, * the perspective projection will be applied first! *

* In order to set the matrix to a perspective frustum transformation without post-multiplying, * use {@link #setPerspectiveOffCenterFov(double, double, double, double, double, double) setPerspectiveOffCenterFov}. * * @see #setPerspectiveOffCenterFov(double, double, double, double, double, double) * * @param angleLeft * the horizontal angle between left frustum plane and a line perpendicular to the near/far frustum planes. * For a symmetric frustum, this value is negative. * @param angleRight * the horizontal angle between right frustum plane and a line perpendicular to the near/far frustum planes * @param angleDown * the vertical angle between bottom frustum plane and a line perpendicular to the near/far frustum planes. * For a symmetric frustum, this value is negative. * @param angleUp * the vertical angle between top frustum plane and a line perpendicular to the near/far frustum planes * @param zNear * near clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the near clipping plane will be at positive infinity. * In that case, zFar may not also be {@link Double#POSITIVE_INFINITY}. * @param zFar * far clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the far clipping plane will be at positive infinity. * In that case, zNear may not also be {@link Double#POSITIVE_INFINITY}. * @return this */ public Matrix4d perspectiveOffCenterFov(double angleLeft, double angleRight, double angleDown, double angleUp, double zNear, double zFar) { return perspectiveOffCenterFov(angleLeft, angleRight, angleDown, angleUp, zNear, zFar, this); } public Matrix4d perspectiveOffCenterFov(double angleLeft, double angleRight, double angleDown, double angleUp, double zNear, double zFar, Matrix4d dest) { return frustum(Math.tan(angleLeft)*zNear, Math.tan(angleRight)*zNear, Math.tan(angleDown)*zNear, Math.tan(angleUp)*zNear, zNear, zFar, dest); } /** * Apply an asymmetric off-center perspective projection frustum transformation for a left-handed coordinate system * using the given NDC z range to this matrix. *

* The given angles angleLeft and angleRight are the horizontal angles between * the left and right frustum planes, respectively, and a line perpendicular to the near and far frustum planes. * The angles angleDown and angleUp are the vertical angles between * the bottom and top frustum planes, respectively, and a line perpendicular to the near and far frustum planes. *

* If M is this matrix and P the perspective projection matrix, * then the new matrix will be M * P. So when transforming a * vector v with the new matrix by using M * P * v, * the perspective projection will be applied first! *

* In order to set the matrix to a perspective frustum transformation without post-multiplying, * use {@link #setPerspectiveOffCenterFovLH(double, double, double, double, double, double, boolean) setPerspectiveOffCenterFovLH}. * * @see #setPerspectiveOffCenterFovLH(double, double, double, double, double, double, boolean) * * @param angleLeft * the horizontal angle between left frustum plane and a line perpendicular to the near/far frustum planes. * For a symmetric frustum, this value is negative. * @param angleRight * the horizontal angle between right frustum plane and a line perpendicular to the near/far frustum planes * @param angleDown * the vertical angle between bottom frustum plane and a line perpendicular to the near/far frustum planes. * For a symmetric frustum, this value is negative. * @param angleUp * the vertical angle between top frustum plane and a line perpendicular to the near/far frustum planes * @param zNear * near clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the near clipping plane will be at positive infinity. * In that case, zFar may not also be {@link Double#POSITIVE_INFINITY}. * @param zFar * far clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the far clipping plane will be at positive infinity. * In that case, zNear may not also be {@link Double#POSITIVE_INFINITY}. * @param zZeroToOne * whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true * or whether to use OpenGL's NDC z range of [-1..+1] when false * @return this */ public Matrix4d perspectiveOffCenterFovLH(double angleLeft, double angleRight, double angleDown, double angleUp, double zNear, double zFar, boolean zZeroToOne) { return perspectiveOffCenterFovLH(angleLeft, angleRight, angleDown, angleUp, zNear, zFar, zZeroToOne, this); } public Matrix4d perspectiveOffCenterFovLH(double angleLeft, double angleRight, double angleDown, double angleUp, double zNear, double zFar, boolean zZeroToOne, Matrix4d dest) { return frustumLH(Math.tan(angleLeft)*zNear, Math.tan(angleRight)*zNear, Math.tan(angleDown)*zNear, Math.tan(angleUp)*zNear, zNear, zFar, zZeroToOne, dest); } /** * Apply an asymmetric off-center perspective projection frustum transformation for a left-handed coordinate system * using OpenGL's NDC z range of [-1..+1] to this matrix. *

* The given angles angleLeft and angleRight are the horizontal angles between * the left and right frustum planes, respectively, and a line perpendicular to the near and far frustum planes. * The angles angleDown and angleUp are the vertical angles between * the bottom and top frustum planes, respectively, and a line perpendicular to the near and far frustum planes. *

* If M is this matrix and P the perspective projection matrix, * then the new matrix will be M * P. So when transforming a * vector v with the new matrix by using M * P * v, * the perspective projection will be applied first! *

* In order to set the matrix to a perspective frustum transformation without post-multiplying, * use {@link #setPerspectiveOffCenterFovLH(double, double, double, double, double, double) setPerspectiveOffCenterFovLH}. * * @see #setPerspectiveOffCenterFovLH(double, double, double, double, double, double) * * @param angleLeft * the horizontal angle between left frustum plane and a line perpendicular to the near/far frustum planes. * For a symmetric frustum, this value is negative. * @param angleRight * the horizontal angle between right frustum plane and a line perpendicular to the near/far frustum planes * @param angleDown * the vertical angle between bottom frustum plane and a line perpendicular to the near/far frustum planes. * For a symmetric frustum, this value is negative. * @param angleUp * the vertical angle between top frustum plane and a line perpendicular to the near/far frustum planes * @param zNear * near clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the near clipping plane will be at positive infinity. * In that case, zFar may not also be {@link Double#POSITIVE_INFINITY}. * @param zFar * far clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the far clipping plane will be at positive infinity. * In that case, zNear may not also be {@link Double#POSITIVE_INFINITY}. * @return this */ public Matrix4d perspectiveOffCenterFovLH(double angleLeft, double angleRight, double angleDown, double angleUp, double zNear, double zFar) { return perspectiveOffCenterFovLH(angleLeft, angleRight, angleDown, angleUp, zNear, zFar, this); } public Matrix4d perspectiveOffCenterFovLH(double angleLeft, double angleRight, double angleDown, double angleUp, double zNear, double zFar, Matrix4d dest) { return frustumLH(Math.tan(angleLeft)*zNear, Math.tan(angleRight)*zNear, Math.tan(angleDown)*zNear, Math.tan(angleUp)*zNear, zNear, zFar, dest); } /** * Set this matrix to be a symmetric perspective projection frustum transformation for a right-handed coordinate system * using the given NDC z range. *

* In order to apply the perspective projection transformation to an existing transformation, * use {@link #perspective(double, double, double, double, boolean) perspective()}. * * @see #perspective(double, double, double, double, boolean) * * @param fovy * the vertical field of view in radians (must be greater than zero and less than {@link Math#PI PI}) * @param aspect * the aspect ratio (i.e. width / height; must be greater than zero) * @param zNear * near clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the near clipping plane will be at positive infinity. * In that case, zFar may not also be {@link Double#POSITIVE_INFINITY}. * @param zFar * far clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the far clipping plane will be at positive infinity. * In that case, zNear may not also be {@link Double#POSITIVE_INFINITY}. * @param zZeroToOne * whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true * or whether to use OpenGL's NDC z range of [-1..+1] when false * @return this */ public Matrix4d setPerspective(double fovy, double aspect, double zNear, double zFar, boolean zZeroToOne) { double h = Math.tan(fovy * 0.5); _m00(1.0 / (h * aspect)). _m01(0.0). _m02(0.0). _m03(0.0). _m10(0.0). _m11(1.0 / h). _m12(0.0). _m13(0.0). _m20(0.0). _m21(0.0); boolean farInf = zFar > 0 && Double.isInfinite(zFar); boolean nearInf = zNear > 0 && Double.isInfinite(zNear); if (farInf) { // See: "Infinite Projection Matrix" (http://www.terathon.com/gdc07_lengyel.pdf) double e = 1E-6; _m22(e - 1.0). _m32((e - (zZeroToOne ? 1.0 : 2.0)) * zNear); } else if (nearInf) { double e = 1E-6; _m22((zZeroToOne ? 0.0 : 1.0) - e). _m32(((zZeroToOne ? 1.0 : 2.0) - e) * zFar); } else { _m22((zZeroToOne ? zFar : zFar + zNear) / (zNear - zFar)). _m32((zZeroToOne ? zFar : zFar + zFar) * zNear / (zNear - zFar)); } _m23(-1.0). _m30(0.0). _m31(0.0). _m33(0.0). properties = PROPERTY_PERSPECTIVE; return this; } /** * Set this matrix to be a symmetric perspective projection frustum transformation for a right-handed coordinate system * using OpenGL's NDC z range of [-1..+1]. *

* In order to apply the perspective projection transformation to an existing transformation, * use {@link #perspective(double, double, double, double) perspective()}. * * @see #perspective(double, double, double, double) * * @param fovy * the vertical field of view in radians (must be greater than zero and less than {@link Math#PI PI}) * @param aspect * the aspect ratio (i.e. width / height; must be greater than zero) * @param zNear * near clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the near clipping plane will be at positive infinity. * In that case, zFar may not also be {@link Double#POSITIVE_INFINITY}. * @param zFar * far clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the far clipping plane will be at positive infinity. * In that case, zNear may not also be {@link Double#POSITIVE_INFINITY}. * @return this */ public Matrix4d setPerspective(double fovy, double aspect, double zNear, double zFar) { return setPerspective(fovy, aspect, zNear, zFar, false); } /** * Set this matrix to be a symmetric perspective projection frustum transformation for a right-handed coordinate system * using the given NDC z range. *

* In order to apply the perspective projection transformation to an existing transformation, * use {@link #perspectiveRect(double, double, double, double, boolean) perspectiveRect()}. * * @see #perspectiveRect(double, double, double, double, boolean) * * @param width * the width of the near frustum plane * @param height * the height of the near frustum plane * @param zNear * near clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the near clipping plane will be at positive infinity. * In that case, zFar may not also be {@link Double#POSITIVE_INFINITY}. * @param zFar * far clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the far clipping plane will be at positive infinity. * In that case, zNear may not also be {@link Double#POSITIVE_INFINITY}. * @param zZeroToOne * whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true * or whether to use OpenGL's NDC z range of [-1..+1] when false * @return this */ public Matrix4d setPerspectiveRect(double width, double height, double zNear, double zFar, boolean zZeroToOne) { this.zero(); this._m00((zNear + zNear) / width); this._m11((zNear + zNear) / height); boolean farInf = zFar > 0 && Double.isInfinite(zFar); boolean nearInf = zNear > 0 && Double.isInfinite(zNear); if (farInf) { // See: "Infinite Projection Matrix" (http://www.terathon.com/gdc07_lengyel.pdf) double e = 1E-6; this._m22(e - 1.0); this._m32((e - (zZeroToOne ? 1.0 : 2.0)) * zNear); } else if (nearInf) { double e = 1E-6f; this._m22((zZeroToOne ? 0.0 : 1.0) - e); this._m32(((zZeroToOne ? 1.0 : 2.0) - e) * zFar); } else { this._m22((zZeroToOne ? zFar : zFar + zNear) / (zNear - zFar)); this._m32((zZeroToOne ? zFar : zFar + zFar) * zNear / (zNear - zFar)); } this._m23(-1.0); properties = PROPERTY_PERSPECTIVE; return this; } /** * Set this matrix to be a symmetric perspective projection frustum transformation for a right-handed coordinate system * using OpenGL's NDC z range of [-1..+1]. *

* In order to apply the perspective projection transformation to an existing transformation, * use {@link #perspectiveRect(double, double, double, double) perspectiveRect()}. * * @see #perspectiveRect(double, double, double, double) * * @param width * the width of the near frustum plane * @param height * the height of the near frustum plane * @param zNear * near clipping plane distance. This value must be greater than zero. * If the special value {@link Float#POSITIVE_INFINITY} is used, the near clipping plane will be at positive infinity. * In that case, zFar may not also be {@link Float#POSITIVE_INFINITY}. * @param zFar * far clipping plane distance. This value must be greater than zero. * If the special value {@link Float#POSITIVE_INFINITY} is used, the far clipping plane will be at positive infinity. * In that case, zNear may not also be {@link Float#POSITIVE_INFINITY}. * @return this */ public Matrix4d setPerspectiveRect(double width, double height, double zNear, double zFar) { return setPerspectiveRect(width, height, zNear, zFar, false); } /** * Set this matrix to be an asymmetric off-center perspective projection frustum transformation for a right-handed * coordinate system using OpenGL's NDC z range of [-1..+1]. *

* The given angles offAngleX and offAngleY are the horizontal and vertical angles between * the line of sight and the line given by the center of the near and far frustum planes. So, when offAngleY * is just fovy/2 then the projection frustum is rotated towards +Y and the bottom frustum plane * is parallel to the XZ-plane. *

* In order to apply the perspective projection transformation to an existing transformation, * use {@link #perspectiveOffCenter(double, double, double, double, double, double) perspectiveOffCenter()}. * * @see #perspectiveOffCenter(double, double, double, double, double, double) * * @param fovy * the vertical field of view in radians (must be greater than zero and less than {@link Math#PI PI}) * @param offAngleX * the horizontal angle between the line of sight and the line crossing the center of the near and far frustum planes * @param offAngleY * the vertical angle between the line of sight and the line crossing the center of the near and far frustum planes * @param aspect * the aspect ratio (i.e. width / height; must be greater than zero) * @param zNear * near clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the near clipping plane will be at positive infinity. * In that case, zFar may not also be {@link Double#POSITIVE_INFINITY}. * @param zFar * far clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the far clipping plane will be at positive infinity. * In that case, zNear may not also be {@link Double#POSITIVE_INFINITY}. * @return this */ public Matrix4d setPerspectiveOffCenter(double fovy, double offAngleX, double offAngleY, double aspect, double zNear, double zFar) { return setPerspectiveOffCenter(fovy, offAngleX, offAngleY, aspect, zNear, zFar, false); } /** * Set this matrix to be an asymmetric off-center perspective projection frustum transformation for a right-handed * coordinate system using the given NDC z range. *

* The given angles offAngleX and offAngleY are the horizontal and vertical angles between * the line of sight and the line given by the center of the near and far frustum planes. So, when offAngleY * is just fovy/2 then the projection frustum is rotated towards +Y and the bottom frustum plane * is parallel to the XZ-plane. *

* In order to apply the perspective projection transformation to an existing transformation, * use {@link #perspectiveOffCenter(double, double, double, double, double, double) perspectiveOffCenter()}. * * @see #perspectiveOffCenter(double, double, double, double, double, double) * * @param fovy * the vertical field of view in radians (must be greater than zero and less than {@link Math#PI PI}) * @param offAngleX * the horizontal angle between the line of sight and the line crossing the center of the near and far frustum planes * @param offAngleY * the vertical angle between the line of sight and the line crossing the center of the near and far frustum planes * @param aspect * the aspect ratio (i.e. width / height; must be greater than zero) * @param zNear * near clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the near clipping plane will be at positive infinity. * In that case, zFar may not also be {@link Double#POSITIVE_INFINITY}. * @param zFar * far clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the far clipping plane will be at positive infinity. * In that case, zNear may not also be {@link Double#POSITIVE_INFINITY}. * @param zZeroToOne * whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true * or whether to use OpenGL's NDC z range of [-1..+1] when false * @return this */ public Matrix4d setPerspectiveOffCenter(double fovy, double offAngleX, double offAngleY, double aspect, double zNear, double zFar, boolean zZeroToOne) { this.zero(); double h = Math.tan(fovy * 0.5); double xScale = 1.0 / (h * aspect), yScale = 1.0 / h; _m00(xScale). _m11(yScale); double offX = Math.tan(offAngleX), offY = Math.tan(offAngleY); _m20(offX * xScale). _m21(offY * yScale); boolean farInf = zFar > 0 && Double.isInfinite(zFar); boolean nearInf = zNear > 0 && Double.isInfinite(zNear); if (farInf) { // See: "Infinite Projection Matrix" (http://www.terathon.com/gdc07_lengyel.pdf) double e = 1E-6; _m22(e - 1.0). _m32((e - (zZeroToOne ? 1.0 : 2.0)) * zNear); } else if (nearInf) { double e = 1E-6; _m22((zZeroToOne ? 0.0 : 1.0) - e). _m32(((zZeroToOne ? 1.0 : 2.0) - e) * zFar); } else { _m22((zZeroToOne ? zFar : zFar + zNear) / (zNear - zFar)). _m32((zZeroToOne ? zFar : zFar + zFar) * zNear / (zNear - zFar)); } _m23(-1.0). _m30(0.0). _m31(0.0). _m33(0.0). properties = offAngleX == 0.0 && offAngleY == 0.0 ? PROPERTY_PERSPECTIVE : 0; return this; } /** * Set this matrix to be an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate * system using OpenGL's NDC z range of [-1..+1]. *

* The given angles angleLeft and angleRight are the horizontal angles between * the left and right frustum planes, respectively, and a line perpendicular to the near and far frustum planes. * The angles angleDown and angleUp are the vertical angles between * the bottom and top frustum planes, respectively, and a line perpendicular to the near and far frustum planes. *

* In order to apply the perspective projection transformation to an existing transformation, * use {@link #perspectiveOffCenterFov(double, double, double, double, double, double) perspectiveOffCenterFov()}. * * @see #perspectiveOffCenterFov(double, double, double, double, double, double) * * @param angleLeft * the horizontal angle between left frustum plane and a line perpendicular to the near/far frustum planes. * For a symmetric frustum, this value is negative. * @param angleRight * the horizontal angle between right frustum plane and a line perpendicular to the near/far frustum planes * @param angleDown * the vertical angle between bottom frustum plane and a line perpendicular to the near/far frustum planes. * For a symmetric frustum, this value is negative. * @param angleUp * the vertical angle between top frustum plane and a line perpendicular to the near/far frustum planes * @param zNear * near clipping plane distance. This value must be greater than zero. * If the special value {@link Float#POSITIVE_INFINITY} is used, the near clipping plane will be at positive infinity. * In that case, zFar may not also be {@link Float#POSITIVE_INFINITY}. * @param zFar * far clipping plane distance. This value must be greater than zero. * If the special value {@link Float#POSITIVE_INFINITY} is used, the far clipping plane will be at positive infinity. * In that case, zNear may not also be {@link Float#POSITIVE_INFINITY}. * @return this */ public Matrix4d setPerspectiveOffCenterFov(double angleLeft, double angleRight, double angleDown, double angleUp, double zNear, double zFar) { return setPerspectiveOffCenterFov(angleLeft, angleRight, angleDown, angleUp, zNear, zFar, false); } /** * Set this matrix to be an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system * using the given NDC z range. *

* The given angles angleLeft and angleRight are the horizontal angles between * the left and right frustum planes, respectively, and a line perpendicular to the near and far frustum planes. * The angles angleDown and angleUp are the vertical angles between * the bottom and top frustum planes, respectively, and a line perpendicular to the near and far frustum planes. *

* In order to apply the perspective projection transformation to an existing transformation, * use {@link #perspectiveOffCenterFov(double, double, double, double, double, double, boolean) perspectiveOffCenterFov()}. * * @see #perspectiveOffCenterFov(double, double, double, double, double, double, boolean) * * @param angleLeft * the horizontal angle between left frustum plane and a line perpendicular to the near/far frustum planes. * For a symmetric frustum, this value is negative. * @param angleRight * the horizontal angle between right frustum plane and a line perpendicular to the near/far frustum planes * @param angleDown * the vertical angle between bottom frustum plane and a line perpendicular to the near/far frustum planes. * For a symmetric frustum, this value is negative. * @param angleUp * the vertical angle between top frustum plane and a line perpendicular to the near/far frustum planes * @param zNear * near clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the near clipping plane will be at positive infinity. * In that case, zFar may not also be {@link Double#POSITIVE_INFINITY}. * @param zFar * far clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the far clipping plane will be at positive infinity. * In that case, zNear may not also be {@link Double#POSITIVE_INFINITY}. * @param zZeroToOne * whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true * or whether to use OpenGL's NDC z range of [-1..+1] when false * @return this */ public Matrix4d setPerspectiveOffCenterFov(double angleLeft, double angleRight, double angleDown, double angleUp, double zNear, double zFar, boolean zZeroToOne) { return setFrustum(Math.tan(angleLeft)*zNear, Math.tan(angleRight)*zNear, Math.tan(angleDown)*zNear, Math.tan(angleUp)*zNear, zNear, zFar, zZeroToOne); } /** * Set this matrix to be an asymmetric off-center perspective projection frustum transformation for a left-handed coordinate * system using OpenGL's NDC z range of [-1..+1]. *

* The given angles angleLeft and angleRight are the horizontal angles between * the left and right frustum planes, respectively, and a line perpendicular to the near and far frustum planes. * The angles angleDown and angleUp are the vertical angles between * the bottom and top frustum planes, respectively, and a line perpendicular to the near and far frustum planes. *

* In order to apply the perspective projection transformation to an existing transformation, * use {@link #perspectiveOffCenterFovLH(double, double, double, double, double, double) perspectiveOffCenterFovLH()}. * * @see #perspectiveOffCenterFovLH(double, double, double, double, double, double) * * @param angleLeft * the horizontal angle between left frustum plane and a line perpendicular to the near/far frustum planes. * For a symmetric frustum, this value is negative. * @param angleRight * the horizontal angle between right frustum plane and a line perpendicular to the near/far frustum planes * @param angleDown * the vertical angle between bottom frustum plane and a line perpendicular to the near/far frustum planes. * For a symmetric frustum, this value is negative. * @param angleUp * the vertical angle between top frustum plane and a line perpendicular to the near/far frustum planes * @param zNear * near clipping plane distance. This value must be greater than zero. * If the special value {@link Float#POSITIVE_INFINITY} is used, the near clipping plane will be at positive infinity. * In that case, zFar may not also be {@link Float#POSITIVE_INFINITY}. * @param zFar * far clipping plane distance. This value must be greater than zero. * If the special value {@link Float#POSITIVE_INFINITY} is used, the far clipping plane will be at positive infinity. * In that case, zNear may not also be {@link Float#POSITIVE_INFINITY}. * @return this */ public Matrix4d setPerspectiveOffCenterFovLH(double angleLeft, double angleRight, double angleDown, double angleUp, double zNear, double zFar) { return setPerspectiveOffCenterFovLH(angleLeft, angleRight, angleDown, angleUp, zNear, zFar, false); } /** * Set this matrix to be an asymmetric off-center perspective projection frustum transformation for a left-handed coordinate system * using the given NDC z range. *

* The given angles angleLeft and angleRight are the horizontal angles between * the left and right frustum planes, respectively, and a line perpendicular to the near and far frustum planes. * The angles angleDown and angleUp are the vertical angles between * the bottom and top frustum planes, respectively, and a line perpendicular to the near and far frustum planes. *

* In order to apply the perspective projection transformation to an existing transformation, * use {@link #perspectiveOffCenterFovLH(double, double, double, double, double, double, boolean) perspectiveOffCenterFovLH()}. * * @see #perspectiveOffCenterFovLH(double, double, double, double, double, double, boolean) * * @param angleLeft * the horizontal angle between left frustum plane and a line perpendicular to the near/far frustum planes. * For a symmetric frustum, this value is negative. * @param angleRight * the horizontal angle between right frustum plane and a line perpendicular to the near/far frustum planes * @param angleDown * the vertical angle between bottom frustum plane and a line perpendicular to the near/far frustum planes. * For a symmetric frustum, this value is negative. * @param angleUp * the vertical angle between top frustum plane and a line perpendicular to the near/far frustum planes * @param zNear * near clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the near clipping plane will be at positive infinity. * In that case, zFar may not also be {@link Double#POSITIVE_INFINITY}. * @param zFar * far clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the far clipping plane will be at positive infinity. * In that case, zNear may not also be {@link Double#POSITIVE_INFINITY}. * @param zZeroToOne * whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true * or whether to use OpenGL's NDC z range of [-1..+1] when false * @return this */ public Matrix4d setPerspectiveOffCenterFovLH(double angleLeft, double angleRight, double angleDown, double angleUp, double zNear, double zFar, boolean zZeroToOne) { return setFrustumLH(Math.tan(angleLeft)*zNear, Math.tan(angleRight)*zNear, Math.tan(angleDown)*zNear, Math.tan(angleUp)*zNear, zNear, zFar, zZeroToOne); } /** * Apply a symmetric perspective projection frustum transformation for a left-handed coordinate system * using the given NDC z range to this matrix and store the result in dest. *

* If M is this matrix and P the perspective projection matrix, * then the new matrix will be M * P. So when transforming a * vector v with the new matrix by using M * P * v, * the perspective projection will be applied first! *

* In order to set the matrix to a perspective frustum transformation without post-multiplying, * use {@link #setPerspectiveLH(double, double, double, double, boolean) setPerspectiveLH}. * * @see #setPerspectiveLH(double, double, double, double, boolean) * * @param fovy * the vertical field of view in radians (must be greater than zero and less than {@link Math#PI PI}) * @param aspect * the aspect ratio (i.e. width / height; must be greater than zero) * @param zNear * near clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the near clipping plane will be at positive infinity. * In that case, zFar may not also be {@link Double#POSITIVE_INFINITY}. * @param zFar * far clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the far clipping plane will be at positive infinity. * In that case, zNear may not also be {@link Double#POSITIVE_INFINITY}. * @param zZeroToOne * whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true * or whether to use OpenGL's NDC z range of [-1..+1] when false * @param dest * will hold the result * @return dest */ public Matrix4d perspectiveLH(double fovy, double aspect, double zNear, double zFar, boolean zZeroToOne, Matrix4d dest) { if ((properties & PROPERTY_IDENTITY) != 0) return dest.setPerspectiveLH(fovy, aspect, zNear, zFar, zZeroToOne); return perspectiveLHGeneric(fovy, aspect, zNear, zFar, zZeroToOne, dest); } private Matrix4d perspectiveLHGeneric(double fovy, double aspect, double zNear, double zFar, boolean zZeroToOne, Matrix4d dest) { double h = Math.tan(fovy * 0.5); // calculate right matrix elements double rm00 = 1.0 / (h * aspect); double rm11 = 1.0 / h; double rm22; double rm32; boolean farInf = zFar > 0 && Double.isInfinite(zFar); boolean nearInf = zNear > 0 && Double.isInfinite(zNear); if (farInf) { // See: "Infinite Projection Matrix" (http://www.terathon.com/gdc07_lengyel.pdf) double e = 1E-6; rm22 = 1.0 - e; rm32 = (e - (zZeroToOne ? 1.0 : 2.0)) * zNear; } else if (nearInf) { double e = 1E-6; rm22 = (zZeroToOne ? 0.0 : 1.0) - e; rm32 = ((zZeroToOne ? 1.0 : 2.0) - e) * zFar; } else { rm22 = (zZeroToOne ? zFar : zFar + zNear) / (zFar - zNear); rm32 = (zZeroToOne ? zFar : zFar + zFar) * zNear / (zNear - zFar); } // perform optimized matrix multiplication double nm20 = m20 * rm22 + m30; double nm21 = m21 * rm22 + m31; double nm22 = m22 * rm22 + m32; double nm23 = m23 * rm22 + m33; dest._m00(m00 * rm00) ._m01(m01 * rm00) ._m02(m02 * rm00) ._m03(m03 * rm00) ._m10(m10 * rm11) ._m11(m11 * rm11) ._m12(m12 * rm11) ._m13(m13 * rm11) ._m30(m20 * rm32) ._m31(m21 * rm32) ._m32(m22 * rm32) ._m33(m23 * rm32) ._m20(nm20) ._m21(nm21) ._m22(nm22) ._m23(nm23) ._properties(properties & ~(PROPERTY_AFFINE | PROPERTY_IDENTITY | PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL)); return dest; } /** * Apply a symmetric perspective projection frustum transformation for a left-handed coordinate system * using the given NDC z range to this matrix. *

* If M is this matrix and P the perspective projection matrix, * then the new matrix will be M * P. So when transforming a * vector v with the new matrix by using M * P * v, * the perspective projection will be applied first! *

* In order to set the matrix to a perspective frustum transformation without post-multiplying, * use {@link #setPerspectiveLH(double, double, double, double, boolean) setPerspectiveLH}. * * @see #setPerspectiveLH(double, double, double, double, boolean) * * @param fovy * the vertical field of view in radians (must be greater than zero and less than {@link Math#PI PI}) * @param aspect * the aspect ratio (i.e. width / height; must be greater than zero) * @param zNear * near clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the near clipping plane will be at positive infinity. * In that case, zFar may not also be {@link Double#POSITIVE_INFINITY}. * @param zFar * far clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the far clipping plane will be at positive infinity. * In that case, zNear may not also be {@link Double#POSITIVE_INFINITY}. * @param zZeroToOne * whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true * or whether to use OpenGL's NDC z range of [-1..+1] when false * @return this */ public Matrix4d perspectiveLH(double fovy, double aspect, double zNear, double zFar, boolean zZeroToOne) { return perspectiveLH(fovy, aspect, zNear, zFar, zZeroToOne, this); } /** * Apply a symmetric perspective projection frustum transformation for a left-handed coordinate system * using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest. *

* If M is this matrix and P the perspective projection matrix, * then the new matrix will be M * P. So when transforming a * vector v with the new matrix by using M * P * v, * the perspective projection will be applied first! *

* In order to set the matrix to a perspective frustum transformation without post-multiplying, * use {@link #setPerspectiveLH(double, double, double, double) setPerspectiveLH}. * * @see #setPerspectiveLH(double, double, double, double) * * @param fovy * the vertical field of view in radians (must be greater than zero and less than {@link Math#PI PI}) * @param aspect * the aspect ratio (i.e. width / height; must be greater than zero) * @param zNear * near clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the near clipping plane will be at positive infinity. * In that case, zFar may not also be {@link Double#POSITIVE_INFINITY}. * @param zFar * far clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the far clipping plane will be at positive infinity. * In that case, zNear may not also be {@link Double#POSITIVE_INFINITY}. * @param dest * will hold the result * @return dest */ public Matrix4d perspectiveLH(double fovy, double aspect, double zNear, double zFar, Matrix4d dest) { return perspectiveLH(fovy, aspect, zNear, zFar, false, dest); } /** * Apply a symmetric perspective projection frustum transformation for a left-handed coordinate system * using OpenGL's NDC z range of [-1..+1] to this matrix. *

* If M is this matrix and P the perspective projection matrix, * then the new matrix will be M * P. So when transforming a * vector v with the new matrix by using M * P * v, * the perspective projection will be applied first! *

* In order to set the matrix to a perspective frustum transformation without post-multiplying, * use {@link #setPerspectiveLH(double, double, double, double) setPerspectiveLH}. * * @see #setPerspectiveLH(double, double, double, double) * * @param fovy * the vertical field of view in radians (must be greater than zero and less than {@link Math#PI PI}) * @param aspect * the aspect ratio (i.e. width / height; must be greater than zero) * @param zNear * near clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the near clipping plane will be at positive infinity. * In that case, zFar may not also be {@link Double#POSITIVE_INFINITY}. * @param zFar * far clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the far clipping plane will be at positive infinity. * In that case, zNear may not also be {@link Double#POSITIVE_INFINITY}. * @return this */ public Matrix4d perspectiveLH(double fovy, double aspect, double zNear, double zFar) { return perspectiveLH(fovy, aspect, zNear, zFar, this); } /** * Set this matrix to be a symmetric perspective projection frustum transformation for a left-handed coordinate system * using the given NDC z range of [-1..+1]. *

* In order to apply the perspective projection transformation to an existing transformation, * use {@link #perspectiveLH(double, double, double, double, boolean) perspectiveLH()}. * * @see #perspectiveLH(double, double, double, double, boolean) * * @param fovy * the vertical field of view in radians (must be greater than zero and less than {@link Math#PI PI}) * @param aspect * the aspect ratio (i.e. width / height; must be greater than zero) * @param zNear * near clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the near clipping plane will be at positive infinity. * In that case, zFar may not also be {@link Double#POSITIVE_INFINITY}. * @param zFar * far clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the far clipping plane will be at positive infinity. * In that case, zNear may not also be {@link Double#POSITIVE_INFINITY}. * @param zZeroToOne * whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true * or whether to use OpenGL's NDC z range of [-1..+1] when false * @return this */ public Matrix4d setPerspectiveLH(double fovy, double aspect, double zNear, double zFar, boolean zZeroToOne) { double h = Math.tan(fovy * 0.5); _m00(1.0 / (h * aspect)). _m01(0.0). _m02(0.0). _m03(0.0). _m10(0.0). _m11(1.0 / h). _m12(0.0). _m13(0.0). _m20(0.0). _m21(0.0); boolean farInf = zFar > 0 && Double.isInfinite(zFar); boolean nearInf = zNear > 0 && Double.isInfinite(zNear); if (farInf) { // See: "Infinite Projection Matrix" (http://www.terathon.com/gdc07_lengyel.pdf) double e = 1E-6; _m22(1.0 - e). _m32((e - (zZeroToOne ? 1.0 : 2.0)) * zNear); } else if (nearInf) { double e = 1E-6; _m22((zZeroToOne ? 0.0 : 1.0) - e). _m32(((zZeroToOne ? 1.0 : 2.0) - e) * zFar); } else { _m22((zZeroToOne ? zFar : zFar + zNear) / (zFar - zNear)). _m32((zZeroToOne ? zFar : zFar + zFar) * zNear / (zNear - zFar)); } _m23(1.0). _m30(0.0). _m31(0.0). _m33(0.0). properties = PROPERTY_PERSPECTIVE; return this; } /** * Set this matrix to be a symmetric perspective projection frustum transformation for a left-handed coordinate system * using OpenGL's NDC z range of [-1..+1]. *

* In order to apply the perspective projection transformation to an existing transformation, * use {@link #perspectiveLH(double, double, double, double) perspectiveLH()}. * * @see #perspectiveLH(double, double, double, double) * * @param fovy * the vertical field of view in radians (must be greater than zero and less than {@link Math#PI PI}) * @param aspect * the aspect ratio (i.e. width / height; must be greater than zero) * @param zNear * near clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the near clipping plane will be at positive infinity. * In that case, zFar may not also be {@link Double#POSITIVE_INFINITY}. * @param zFar * far clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the far clipping plane will be at positive infinity. * In that case, zNear may not also be {@link Double#POSITIVE_INFINITY}. * @return this */ public Matrix4d setPerspectiveLH(double fovy, double aspect, double zNear, double zFar) { return setPerspectiveLH(fovy, aspect, zNear, zFar, false); } /** * Apply an arbitrary perspective projection frustum transformation for a right-handed coordinate system * using the given NDC z range to this matrix and store the result in dest. *

* If M is this matrix and F the frustum matrix, * then the new matrix will be M * F. So when transforming a * vector v with the new matrix by using M * F * v, * the frustum transformation will be applied first! *

* In order to set the matrix to a perspective frustum transformation without post-multiplying, * use {@link #setFrustum(double, double, double, double, double, double, boolean) setFrustum()}. *

* Reference: http://www.songho.ca * * @see #setFrustum(double, double, double, double, double, double, boolean) * * @param left * the distance along the x-axis to the left frustum edge * @param right * the distance along the x-axis to the right frustum edge * @param bottom * the distance along the y-axis to the bottom frustum edge * @param top * the distance along the y-axis to the top frustum edge * @param zNear * near clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the near clipping plane will be at positive infinity. * In that case, zFar may not also be {@link Double#POSITIVE_INFINITY}. * @param zFar * far clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the far clipping plane will be at positive infinity. * In that case, zNear may not also be {@link Double#POSITIVE_INFINITY}. * @param zZeroToOne * whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true * or whether to use OpenGL's NDC z range of [-1..+1] when false * @param dest * will hold the result * @return dest */ public Matrix4d frustum(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne, Matrix4d dest) { if ((properties & PROPERTY_IDENTITY) != 0) return dest.setFrustum(left, right, bottom, top, zNear, zFar, zZeroToOne); return frustumGeneric(left, right, bottom, top, zNear, zFar, zZeroToOne, dest); } private Matrix4d frustumGeneric(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne, Matrix4d dest) { // calculate right matrix elements double rm00 = (zNear + zNear) / (right - left); double rm11 = (zNear + zNear) / (top - bottom); double rm20 = (right + left) / (right - left); double rm21 = (top + bottom) / (top - bottom); double rm22; double rm32; boolean farInf = zFar > 0 && Double.isInfinite(zFar); boolean nearInf = zNear > 0 && Double.isInfinite(zNear); if (farInf) { // See: "Infinite Projection Matrix" (http://www.terathon.com/gdc07_lengyel.pdf) double e = 1E-6; rm22 = e - 1.0; rm32 = (e - (zZeroToOne ? 1.0 : 2.0)) * zNear; } else if (nearInf) { double e = 1E-6; rm22 = (zZeroToOne ? 0.0 : 1.0) - e; rm32 = ((zZeroToOne ? 1.0 : 2.0) - e) * zFar; } else { rm22 = (zZeroToOne ? zFar : zFar + zNear) / (zNear - zFar); rm32 = (zZeroToOne ? zFar : zFar + zFar) * zNear / (zNear - zFar); } // perform optimized matrix multiplication double nm20 = m00 * rm20 + m10 * rm21 + m20 * rm22 - m30; double nm21 = m01 * rm20 + m11 * rm21 + m21 * rm22 - m31; double nm22 = m02 * rm20 + m12 * rm21 + m22 * rm22 - m32; double nm23 = m03 * rm20 + m13 * rm21 + m23 * rm22 - m33; dest._m00(m00 * rm00) ._m01(m01 * rm00) ._m02(m02 * rm00) ._m03(m03 * rm00) ._m10(m10 * rm11) ._m11(m11 * rm11) ._m12(m12 * rm11) ._m13(m13 * rm11) ._m30(m20 * rm32) ._m31(m21 * rm32) ._m32(m22 * rm32) ._m33(m23 * rm32) ._m20(nm20) ._m21(nm21) ._m22(nm22) ._m23(nm23) ._properties(0); return dest; } /** * Apply an arbitrary perspective projection frustum transformation for a right-handed coordinate system * using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest. *

* If M is this matrix and F the frustum matrix, * then the new matrix will be M * F. So when transforming a * vector v with the new matrix by using M * F * v, * the frustum transformation will be applied first! *

* In order to set the matrix to a perspective frustum transformation without post-multiplying, * use {@link #setFrustum(double, double, double, double, double, double) setFrustum()}. *

* Reference: http://www.songho.ca * * @see #setFrustum(double, double, double, double, double, double) * * @param left * the distance along the x-axis to the left frustum edge * @param right * the distance along the x-axis to the right frustum edge * @param bottom * the distance along the y-axis to the bottom frustum edge * @param top * the distance along the y-axis to the top frustum edge * @param zNear * near clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the near clipping plane will be at positive infinity. * In that case, zFar may not also be {@link Double#POSITIVE_INFINITY}. * @param zFar * far clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the far clipping plane will be at positive infinity. * In that case, zNear may not also be {@link Double#POSITIVE_INFINITY}. * @param dest * will hold the result * @return dest */ public Matrix4d frustum(double left, double right, double bottom, double top, double zNear, double zFar, Matrix4d dest) { return frustum(left, right, bottom, top, zNear, zFar, false, dest); } /** * Apply an arbitrary perspective projection frustum transformation for a right-handed coordinate system * using the given NDC z range to this matrix. *

* If M is this matrix and F the frustum matrix, * then the new matrix will be M * F. So when transforming a * vector v with the new matrix by using M * F * v, * the frustum transformation will be applied first! *

* In order to set the matrix to a perspective frustum transformation without post-multiplying, * use {@link #setFrustum(double, double, double, double, double, double, boolean) setFrustum()}. *

* Reference: http://www.songho.ca * * @see #setFrustum(double, double, double, double, double, double, boolean) * * @param left * the distance along the x-axis to the left frustum edge * @param right * the distance along the x-axis to the right frustum edge * @param bottom * the distance along the y-axis to the bottom frustum edge * @param top * the distance along the y-axis to the top frustum edge * @param zNear * near clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the near clipping plane will be at positive infinity. * In that case, zFar may not also be {@link Double#POSITIVE_INFINITY}. * @param zFar * far clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the far clipping plane will be at positive infinity. * In that case, zNear may not also be {@link Double#POSITIVE_INFINITY}. * @param zZeroToOne * whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true * or whether to use OpenGL's NDC z range of [-1..+1] when false * @return this */ public Matrix4d frustum(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne) { return frustum(left, right, bottom, top, zNear, zFar, zZeroToOne, this); } /** * Apply an arbitrary perspective projection frustum transformation for a right-handed coordinate system * using OpenGL's NDC z range of [-1..+1] to this matrix. *

* If M is this matrix and F the frustum matrix, * then the new matrix will be M * F. So when transforming a * vector v with the new matrix by using M * F * v, * the frustum transformation will be applied first! *

* In order to set the matrix to a perspective frustum transformation without post-multiplying, * use {@link #setFrustum(double, double, double, double, double, double) setFrustum()}. *

* Reference: http://www.songho.ca * * @see #setFrustum(double, double, double, double, double, double) * * @param left * the distance along the x-axis to the left frustum edge * @param right * the distance along the x-axis to the right frustum edge * @param bottom * the distance along the y-axis to the bottom frustum edge * @param top * the distance along the y-axis to the top frustum edge * @param zNear * near clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the near clipping plane will be at positive infinity. * In that case, zFar may not also be {@link Double#POSITIVE_INFINITY}. * @param zFar * far clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the far clipping plane will be at positive infinity. * In that case, zNear may not also be {@link Double#POSITIVE_INFINITY}. * @return this */ public Matrix4d frustum(double left, double right, double bottom, double top, double zNear, double zFar) { return frustum(left, right, bottom, top, zNear, zFar, this); } /** * Set this matrix to be an arbitrary perspective projection frustum transformation for a right-handed coordinate system * using the given NDC z range. *

* In order to apply the perspective frustum transformation to an existing transformation, * use {@link #frustum(double, double, double, double, double, double, boolean) frustum()}. *

* Reference: http://www.songho.ca * * @see #frustum(double, double, double, double, double, double, boolean) * * @param left * the distance along the x-axis to the left frustum edge * @param right * the distance along the x-axis to the right frustum edge * @param bottom * the distance along the y-axis to the bottom frustum edge * @param top * the distance along the y-axis to the top frustum edge * @param zNear * near clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the near clipping plane will be at positive infinity. * In that case, zFar may not also be {@link Double#POSITIVE_INFINITY}. * @param zFar * far clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the far clipping plane will be at positive infinity. * In that case, zNear may not also be {@link Double#POSITIVE_INFINITY}. * @param zZeroToOne * whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true * or whether to use OpenGL's NDC z range of [-1..+1] when false * @return this */ public Matrix4d setFrustum(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne) { if ((properties & PROPERTY_IDENTITY) == 0) _identity(); _m00((zNear + zNear) / (right - left)). _m11((zNear + zNear) / (top - bottom)). _m20((right + left) / (right - left)). _m21((top + bottom) / (top - bottom)); boolean farInf = zFar > 0 && Double.isInfinite(zFar); boolean nearInf = zNear > 0 && Double.isInfinite(zNear); if (farInf) { // See: "Infinite Projection Matrix" (http://www.terathon.com/gdc07_lengyel.pdf) double e = 1E-6; _m22(e - 1.0). _m32((e - (zZeroToOne ? 1.0 : 2.0)) * zNear); } else if (nearInf) { double e = 1E-6; _m22((zZeroToOne ? 0.0 : 1.0) - e). _m32(((zZeroToOne ? 1.0 : 2.0) - e) * zFar); } else { _m22((zZeroToOne ? zFar : zFar + zNear) / (zNear - zFar)). _m32((zZeroToOne ? zFar : zFar + zFar) * zNear / (zNear - zFar)); } _m23(-1.0). _m33(0.0). properties = this.m20 == 0.0 && this.m21 == 0.0 ? PROPERTY_PERSPECTIVE : 0; return this; } /** * Set this matrix to be an arbitrary perspective projection frustum transformation for a right-handed coordinate system * using OpenGL's NDC z range of [-1..+1]. *

* In order to apply the perspective frustum transformation to an existing transformation, * use {@link #frustum(double, double, double, double, double, double) frustum()}. *

* Reference: http://www.songho.ca * * @see #frustum(double, double, double, double, double, double) * * @param left * the distance along the x-axis to the left frustum edge * @param right * the distance along the x-axis to the right frustum edge * @param bottom * the distance along the y-axis to the bottom frustum edge * @param top * the distance along the y-axis to the top frustum edge * @param zNear * near clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the near clipping plane will be at positive infinity. * In that case, zFar may not also be {@link Double#POSITIVE_INFINITY}. * @param zFar * far clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the far clipping plane will be at positive infinity. * In that case, zNear may not also be {@link Double#POSITIVE_INFINITY}. * @return this */ public Matrix4d setFrustum(double left, double right, double bottom, double top, double zNear, double zFar) { return setFrustum(left, right, bottom, top, zNear, zFar, false); } /** * Apply an arbitrary perspective projection frustum transformation for a left-handed coordinate system * using the given NDC z range to this matrix and store the result in dest. *

* If M is this matrix and F the frustum matrix, * then the new matrix will be M * F. So when transforming a * vector v with the new matrix by using M * F * v, * the frustum transformation will be applied first! *

* In order to set the matrix to a perspective frustum transformation without post-multiplying, * use {@link #setFrustumLH(double, double, double, double, double, double, boolean) setFrustumLH()}. *

* Reference: http://www.songho.ca * * @see #setFrustumLH(double, double, double, double, double, double, boolean) * * @param left * the distance along the x-axis to the left frustum edge * @param right * the distance along the x-axis to the right frustum edge * @param bottom * the distance along the y-axis to the bottom frustum edge * @param top * the distance along the y-axis to the top frustum edge * @param zNear * near clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the near clipping plane will be at positive infinity. * In that case, zFar may not also be {@link Double#POSITIVE_INFINITY}. * @param zFar * far clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the far clipping plane will be at positive infinity. * In that case, zNear may not also be {@link Double#POSITIVE_INFINITY}. * @param zZeroToOne * whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true * or whether to use OpenGL's NDC z range of [-1..+1] when false * @param dest * will hold the result * @return dest */ public Matrix4d frustumLH(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne, Matrix4d dest) { if ((properties & PROPERTY_IDENTITY) != 0) return dest.setFrustumLH(left, right, bottom, top, zNear, zFar, zZeroToOne); return frustumLHGeneric(left, right, bottom, top, zNear, zFar, zZeroToOne, dest); } private Matrix4d frustumLHGeneric(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne, Matrix4d dest) { // calculate right matrix elements double rm00 = (zNear + zNear) / (right - left); double rm11 = (zNear + zNear) / (top - bottom); double rm20 = (right + left) / (right - left); double rm21 = (top + bottom) / (top - bottom); double rm22; double rm32; boolean farInf = zFar > 0 && Double.isInfinite(zFar); boolean nearInf = zNear > 0 && Double.isInfinite(zNear); if (farInf) { // See: "Infinite Projection Matrix" (http://www.terathon.com/gdc07_lengyel.pdf) double e = 1E-6; rm22 = 1.0 - e; rm32 = (e - (zZeroToOne ? 1.0 : 2.0)) * zNear; } else if (nearInf) { double e = 1E-6; rm22 = (zZeroToOne ? 0.0 : 1.0) - e; rm32 = ((zZeroToOne ? 1.0 : 2.0) - e) * zFar; } else { rm22 = (zZeroToOne ? zFar : zFar + zNear) / (zFar - zNear); rm32 = (zZeroToOne ? zFar : zFar + zFar) * zNear / (zNear - zFar); } // perform optimized matrix multiplication double nm20 = m00 * rm20 + m10 * rm21 + m20 * rm22 + m30; double nm21 = m01 * rm20 + m11 * rm21 + m21 * rm22 + m31; double nm22 = m02 * rm20 + m12 * rm21 + m22 * rm22 + m32; double nm23 = m03 * rm20 + m13 * rm21 + m23 * rm22 + m33; dest._m00(m00 * rm00) ._m01(m01 * rm00) ._m02(m02 * rm00) ._m03(m03 * rm00) ._m10(m10 * rm11) ._m11(m11 * rm11) ._m12(m12 * rm11) ._m13(m13 * rm11) ._m30(m20 * rm32) ._m31(m21 * rm32) ._m32(m22 * rm32) ._m33(m23 * rm32) ._m20(nm20) ._m21(nm21) ._m22(nm22) ._m23(nm23) ._properties(0); return dest; } /** * Apply an arbitrary perspective projection frustum transformation for a left-handed coordinate system * using the given NDC z range to this matrix. *

* If M is this matrix and F the frustum matrix, * then the new matrix will be M * F. So when transforming a * vector v with the new matrix by using M * F * v, * the frustum transformation will be applied first! *

* In order to set the matrix to a perspective frustum transformation without post-multiplying, * use {@link #setFrustumLH(double, double, double, double, double, double, boolean) setFrustumLH()}. *

* Reference: http://www.songho.ca * * @see #setFrustumLH(double, double, double, double, double, double, boolean) * * @param left * the distance along the x-axis to the left frustum edge * @param right * the distance along the x-axis to the right frustum edge * @param bottom * the distance along the y-axis to the bottom frustum edge * @param top * the distance along the y-axis to the top frustum edge * @param zNear * near clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the near clipping plane will be at positive infinity. * In that case, zFar may not also be {@link Double#POSITIVE_INFINITY}. * @param zFar * far clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the far clipping plane will be at positive infinity. * In that case, zNear may not also be {@link Double#POSITIVE_INFINITY}. * @param zZeroToOne * whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true * or whether to use OpenGL's NDC z range of [-1..+1] when false * @return this */ public Matrix4d frustumLH(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne) { return frustumLH(left, right, bottom, top, zNear, zFar, zZeroToOne, this); } /** * Apply an arbitrary perspective projection frustum transformation for a left-handed coordinate system * using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest. *

* If M is this matrix and F the frustum matrix, * then the new matrix will be M * F. So when transforming a * vector v with the new matrix by using M * F * v, * the frustum transformation will be applied first! *

* In order to set the matrix to a perspective frustum transformation without post-multiplying, * use {@link #setFrustumLH(double, double, double, double, double, double) setFrustumLH()}. *

* Reference: http://www.songho.ca * * @see #setFrustumLH(double, double, double, double, double, double) * * @param left * the distance along the x-axis to the left frustum edge * @param right * the distance along the x-axis to the right frustum edge * @param bottom * the distance along the y-axis to the bottom frustum edge * @param top * the distance along the y-axis to the top frustum edge * @param zNear * near clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the near clipping plane will be at positive infinity. * In that case, zFar may not also be {@link Double#POSITIVE_INFINITY}. * @param zFar * far clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the far clipping plane will be at positive infinity. * In that case, zNear may not also be {@link Double#POSITIVE_INFINITY}. * @param dest * will hold the result * @return dest */ public Matrix4d frustumLH(double left, double right, double bottom, double top, double zNear, double zFar, Matrix4d dest) { return frustumLH(left, right, bottom, top, zNear, zFar, false, dest); } /** * Apply an arbitrary perspective projection frustum transformation for a left-handed coordinate system * using the given NDC z range to this matrix. *

* If M is this matrix and F the frustum matrix, * then the new matrix will be M * F. So when transforming a * vector v with the new matrix by using M * F * v, * the frustum transformation will be applied first! *

* In order to set the matrix to a perspective frustum transformation without post-multiplying, * use {@link #setFrustumLH(double, double, double, double, double, double) setFrustumLH()}. *

* Reference: http://www.songho.ca * * @see #setFrustumLH(double, double, double, double, double, double) * * @param left * the distance along the x-axis to the left frustum edge * @param right * the distance along the x-axis to the right frustum edge * @param bottom * the distance along the y-axis to the bottom frustum edge * @param top * the distance along the y-axis to the top frustum edge * @param zNear * near clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the near clipping plane will be at positive infinity. * In that case, zFar may not also be {@link Double#POSITIVE_INFINITY}. * @param zFar * far clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the far clipping plane will be at positive infinity. * In that case, zNear may not also be {@link Double#POSITIVE_INFINITY}. * @return this */ public Matrix4d frustumLH(double left, double right, double bottom, double top, double zNear, double zFar) { return frustumLH(left, right, bottom, top, zNear, zFar, this); } /** * Set this matrix to be an arbitrary perspective projection frustum transformation for a left-handed coordinate system * using OpenGL's NDC z range of [-1..+1]. *

* In order to apply the perspective frustum transformation to an existing transformation, * use {@link #frustumLH(double, double, double, double, double, double, boolean) frustumLH()}. *

* Reference: http://www.songho.ca * * @see #frustumLH(double, double, double, double, double, double, boolean) * * @param left * the distance along the x-axis to the left frustum edge * @param right * the distance along the x-axis to the right frustum edge * @param bottom * the distance along the y-axis to the bottom frustum edge * @param top * the distance along the y-axis to the top frustum edge * @param zNear * near clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the near clipping plane will be at positive infinity. * In that case, zFar may not also be {@link Double#POSITIVE_INFINITY}. * @param zFar * far clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the far clipping plane will be at positive infinity. * In that case, zNear may not also be {@link Double#POSITIVE_INFINITY}. * @param zZeroToOne * whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true * or whether to use OpenGL's NDC z range of [-1..+1] when false * @return this */ public Matrix4d setFrustumLH(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne) { if ((properties & PROPERTY_IDENTITY) == 0) _identity(); _m00((zNear + zNear) / (right - left)). _m11((zNear + zNear) / (top - bottom)). _m20((right + left) / (right - left)). _m21((top + bottom) / (top - bottom)); boolean farInf = zFar > 0 && Double.isInfinite(zFar); boolean nearInf = zNear > 0 && Double.isInfinite(zNear); if (farInf) { // See: "Infinite Projection Matrix" (http://www.terathon.com/gdc07_lengyel.pdf) double e = 1E-6; _m22(1.0 - e). _m32((e - (zZeroToOne ? 1.0 : 2.0)) * zNear); } else if (nearInf) { double e = 1E-6; _m22((zZeroToOne ? 0.0 : 1.0) - e). _m32(((zZeroToOne ? 1.0 : 2.0) - e) * zFar); } else { _m22((zZeroToOne ? zFar : zFar + zNear) / (zFar - zNear)). _m32((zZeroToOne ? zFar : zFar + zFar) * zNear / (zNear - zFar)); } _m23(1.0). _m33(0.0). properties = this.m20 == 0.0 && this.m21 == 0.0 ? PROPERTY_PERSPECTIVE : 0; return this; } /** * Set this matrix to be an arbitrary perspective projection frustum transformation for a left-handed coordinate system * using OpenGL's NDC z range of [-1..+1]. *

* In order to apply the perspective frustum transformation to an existing transformation, * use {@link #frustumLH(double, double, double, double, double, double) frustumLH()}. *

* Reference: http://www.songho.ca * * @see #frustumLH(double, double, double, double, double, double) * * @param left * the distance along the x-axis to the left frustum edge * @param right * the distance along the x-axis to the right frustum edge * @param bottom * the distance along the y-axis to the bottom frustum edge * @param top * the distance along the y-axis to the top frustum edge * @param zNear * near clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the near clipping plane will be at positive infinity. * In that case, zFar may not also be {@link Double#POSITIVE_INFINITY}. * @param zFar * far clipping plane distance. This value must be greater than zero. * If the special value {@link Double#POSITIVE_INFINITY} is used, the far clipping plane will be at positive infinity. * In that case, zNear may not also be {@link Double#POSITIVE_INFINITY}. * @return this */ public Matrix4d setFrustumLH(double left, double right, double bottom, double top, double zNear, double zFar) { return setFrustumLH(left, right, bottom, top, zNear, zFar, false); } /** * Set this matrix to represent a perspective projection equivalent to the given intrinsic camera calibration parameters. * The resulting matrix will be suited for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1]. *

* See: https://en.wikipedia.org/ *

* Reference: http://ksimek.github.io/ * * @param alphaX * specifies the focal length and scale along the X axis * @param alphaY * specifies the focal length and scale along the Y axis * @param gamma * the skew coefficient between the X and Y axis (may be 0) * @param u0 * the X coordinate of the principal point in image/sensor units * @param v0 * the Y coordinate of the principal point in image/sensor units * @param imgWidth * the width of the sensor/image image/sensor units * @param imgHeight * the height of the sensor/image image/sensor units * @param near * the distance to the near plane * @param far * the distance to the far plane * @return this */ public Matrix4d setFromIntrinsic(double alphaX, double alphaY, double gamma, double u0, double v0, int imgWidth, int imgHeight, double near, double far) { double l00 = 2.0 / imgWidth; double l11 = 2.0 / imgHeight; double l22 = 2.0 / (near - far); this.m00 = l00 * alphaX; this.m01 = 0.0; this.m02 = 0.0; this.m03 = 0.0; this.m10 = l00 * gamma; this.m11 = l11 * alphaY; this.m12 = 0.0; this.m13 = 0.0; this.m20 = l00 * u0 - 1.0; this.m21 = l11 * v0 - 1.0; this.m22 = l22 * -(near + far) + (far + near) / (near - far); this.m23 = -1.0; this.m30 = 0.0; this.m31 = 0.0; this.m32 = l22 * -near * far; this.m33 = 0.0; this.properties = PROPERTY_PERSPECTIVE; return this; } public Vector4d frustumPlane(int plane, Vector4d dest) { switch (plane) { case PLANE_NX: dest.set(m03 + m00, m13 + m10, m23 + m20, m33 + m30).normalize3(); break; case PLANE_PX: dest.set(m03 - m00, m13 - m10, m23 - m20, m33 - m30).normalize3(); break; case PLANE_NY: dest.set(m03 + m01, m13 + m11, m23 + m21, m33 + m31).normalize3(); break; case PLANE_PY: dest.set(m03 - m01, m13 - m11, m23 - m21, m33 - m31).normalize3(); break; case PLANE_NZ: dest.set(m03 + m02, m13 + m12, m23 + m22, m33 + m32).normalize3(); break; case PLANE_PZ: dest.set(m03 - m02, m13 - m12, m23 - m22, m33 - m32).normalize3(); break; default: throw new IllegalArgumentException("dest"); //$NON-NLS-1$ } return dest; } public Vector3d frustumCorner(int corner, Vector3d dest) { double d1, d2, d3; double n1x, n1y, n1z, n2x, n2y, n2z, n3x, n3y, n3z; switch (corner) { case CORNER_NXNYNZ: // left, bottom, near n1x = m03 + m00; n1y = m13 + m10; n1z = m23 + m20; d1 = m33 + m30; // left n2x = m03 + m01; n2y = m13 + m11; n2z = m23 + m21; d2 = m33 + m31; // bottom n3x = m03 + m02; n3y = m13 + m12; n3z = m23 + m22; d3 = m33 + m32; // near break; case CORNER_PXNYNZ: // right, bottom, near n1x = m03 - m00; n1y = m13 - m10; n1z = m23 - m20; d1 = m33 - m30; // right n2x = m03 + m01; n2y = m13 + m11; n2z = m23 + m21; d2 = m33 + m31; // bottom n3x = m03 + m02; n3y = m13 + m12; n3z = m23 + m22; d3 = m33 + m32; // near break; case CORNER_PXPYNZ: // right, top, near n1x = m03 - m00; n1y = m13 - m10; n1z = m23 - m20; d1 = m33 - m30; // right n2x = m03 - m01; n2y = m13 - m11; n2z = m23 - m21; d2 = m33 - m31; // top n3x = m03 + m02; n3y = m13 + m12; n3z = m23 + m22; d3 = m33 + m32; // near break; case CORNER_NXPYNZ: // left, top, near n1x = m03 + m00; n1y = m13 + m10; n1z = m23 + m20; d1 = m33 + m30; // left n2x = m03 - m01; n2y = m13 - m11; n2z = m23 - m21; d2 = m33 - m31; // top n3x = m03 + m02; n3y = m13 + m12; n3z = m23 + m22; d3 = m33 + m32; // near break; case CORNER_PXNYPZ: // right, bottom, far n1x = m03 - m00; n1y = m13 - m10; n1z = m23 - m20; d1 = m33 - m30; // right n2x = m03 + m01; n2y = m13 + m11; n2z = m23 + m21; d2 = m33 + m31; // bottom n3x = m03 - m02; n3y = m13 - m12; n3z = m23 - m22; d3 = m33 - m32; // far break; case CORNER_NXNYPZ: // left, bottom, far n1x = m03 + m00; n1y = m13 + m10; n1z = m23 + m20; d1 = m33 + m30; // left n2x = m03 + m01; n2y = m13 + m11; n2z = m23 + m21; d2 = m33 + m31; // bottom n3x = m03 - m02; n3y = m13 - m12; n3z = m23 - m22; d3 = m33 - m32; // far break; case CORNER_NXPYPZ: // left, top, far n1x = m03 + m00; n1y = m13 + m10; n1z = m23 + m20; d1 = m33 + m30; // left n2x = m03 - m01; n2y = m13 - m11; n2z = m23 - m21; d2 = m33 - m31; // top n3x = m03 - m02; n3y = m13 - m12; n3z = m23 - m22; d3 = m33 - m32; // far break; case CORNER_PXPYPZ: // right, top, far n1x = m03 - m00; n1y = m13 - m10; n1z = m23 - m20; d1 = m33 - m30; // right n2x = m03 - m01; n2y = m13 - m11; n2z = m23 - m21; d2 = m33 - m31; // top n3x = m03 - m02; n3y = m13 - m12; n3z = m23 - m22; d3 = m33 - m32; // far break; default: throw new IllegalArgumentException("corner"); //$NON-NLS-1$ } double c23x, c23y, c23z; c23x = n2y * n3z - n2z * n3y; c23y = n2z * n3x - n2x * n3z; c23z = n2x * n3y - n2y * n3x; double c31x, c31y, c31z; c31x = n3y * n1z - n3z * n1y; c31y = n3z * n1x - n3x * n1z; c31z = n3x * n1y - n3y * n1x; double c12x, c12y, c12z; c12x = n1y * n2z - n1z * n2y; c12y = n1z * n2x - n1x * n2z; c12z = n1x * n2y - n1y * n2x; double invDot = 1.0 / (n1x * c23x + n1y * c23y + n1z * c23z); dest.x = (-c23x * d1 - c31x * d2 - c12x * d3) * invDot; dest.y = (-c23y * d1 - c31y * d2 - c12y * d3) * invDot; dest.z = (-c23z * d1 - c31z * d2 - c12z * d3) * invDot; return dest; } public Vector3d perspectiveOrigin(Vector3d dest) { /* * Simply compute the intersection point of the left, right and top frustum plane. */ double d1, d2, d3; double n1x, n1y, n1z, n2x, n2y, n2z, n3x, n3y, n3z; n1x = m03 + m00; n1y = m13 + m10; n1z = m23 + m20; d1 = m33 + m30; // left n2x = m03 - m00; n2y = m13 - m10; n2z = m23 - m20; d2 = m33 - m30; // right n3x = m03 - m01; n3y = m13 - m11; n3z = m23 - m21; d3 = m33 - m31; // top double c23x, c23y, c23z; c23x = n2y * n3z - n2z * n3y; c23y = n2z * n3x - n2x * n3z; c23z = n2x * n3y - n2y * n3x; double c31x, c31y, c31z; c31x = n3y * n1z - n3z * n1y; c31y = n3z * n1x - n3x * n1z; c31z = n3x * n1y - n3y * n1x; double c12x, c12y, c12z; c12x = n1y * n2z - n1z * n2y; c12y = n1z * n2x - n1x * n2z; c12z = n1x * n2y - n1y * n2x; double invDot = 1.0 / (n1x * c23x + n1y * c23y + n1z * c23z); dest.x = (-c23x * d1 - c31x * d2 - c12x * d3) * invDot; dest.y = (-c23y * d1 - c31y * d2 - c12y * d3) * invDot; dest.z = (-c23z * d1 - c31z * d2 - c12z * d3) * invDot; return dest; } public Vector3d perspectiveInvOrigin(Vector3d dest) { double invW = 1.0 / m23; dest.x = m20 * invW; dest.y = m21 * invW; dest.z = m22 * invW; return dest; } public double perspectiveFov() { /* * Compute the angle between the bottom and top frustum plane normals. */ double n1x, n1y, n1z, n2x, n2y, n2z; n1x = m03 + m01; n1y = m13 + m11; n1z = m23 + m21; // bottom n2x = m01 - m03; n2y = m11 - m13; n2z = m21 - m23; // top double n1len = Math.sqrt(n1x * n1x + n1y * n1y + n1z * n1z); double n2len = Math.sqrt(n2x * n2x + n2y * n2y + n2z * n2z); return Math.acos((n1x * n2x + n1y * n2y + n1z * n2z) / (n1len * n2len)); } public double perspectiveNear() { return m32 / (m23 + m22); } public double perspectiveFar() { return m32 / (m22 - m23); } public Vector3d frustumRayDir(double x, double y, Vector3d dest) { /* * This method works by first obtaining the frustum plane normals, * then building the cross product to obtain the corner rays, * and finally bilinearly interpolating to obtain the desired direction. * The code below uses a condense form of doing all this making use * of some mathematical identities to simplify the overall expression. */ double a = m10 * m23, b = m13 * m21, c = m10 * m21, d = m11 * m23, e = m13 * m20, f = m11 * m20; double g = m03 * m20, h = m01 * m23, i = m01 * m20, j = m03 * m21, k = m00 * m23, l = m00 * m21; double m = m00 * m13, n = m03 * m11, o = m00 * m11, p = m01 * m13, q = m03 * m10, r = m01 * m10; double m1x, m1y, m1z; m1x = (d + e + f - a - b - c) * (1.0 - y) + (a - b - c + d - e + f) * y; m1y = (j + k + l - g - h - i) * (1.0 - y) + (g - h - i + j - k + l) * y; m1z = (p + q + r - m - n - o) * (1.0 - y) + (m - n - o + p - q + r) * y; double m2x, m2y, m2z; m2x = (b - c - d + e + f - a) * (1.0 - y) + (a + b - c - d - e + f) * y; m2y = (h - i - j + k + l - g) * (1.0 - y) + (g + h - i - j - k + l) * y; m2z = (n - o - p + q + r - m) * (1.0 - y) + (m + n - o - p - q + r) * y; dest.x = m1x * (1.0 - x) + m2x * x; dest.y = m1y * (1.0 - x) + m2y * x; dest.z = m1z * (1.0 - x) + m2z * x; return dest.normalize(dest); } public Vector3d positiveZ(Vector3d dir) { if ((properties & PROPERTY_ORTHONORMAL) != 0) return normalizedPositiveZ(dir); return positiveZGeneric(dir); } private Vector3d positiveZGeneric(Vector3d dir) { return dir.set(m10 * m21 - m11 * m20, m20 * m01 - m21 * m00, m00 * m11 - m01 * m10).normalize(); } public Vector3d normalizedPositiveZ(Vector3d dir) { return dir.set(m02, m12, m22); } public Vector3d positiveX(Vector3d dir) { if ((properties & PROPERTY_ORTHONORMAL) != 0) return normalizedPositiveX(dir); return positiveXGeneric(dir); } private Vector3d positiveXGeneric(Vector3d dir) { return dir.set(m11 * m22 - m12 * m21, m02 * m21 - m01 * m22, m01 * m12 - m02 * m11).normalize(); } public Vector3d normalizedPositiveX(Vector3d dir) { return dir.set(m00, m10, m20); } public Vector3d positiveY(Vector3d dir) { if ((properties & PROPERTY_ORTHONORMAL) != 0) return normalizedPositiveY(dir); return positiveYGeneric(dir); } private Vector3d positiveYGeneric(Vector3d dir) { return dir.set(m12 * m20 - m10 * m22, m00 * m22 - m02 * m20, m02 * m10 - m00 * m12).normalize(); } public Vector3d normalizedPositiveY(Vector3d dir) { return dir.set(m01, m11, m21); } public Vector3d originAffine(Vector3d dest) { double a = m00 * m11 - m01 * m10; double b = m00 * m12 - m02 * m10; double d = m01 * m12 - m02 * m11; double g = m20 * m31 - m21 * m30; double h = m20 * m32 - m22 * m30; double j = m21 * m32 - m22 * m31; dest.x = -m10 * j + m11 * h - m12 * g; dest.y = m00 * j - m01 * h + m02 * g; dest.z = -m30 * d + m31 * b - m32 * a; return dest; } public Vector3d origin(Vector3d dest) { if ((properties & PROPERTY_AFFINE) != 0) return originAffine(dest); return originGeneric(dest); } private Vector3d originGeneric(Vector3d dest) { double a = m00 * m11 - m01 * m10; double b = m00 * m12 - m02 * m10; double c = m00 * m13 - m03 * m10; double d = m01 * m12 - m02 * m11; double e = m01 * m13 - m03 * m11; double f = m02 * m13 - m03 * m12; double g = m20 * m31 - m21 * m30; double h = m20 * m32 - m22 * m30; double i = m20 * m33 - m23 * m30; double j = m21 * m32 - m22 * m31; double k = m21 * m33 - m23 * m31; double l = m22 * m33 - m23 * m32; double det = a * l - b * k + c * j + d * i - e * h + f * g; double invDet = 1.0 / det; double nm30 = (-m10 * j + m11 * h - m12 * g) * invDet; double nm31 = ( m00 * j - m01 * h + m02 * g) * invDet; double nm32 = (-m30 * d + m31 * b - m32 * a) * invDet; double nm33 = det / ( m20 * d - m21 * b + m22 * a); double x = nm30 * nm33; double y = nm31 * nm33; double z = nm32 * nm33; return dest.set(x, y, z); } /** * Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equation * x*a + y*b + z*c + d = 0 as if casting a shadow from a given light position/direction light. *

* If light.w is 0.0 the light is being treated as a directional light; if it is 1.0 it is a point light. *

* If M is this matrix and S the shadow matrix, * then the new matrix will be M * S. So when transforming a * vector v with the new matrix by using M * S * v, the * shadow projection will be applied first! *

* Reference: ftp.sgi.com * * @param light * the light's vector * @param a * the x factor in the plane equation * @param b * the y factor in the plane equation * @param c * the z factor in the plane equation * @param d * the constant in the plane equation * @return this */ public Matrix4d shadow(Vector4dc light, double a, double b, double c, double d) { return shadow(light.x(), light.y(), light.z(), light.w(), a, b, c, d, this); } public Matrix4d shadow(Vector4dc light, double a, double b, double c, double d, Matrix4d dest) { return shadow(light.x(), light.y(), light.z(), light.w(), a, b, c, d, dest); } /** * Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equation * x*a + y*b + z*c + d = 0 as if casting a shadow from a given light position/direction (lightX, lightY, lightZ, lightW). *

* If lightW is 0.0 the light is being treated as a directional light; if it is 1.0 it is a point light. *

* If M is this matrix and S the shadow matrix, * then the new matrix will be M * S. So when transforming a * vector v with the new matrix by using M * S * v, the * shadow projection will be applied first! *

* Reference: ftp.sgi.com * * @param lightX * the x-component of the light's vector * @param lightY * the y-component of the light's vector * @param lightZ * the z-component of the light's vector * @param lightW * the w-component of the light's vector * @param a * the x factor in the plane equation * @param b * the y factor in the plane equation * @param c * the z factor in the plane equation * @param d * the constant in the plane equation * @return this */ public Matrix4d shadow(double lightX, double lightY, double lightZ, double lightW, double a, double b, double c, double d) { return shadow(lightX, lightY, lightZ, lightW, a, b, c, d, this); } public Matrix4d shadow(double lightX, double lightY, double lightZ, double lightW, double a, double b, double c, double d, Matrix4d dest) { // normalize plane double invPlaneLen = Math.invsqrt(a*a + b*b + c*c); double an = a * invPlaneLen; double bn = b * invPlaneLen; double cn = c * invPlaneLen; double dn = d * invPlaneLen; double dot = an * lightX + bn * lightY + cn * lightZ + dn * lightW; // compute right matrix elements double rm00 = dot - an * lightX; double rm01 = -an * lightY; double rm02 = -an * lightZ; double rm03 = -an * lightW; double rm10 = -bn * lightX; double rm11 = dot - bn * lightY; double rm12 = -bn * lightZ; double rm13 = -bn * lightW; double rm20 = -cn * lightX; double rm21 = -cn * lightY; double rm22 = dot - cn * lightZ; double rm23 = -cn * lightW; double rm30 = -dn * lightX; double rm31 = -dn * lightY; double rm32 = -dn * lightZ; double rm33 = dot - dn * lightW; // matrix multiplication double nm00 = m00 * rm00 + m10 * rm01 + m20 * rm02 + m30 * rm03; double nm01 = m01 * rm00 + m11 * rm01 + m21 * rm02 + m31 * rm03; double nm02 = m02 * rm00 + m12 * rm01 + m22 * rm02 + m32 * rm03; double nm03 = m03 * rm00 + m13 * rm01 + m23 * rm02 + m33 * rm03; double nm10 = m00 * rm10 + m10 * rm11 + m20 * rm12 + m30 * rm13; double nm11 = m01 * rm10 + m11 * rm11 + m21 * rm12 + m31 * rm13; double nm12 = m02 * rm10 + m12 * rm11 + m22 * rm12 + m32 * rm13; double nm13 = m03 * rm10 + m13 * rm11 + m23 * rm12 + m33 * rm13; double nm20 = m00 * rm20 + m10 * rm21 + m20 * rm22 + m30 * rm23; double nm21 = m01 * rm20 + m11 * rm21 + m21 * rm22 + m31 * rm23; double nm22 = m02 * rm20 + m12 * rm21 + m22 * rm22 + m32 * rm23; double nm23 = m03 * rm20 + m13 * rm21 + m23 * rm22 + m33 * rm23; dest._m30(m00 * rm30 + m10 * rm31 + m20 * rm32 + m30 * rm33) ._m31(m01 * rm30 + m11 * rm31 + m21 * rm32 + m31 * rm33) ._m32(m02 * rm30 + m12 * rm31 + m22 * rm32 + m32 * rm33) ._m33(m03 * rm30 + m13 * rm31 + m23 * rm32 + m33 * rm33) ._m00(nm00) ._m01(nm01) ._m02(nm02) ._m03(nm03) ._m10(nm10) ._m11(nm11) ._m12(nm12) ._m13(nm13) ._m20(nm20) ._m21(nm21) ._m22(nm22) ._m23(nm23) ._properties(properties & ~(PROPERTY_PERSPECTIVE | PROPERTY_IDENTITY | PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL)); return dest; } public Matrix4d shadow(Vector4dc light, Matrix4dc planeTransform, Matrix4d dest) { // compute plane equation by transforming (y = 0) double a = planeTransform.m10(); double b = planeTransform.m11(); double c = planeTransform.m12(); double d = -a * planeTransform.m30() - b * planeTransform.m31() - c * planeTransform.m32(); return shadow(light.x(), light.y(), light.z(), light.w(), a, b, c, d, dest); } /** * Apply a projection transformation to this matrix that projects onto the plane with the general plane equation * y = 0 as if casting a shadow from a given light position/direction light. *

* Before the shadow projection is applied, the plane is transformed via the specified planeTransformation. *

* If light.w is 0.0 the light is being treated as a directional light; if it is 1.0 it is a point light. *

* If M is this matrix and S the shadow matrix, * then the new matrix will be M * S. So when transforming a * vector v with the new matrix by using M * S * v, the * shadow projection will be applied first! * * @param light * the light's vector * @param planeTransform * the transformation to transform the implied plane y = 0 before applying the projection * @return this */ public Matrix4d shadow(Vector4d light, Matrix4d planeTransform) { return shadow(light, planeTransform, this); } public Matrix4d shadow(double lightX, double lightY, double lightZ, double lightW, Matrix4dc planeTransform, Matrix4d dest) { // compute plane equation by transforming (y = 0) double a = planeTransform.m10(); double b = planeTransform.m11(); double c = planeTransform.m12(); double d = -a * planeTransform.m30() - b * planeTransform.m31() - c * planeTransform.m32(); return shadow(lightX, lightY, lightZ, lightW, a, b, c, d, dest); } /** * Apply a projection transformation to this matrix that projects onto the plane with the general plane equation * y = 0 as if casting a shadow from a given light position/direction (lightX, lightY, lightZ, lightW). *

* Before the shadow projection is applied, the plane is transformed via the specified planeTransformation. *

* If lightW is 0.0 the light is being treated as a directional light; if it is 1.0 it is a point light. *

* If M is this matrix and S the shadow matrix, * then the new matrix will be M * S. So when transforming a * vector v with the new matrix by using M * S * v, the * shadow projection will be applied first! * * @param lightX * the x-component of the light vector * @param lightY * the y-component of the light vector * @param lightZ * the z-component of the light vector * @param lightW * the w-component of the light vector * @param planeTransform * the transformation to transform the implied plane y = 0 before applying the projection * @return this */ public Matrix4d shadow(double lightX, double lightY, double lightZ, double lightW, Matrix4dc planeTransform) { return shadow(lightX, lightY, lightZ, lightW, planeTransform, this); } /** * Set this matrix to a cylindrical billboard transformation that rotates the local +Z axis of a given object with position objPos towards * a target position at targetPos while constraining a cylindrical rotation around the given up vector. *

* This method can be used to create the complete model transformation for a given object, including the translation of the object to * its position objPos. * * @param objPos * the position of the object to rotate towards targetPos * @param targetPos * the position of the target (for example the camera) towards which to rotate the object * @param up * the rotation axis (must be {@link Vector3d#normalize() normalized}) * @return this */ public Matrix4d billboardCylindrical(Vector3dc objPos, Vector3dc targetPos, Vector3dc up) { double dirX = targetPos.x() - objPos.x(); double dirY = targetPos.y() - objPos.y(); double dirZ = targetPos.z() - objPos.z(); // left = up x dir double leftX = up.y() * dirZ - up.z() * dirY; double leftY = up.z() * dirX - up.x() * dirZ; double leftZ = up.x() * dirY - up.y() * dirX; // normalize left double invLeftLen = Math.invsqrt(leftX * leftX + leftY * leftY + leftZ * leftZ); leftX *= invLeftLen; leftY *= invLeftLen; leftZ *= invLeftLen; // recompute dir by constraining rotation around 'up' // dir = left x up dirX = leftY * up.z() - leftZ * up.y(); dirY = leftZ * up.x() - leftX * up.z(); dirZ = leftX * up.y() - leftY * up.x(); // normalize dir double invDirLen = Math.invsqrt(dirX * dirX + dirY * dirY + dirZ * dirZ); dirX *= invDirLen; dirY *= invDirLen; dirZ *= invDirLen; // set matrix elements _m00(leftX). _m01(leftY). _m02(leftZ). _m03(0.0). _m10(up.x()). _m11(up.y()). _m12(up.z()). _m13(0.0). _m20(dirX). _m21(dirY). _m22(dirZ). _m23(0.0). _m30(objPos.x()). _m31(objPos.y()). _m32(objPos.z()). _m33(1.0). properties = PROPERTY_AFFINE | PROPERTY_ORTHONORMAL; return this; } /** * Set this matrix to a spherical billboard transformation that rotates the local +Z axis of a given object with position objPos towards * a target position at targetPos. *

* This method can be used to create the complete model transformation for a given object, including the translation of the object to * its position objPos. *

* If preserving an up vector is not necessary when rotating the +Z axis, then a shortest arc rotation can be obtained * using {@link #billboardSpherical(Vector3dc, Vector3dc)}. * * @see #billboardSpherical(Vector3dc, Vector3dc) * * @param objPos * the position of the object to rotate towards targetPos * @param targetPos * the position of the target (for example the camera) towards which to rotate the object * @param up * the up axis used to orient the object * @return this */ public Matrix4d billboardSpherical(Vector3dc objPos, Vector3dc targetPos, Vector3dc up) { double dirX = targetPos.x() - objPos.x(); double dirY = targetPos.y() - objPos.y(); double dirZ = targetPos.z() - objPos.z(); // normalize dir double invDirLen = Math.invsqrt(dirX * dirX + dirY * dirY + dirZ * dirZ); dirX *= invDirLen; dirY *= invDirLen; dirZ *= invDirLen; // left = up x dir double leftX = up.y() * dirZ - up.z() * dirY; double leftY = up.z() * dirX - up.x() * dirZ; double leftZ = up.x() * dirY - up.y() * dirX; // normalize left double invLeftLen = Math.invsqrt(leftX * leftX + leftY * leftY + leftZ * leftZ); leftX *= invLeftLen; leftY *= invLeftLen; leftZ *= invLeftLen; // up = dir x left double upX = dirY * leftZ - dirZ * leftY; double upY = dirZ * leftX - dirX * leftZ; double upZ = dirX * leftY - dirY * leftX; // set matrix elements _m00(leftX). _m01(leftY). _m02(leftZ). _m03(0.0). _m10(upX). _m11(upY). _m12(upZ). _m13(0.0). _m20(dirX). _m21(dirY). _m22(dirZ). _m23(0.0). _m30(objPos.x()). _m31(objPos.y()). _m32(objPos.z()). _m33(1.0). properties = PROPERTY_AFFINE | PROPERTY_ORTHONORMAL; return this; } /** * Set this matrix to a spherical billboard transformation that rotates the local +Z axis of a given object with position objPos towards * a target position at targetPos using a shortest arc rotation by not preserving any up vector of the object. *

* This method can be used to create the complete model transformation for a given object, including the translation of the object to * its position objPos. *

* In order to specify an up vector which needs to be maintained when rotating the +Z axis of the object, * use {@link #billboardSpherical(Vector3dc, Vector3dc, Vector3dc)}. * * @see #billboardSpherical(Vector3dc, Vector3dc, Vector3dc) * * @param objPos * the position of the object to rotate towards targetPos * @param targetPos * the position of the target (for example the camera) towards which to rotate the object * @return this */ public Matrix4d billboardSpherical(Vector3dc objPos, Vector3dc targetPos) { double toDirX = targetPos.x() - objPos.x(); double toDirY = targetPos.y() - objPos.y(); double toDirZ = targetPos.z() - objPos.z(); double x = -toDirY; double y = toDirX; double w = Math.sqrt(toDirX * toDirX + toDirY * toDirY + toDirZ * toDirZ) + toDirZ; double invNorm = Math.invsqrt(x * x + y * y + w * w); x *= invNorm; y *= invNorm; w *= invNorm; double q00 = (x + x) * x; double q11 = (y + y) * y; double q01 = (x + x) * y; double q03 = (x + x) * w; double q13 = (y + y) * w; _m00(1.0 - q11). _m01(q01). _m02(-q13). _m03(0.0). _m10(q01). _m11(1.0 - q00). _m12(q03). _m13(0.0). _m20(q13). _m21(-q03). _m22(1.0 - q11 - q00). _m23(0.0). _m30(objPos.x()). _m31(objPos.y()). _m32(objPos.z()). _m33(1.0). properties = PROPERTY_AFFINE | PROPERTY_ORTHONORMAL; return this; } public int hashCode() { final int prime = 31; int result = 1; long temp; temp = Double.doubleToLongBits(m00); result = prime * result + (int) (temp ^ (temp >>> 32)); temp = Double.doubleToLongBits(m01); result = prime * result + (int) (temp ^ (temp >>> 32)); temp = Double.doubleToLongBits(m02); result = prime * result + (int) (temp ^ (temp >>> 32)); temp = Double.doubleToLongBits(m03); result = prime * result + (int) (temp ^ (temp >>> 32)); temp = Double.doubleToLongBits(m10); result = prime * result + (int) (temp ^ (temp >>> 32)); temp = Double.doubleToLongBits(m11); result = prime * result + (int) (temp ^ (temp >>> 32)); temp = Double.doubleToLongBits(m12); result = prime * result + (int) (temp ^ (temp >>> 32)); temp = Double.doubleToLongBits(m13); result = prime * result + (int) (temp ^ (temp >>> 32)); temp = Double.doubleToLongBits(m20); result = prime * result + (int) (temp ^ (temp >>> 32)); temp = Double.doubleToLongBits(m21); result = prime * result + (int) (temp ^ (temp >>> 32)); temp = Double.doubleToLongBits(m22); result = prime * result + (int) (temp ^ (temp >>> 32)); temp = Double.doubleToLongBits(m23); result = prime * result + (int) (temp ^ (temp >>> 32)); temp = Double.doubleToLongBits(m30); result = prime * result + (int) (temp ^ (temp >>> 32)); temp = Double.doubleToLongBits(m31); result = prime * result + (int) (temp ^ (temp >>> 32)); temp = Double.doubleToLongBits(m32); result = prime * result + (int) (temp ^ (temp >>> 32)); temp = Double.doubleToLongBits(m33); result = prime * result + (int) (temp ^ (temp >>> 32)); return result; } public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (!(obj instanceof Matrix4d)) return false; Matrix4d other = (Matrix4d) obj; if (Double.doubleToLongBits(m00) != Double.doubleToLongBits(other.m00)) return false; if (Double.doubleToLongBits(m01) != Double.doubleToLongBits(other.m01)) return false; if (Double.doubleToLongBits(m02) != Double.doubleToLongBits(other.m02)) return false; if (Double.doubleToLongBits(m03) != Double.doubleToLongBits(other.m03)) return false; if (Double.doubleToLongBits(m10) != Double.doubleToLongBits(other.m10)) return false; if (Double.doubleToLongBits(m11) != Double.doubleToLongBits(other.m11)) return false; if (Double.doubleToLongBits(m12) != Double.doubleToLongBits(other.m12)) return false; if (Double.doubleToLongBits(m13) != Double.doubleToLongBits(other.m13)) return false; if (Double.doubleToLongBits(m20) != Double.doubleToLongBits(other.m20)) return false; if (Double.doubleToLongBits(m21) != Double.doubleToLongBits(other.m21)) return false; if (Double.doubleToLongBits(m22) != Double.doubleToLongBits(other.m22)) return false; if (Double.doubleToLongBits(m23) != Double.doubleToLongBits(other.m23)) return false; if (Double.doubleToLongBits(m30) != Double.doubleToLongBits(other.m30)) return false; if (Double.doubleToLongBits(m31) != Double.doubleToLongBits(other.m31)) return false; if (Double.doubleToLongBits(m32) != Double.doubleToLongBits(other.m32)) return false; if (Double.doubleToLongBits(m33) != Double.doubleToLongBits(other.m33)) return false; return true; } public boolean equals(Matrix4dc m, double delta) { if (this == m) return true; if (m == null) return false; if (!(m instanceof Matrix4d)) return false; if (!Runtime.equals(m00, m.m00(), delta)) return false; if (!Runtime.equals(m01, m.m01(), delta)) return false; if (!Runtime.equals(m02, m.m02(), delta)) return false; if (!Runtime.equals(m03, m.m03(), delta)) return false; if (!Runtime.equals(m10, m.m10(), delta)) return false; if (!Runtime.equals(m11, m.m11(), delta)) return false; if (!Runtime.equals(m12, m.m12(), delta)) return false; if (!Runtime.equals(m13, m.m13(), delta)) return false; if (!Runtime.equals(m20, m.m20(), delta)) return false; if (!Runtime.equals(m21, m.m21(), delta)) return false; if (!Runtime.equals(m22, m.m22(), delta)) return false; if (!Runtime.equals(m23, m.m23(), delta)) return false; if (!Runtime.equals(m30, m.m30(), delta)) return false; if (!Runtime.equals(m31, m.m31(), delta)) return false; if (!Runtime.equals(m32, m.m32(), delta)) return false; if (!Runtime.equals(m33, m.m33(), delta)) return false; return true; } public Matrix4d pick(double x, double y, double width, double height, int[] viewport, Matrix4d dest) { double sx = viewport[2] / width; double sy = viewport[3] / height; double tx = (viewport[2] + 2.0 * (viewport[0] - x)) / width; double ty = (viewport[3] + 2.0 * (viewport[1] - y)) / height; dest._m30(m00 * tx + m10 * ty + m30) ._m31(m01 * tx + m11 * ty + m31) ._m32(m02 * tx + m12 * ty + m32) ._m33(m03 * tx + m13 * ty + m33) ._m00(m00 * sx) ._m01(m01 * sx) ._m02(m02 * sx) ._m03(m03 * sx) ._m10(m10 * sy) ._m11(m11 * sy) ._m12(m12 * sy) ._m13(m13 * sy) ._properties(0); return dest; } /** * Apply a picking transformation to this matrix using the given window coordinates (x, y) as the pick center * and the given (width, height) as the size of the picking region in window coordinates. * * @param x * the x coordinate of the picking region center in window coordinates * @param y * the y coordinate of the picking region center in window coordinates * @param width * the width of the picking region in window coordinates * @param height * the height of the picking region in window coordinates * @param viewport * the viewport described by [x, y, width, height] * @return this */ public Matrix4d pick(double x, double y, double width, double height, int[] viewport) { return pick(x, y, width, height, viewport, this); } public boolean isAffine() { return m03 == 0.0 && m13 == 0.0 && m23 == 0.0 && m33 == 1.0; } /** * Exchange the values of this matrix with the given other matrix. * * @param other * the other matrix to exchange the values with * @return this */ public Matrix4d swap(Matrix4d other) { double tmp; tmp = m00; m00 = other.m00; other.m00 = tmp; tmp = m01; m01 = other.m01; other.m01 = tmp; tmp = m02; m02 = other.m02; other.m02 = tmp; tmp = m03; m03 = other.m03; other.m03 = tmp; tmp = m10; m10 = other.m10; other.m10 = tmp; tmp = m11; m11 = other.m11; other.m11 = tmp; tmp = m12; m12 = other.m12; other.m12 = tmp; tmp = m13; m13 = other.m13; other.m13 = tmp; tmp = m20; m20 = other.m20; other.m20 = tmp; tmp = m21; m21 = other.m21; other.m21 = tmp; tmp = m22; m22 = other.m22; other.m22 = tmp; tmp = m23; m23 = other.m23; other.m23 = tmp; tmp = m30; m30 = other.m30; other.m30 = tmp; tmp = m31; m31 = other.m31; other.m31 = tmp; tmp = m32; m32 = other.m32; other.m32 = tmp; tmp = m33; m33 = other.m33; other.m33 = tmp; int props = properties; this.properties = other.properties; other.properties = props; return this; } public Matrix4d arcball(double radius, double centerX, double centerY, double centerZ, double angleX, double angleY, Matrix4d dest) { double m30 = m20 * -radius + this.m30; double m31 = m21 * -radius + this.m31; double m32 = m22 * -radius + this.m32; double m33 = m23 * -radius + this.m33; double sin = Math.sin(angleX); double cos = Math.cosFromSin(sin, angleX); double nm10 = m10 * cos + m20 * sin; double nm11 = m11 * cos + m21 * sin; double nm12 = m12 * cos + m22 * sin; double nm13 = m13 * cos + m23 * sin; double m20 = this.m20 * cos - m10 * sin; double m21 = this.m21 * cos - m11 * sin; double m22 = this.m22 * cos - m12 * sin; double m23 = this.m23 * cos - m13 * sin; sin = Math.sin(angleY); cos = Math.cosFromSin(sin, angleY); double nm00 = m00 * cos - m20 * sin; double nm01 = m01 * cos - m21 * sin; double nm02 = m02 * cos - m22 * sin; double nm03 = m03 * cos - m23 * sin; double nm20 = m00 * sin + m20 * cos; double nm21 = m01 * sin + m21 * cos; double nm22 = m02 * sin + m22 * cos; double nm23 = m03 * sin + m23 * cos; dest._m30(-nm00 * centerX - nm10 * centerY - nm20 * centerZ + m30) ._m31(-nm01 * centerX - nm11 * centerY - nm21 * centerZ + m31) ._m32(-nm02 * centerX - nm12 * centerY - nm22 * centerZ + m32) ._m33(-nm03 * centerX - nm13 * centerY - nm23 * centerZ + m33) ._m20(nm20) ._m21(nm21) ._m22(nm22) ._m23(nm23) ._m10(nm10) ._m11(nm11) ._m12(nm12) ._m13(nm13) ._m00(nm00) ._m01(nm01) ._m02(nm02) ._m03(nm03) ._properties(properties & ~(PROPERTY_PERSPECTIVE | PROPERTY_IDENTITY | PROPERTY_TRANSLATION)); return dest; } public Matrix4d arcball(double radius, Vector3dc center, double angleX, double angleY, Matrix4d dest) { return arcball(radius, center.x(), center.y(), center.z(), angleX, angleY, dest); } /** * Apply an arcball view transformation to this matrix with the given radius and center (centerX, centerY, centerZ) * position of the arcball and the specified X and Y rotation angles. *

* This method is equivalent to calling: translate(0, 0, -radius).rotateX(angleX).rotateY(angleY).translate(-centerX, -centerY, -centerZ) * * @param radius * the arcball radius * @param centerX * the x coordinate of the center position of the arcball * @param centerY * the y coordinate of the center position of the arcball * @param centerZ * the z coordinate of the center position of the arcball * @param angleX * the rotation angle around the X axis in radians * @param angleY * the rotation angle around the Y axis in radians * @return this */ public Matrix4d arcball(double radius, double centerX, double centerY, double centerZ, double angleX, double angleY) { return arcball(radius, centerX, centerY, centerZ, angleX, angleY, this); } /** * Apply an arcball view transformation to this matrix with the given radius and center * position of the arcball and the specified X and Y rotation angles. *

* This method is equivalent to calling: translate(0, 0, -radius).rotateX(angleX).rotateY(angleY).translate(-center.x, -center.y, -center.z) * * @param radius * the arcball radius * @param center * the center position of the arcball * @param angleX * the rotation angle around the X axis in radians * @param angleY * the rotation angle around the Y axis in radians * @return this */ public Matrix4d arcball(double radius, Vector3dc center, double angleX, double angleY) { return arcball(radius, center.x(), center.y(), center.z(), angleX, angleY, this); } /** * Compute the axis-aligned bounding box of the frustum described by this matrix and store the minimum corner * coordinates in the given min and the maximum corner coordinates in the given max vector. *

* The matrix this is assumed to be the {@link #invert() inverse} of the origial view-projection matrix * for which to compute the axis-aligned bounding box in world-space. *

* The axis-aligned bounding box of the unit frustum is (-1, -1, -1), (1, 1, 1). * * @param min * will hold the minimum corner coordinates of the axis-aligned bounding box * @param max * will hold the maximum corner coordinates of the axis-aligned bounding box * @return this */ public Matrix4d frustumAabb(Vector3d min, Vector3d max) { double minX = Double.POSITIVE_INFINITY; double minY = Double.POSITIVE_INFINITY; double minZ = Double.POSITIVE_INFINITY; double maxX = Double.NEGATIVE_INFINITY; double maxY = Double.NEGATIVE_INFINITY; double maxZ = Double.NEGATIVE_INFINITY; for (int t = 0; t < 8; t++) { double x = ((t & 1) << 1) - 1.0; double y = (((t >>> 1) & 1) << 1) - 1.0; double z = (((t >>> 2) & 1) << 1) - 1.0; double invW = 1.0 / (m03 * x + m13 * y + m23 * z + m33); double nx = (m00 * x + m10 * y + m20 * z + m30) * invW; double ny = (m01 * x + m11 * y + m21 * z + m31) * invW; double nz = (m02 * x + m12 * y + m22 * z + m32) * invW; minX = minX < nx ? minX : nx; minY = minY < ny ? minY : ny; minZ = minZ < nz ? minZ : nz; maxX = maxX > nx ? maxX : nx; maxY = maxY > ny ? maxY : ny; maxZ = maxZ > nz ? maxZ : nz; } min.x = minX; min.y = minY; min.z = minZ; max.x = maxX; max.y = maxY; max.z = maxZ; return this; } public Matrix4d projectedGridRange(Matrix4dc projector, double sLower, double sUpper, Matrix4d dest) { // Compute intersection with frustum edges and plane double minX = Double.POSITIVE_INFINITY, minY = Double.POSITIVE_INFINITY; double maxX = Double.NEGATIVE_INFINITY, maxY = Double.NEGATIVE_INFINITY; boolean intersection = false; for (int t = 0; t < 3 * 4; t++) { double c0X, c0Y, c0Z; double c1X, c1Y, c1Z; if (t < 4) { // all x edges c0X = -1; c1X = +1; c0Y = c1Y = ((t & 1) << 1) - 1.0; c0Z = c1Z = (((t >>> 1) & 1) << 1) - 1.0; } else if (t < 8) { // all y edges c0Y = -1; c1Y = +1; c0X = c1X = ((t & 1) << 1) - 1.0; c0Z = c1Z = (((t >>> 1) & 1) << 1) - 1.0; } else { // all z edges c0Z = -1; c1Z = +1; c0X = c1X = ((t & 1) << 1) - 1.0; c0Y = c1Y = (((t >>> 1) & 1) << 1) - 1.0; } // unproject corners double invW = 1.0 / (m03 * c0X + m13 * c0Y + m23 * c0Z + m33); double p0x = (m00 * c0X + m10 * c0Y + m20 * c0Z + m30) * invW; double p0y = (m01 * c0X + m11 * c0Y + m21 * c0Z + m31) * invW; double p0z = (m02 * c0X + m12 * c0Y + m22 * c0Z + m32) * invW; invW = 1.0 / (m03 * c1X + m13 * c1Y + m23 * c1Z + m33); double p1x = (m00 * c1X + m10 * c1Y + m20 * c1Z + m30) * invW; double p1y = (m01 * c1X + m11 * c1Y + m21 * c1Z + m31) * invW; double p1z = (m02 * c1X + m12 * c1Y + m22 * c1Z + m32) * invW; double dirX = p1x - p0x; double dirY = p1y - p0y; double dirZ = p1z - p0z; double invDenom = 1.0 / dirY; // test for intersection for (int s = 0; s < 2; s++) { double isectT = -(p0y + (s == 0 ? sLower : sUpper)) * invDenom; if (isectT >= 0.0 && isectT <= 1.0) { intersection = true; // project with projector matrix double ix = p0x + isectT * dirX; double iz = p0z + isectT * dirZ; invW = 1.0 / (projector.m03() * ix + projector.m23() * iz + projector.m33()); double px = (projector.m00() * ix + projector.m20() * iz + projector.m30()) * invW; double py = (projector.m01() * ix + projector.m21() * iz + projector.m31()) * invW; minX = minX < px ? minX : px; minY = minY < py ? minY : py; maxX = maxX > px ? maxX : px; maxY = maxY > py ? maxY : py; } } } if (!intersection) return null; // <- projected grid is not visible dest.set(maxX - minX, 0, 0, 0, 0, maxY - minY, 0, 0, 0, 0, 1, 0, minX, minY, 0, 1) ._properties(PROPERTY_AFFINE); return dest; } public Matrix4d perspectiveFrustumSlice(double near, double far, Matrix4d dest) { double invOldNear = (m23 + m22) / m32; double invNearFar = 1.0 / (near - far); dest._m00(m00 * invOldNear * near) ._m01(m01) ._m02(m02) ._m03(m03) ._m10(m10) ._m11(m11 * invOldNear * near) ._m12(m12) ._m13(m13) ._m20(m20) ._m21(m21) ._m22((far + near) * invNearFar) ._m23(m23) ._m30(m30) ._m31(m31) ._m32((far + far) * near * invNearFar) ._m33(m33) ._properties(properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL)); return dest; } public Matrix4d orthoCrop(Matrix4dc view, Matrix4d dest) { // determine min/max world z and min/max orthographically view-projected x/y double minX = Double.POSITIVE_INFINITY, maxX = Double.NEGATIVE_INFINITY; double minY = Double.POSITIVE_INFINITY, maxY = Double.NEGATIVE_INFINITY; double minZ = Double.POSITIVE_INFINITY, maxZ = Double.NEGATIVE_INFINITY; for (int t = 0; t < 8; t++) { double x = ((t & 1) << 1) - 1.0; double y = (((t >>> 1) & 1) << 1) - 1.0; double z = (((t >>> 2) & 1) << 1) - 1.0; double invW = 1.0 / (m03 * x + m13 * y + m23 * z + m33); double wx = (m00 * x + m10 * y + m20 * z + m30) * invW; double wy = (m01 * x + m11 * y + m21 * z + m31) * invW; double wz = (m02 * x + m12 * y + m22 * z + m32) * invW; invW = 1.0 / (view.m03() * wx + view.m13() * wy + view.m23() * wz + view.m33()); double vx = view.m00() * wx + view.m10() * wy + view.m20() * wz + view.m30(); double vy = view.m01() * wx + view.m11() * wy + view.m21() * wz + view.m31(); double vz = (view.m02() * wx + view.m12() * wy + view.m22() * wz + view.m32()) * invW; minX = minX < vx ? minX : vx; maxX = maxX > vx ? maxX : vx; minY = minY < vy ? minY : vy; maxY = maxY > vy ? maxY : vy; minZ = minZ < vz ? minZ : vz; maxZ = maxZ > vz ? maxZ : vz; } // build crop projection matrix to fit 'this' frustum into view return dest.setOrtho(minX, maxX, minY, maxY, -maxZ, -minZ); } /** * Set this matrix to a perspective transformation that maps the trapezoid spanned by the four corner coordinates * (p0x, p0y), (p1x, p1y), (p2x, p2y) and (p3x, p3y) to the unit square [(-1, -1)..(+1, +1)]. *

* The corner coordinates are given in counter-clockwise order starting from the left corner on the smaller parallel side of the trapezoid * seen when looking at the trapezoid oriented with its shorter parallel edge at the bottom and its longer parallel edge at the top. *

* Reference: Trapezoidal Shadow Maps (TSM) - Recipe * * @param p0x * the x coordinate of the left corner at the shorter edge of the trapezoid * @param p0y * the y coordinate of the left corner at the shorter edge of the trapezoid * @param p1x * the x coordinate of the right corner at the shorter edge of the trapezoid * @param p1y * the y coordinate of the right corner at the shorter edge of the trapezoid * @param p2x * the x coordinate of the right corner at the longer edge of the trapezoid * @param p2y * the y coordinate of the right corner at the longer edge of the trapezoid * @param p3x * the x coordinate of the left corner at the longer edge of the trapezoid * @param p3y * the y coordinate of the left corner at the longer edge of the trapezoid * @return this */ public Matrix4d trapezoidCrop(double p0x, double p0y, double p1x, double p1y, double p2x, double p2y, double p3x, double p3y) { double aX = p1y - p0y, aY = p0x - p1x; double nm00 = aY; double nm10 = -aX; double nm30 = aX * p0y - aY * p0x; double nm01 = aX; double nm11 = aY; double nm31 = -(aX * p0x + aY * p0y); double c3x = nm00 * p3x + nm10 * p3y + nm30; double c3y = nm01 * p3x + nm11 * p3y + nm31; double s = -c3x / c3y; nm00 += s * nm01; nm10 += s * nm11; nm30 += s * nm31; double d1x = nm00 * p1x + nm10 * p1y + nm30; double d2x = nm00 * p2x + nm10 * p2y + nm30; double d = d1x * c3y / (d2x - d1x); nm31 += d; double sx = 2.0 / d2x; double sy = 1.0 / (c3y + d); double u = (sy + sy) * d / (1.0 - sy * d); double m03 = nm01 * sy; double m13 = nm11 * sy; double m33 = nm31 * sy; nm01 = (u + 1.0) * m03; nm11 = (u + 1.0) * m13; nm31 = (u + 1.0) * m33 - u; nm00 = sx * nm00 - m03; nm10 = sx * nm10 - m13; nm30 = sx * nm30 - m33; set(nm00, nm01, 0, m03, nm10, nm11, 0, m13, 0, 0, 1, 0, nm30, nm31, 0, m33); properties = 0; return this; } public Matrix4d transformAab(double minX, double minY, double minZ, double maxX, double maxY, double maxZ, Vector3d outMin, Vector3d outMax) { double xax = m00 * minX, xay = m01 * minX, xaz = m02 * minX; double xbx = m00 * maxX, xby = m01 * maxX, xbz = m02 * maxX; double yax = m10 * minY, yay = m11 * minY, yaz = m12 * minY; double ybx = m10 * maxY, yby = m11 * maxY, ybz = m12 * maxY; double zax = m20 * minZ, zay = m21 * minZ, zaz = m22 * minZ; double zbx = m20 * maxZ, zby = m21 * maxZ, zbz = m22 * maxZ; double xminx, xminy, xminz, yminx, yminy, yminz, zminx, zminy, zminz; double xmaxx, xmaxy, xmaxz, ymaxx, ymaxy, ymaxz, zmaxx, zmaxy, zmaxz; if (xax < xbx) { xminx = xax; xmaxx = xbx; } else { xminx = xbx; xmaxx = xax; } if (xay < xby) { xminy = xay; xmaxy = xby; } else { xminy = xby; xmaxy = xay; } if (xaz < xbz) { xminz = xaz; xmaxz = xbz; } else { xminz = xbz; xmaxz = xaz; } if (yax < ybx) { yminx = yax; ymaxx = ybx; } else { yminx = ybx; ymaxx = yax; } if (yay < yby) { yminy = yay; ymaxy = yby; } else { yminy = yby; ymaxy = yay; } if (yaz < ybz) { yminz = yaz; ymaxz = ybz; } else { yminz = ybz; ymaxz = yaz; } if (zax < zbx) { zminx = zax; zmaxx = zbx; } else { zminx = zbx; zmaxx = zax; } if (zay < zby) { zminy = zay; zmaxy = zby; } else { zminy = zby; zmaxy = zay; } if (zaz < zbz) { zminz = zaz; zmaxz = zbz; } else { zminz = zbz; zmaxz = zaz; } outMin.x = xminx + yminx + zminx + m30; outMin.y = xminy + yminy + zminy + m31; outMin.z = xminz + yminz + zminz + m32; outMax.x = xmaxx + ymaxx + zmaxx + m30; outMax.y = xmaxy + ymaxy + zmaxy + m31; outMax.z = xmaxz + ymaxz + zmaxz + m32; return this; } public Matrix4d transformAab(Vector3dc min, Vector3dc max, Vector3d outMin, Vector3d outMax) { return transformAab(min.x(), min.y(), min.z(), max.x(), max.y(), max.z(), outMin, outMax); } /** * Linearly interpolate this and other using the given interpolation factor t * and store the result in this. *

* If t is 0.0 then the result is this. If the interpolation factor is 1.0 * then the result is other. * * @param other * the other matrix * @param t * the interpolation factor between 0.0 and 1.0 * @return this */ public Matrix4d lerp(Matrix4dc other, double t) { return lerp(other, t, this); } public Matrix4d lerp(Matrix4dc other, double t, Matrix4d dest) { dest._m00(Math.fma(other.m00() - m00, t, m00)) ._m01(Math.fma(other.m01() - m01, t, m01)) ._m02(Math.fma(other.m02() - m02, t, m02)) ._m03(Math.fma(other.m03() - m03, t, m03)) ._m10(Math.fma(other.m10() - m10, t, m10)) ._m11(Math.fma(other.m11() - m11, t, m11)) ._m12(Math.fma(other.m12() - m12, t, m12)) ._m13(Math.fma(other.m13() - m13, t, m13)) ._m20(Math.fma(other.m20() - m20, t, m20)) ._m21(Math.fma(other.m21() - m21, t, m21)) ._m22(Math.fma(other.m22() - m22, t, m22)) ._m23(Math.fma(other.m23() - m23, t, m23)) ._m30(Math.fma(other.m30() - m30, t, m30)) ._m31(Math.fma(other.m31() - m31, t, m31)) ._m32(Math.fma(other.m32() - m32, t, m32)) ._m33(Math.fma(other.m33() - m33, t, m33)) ._properties(properties & other.properties()); return dest; } /** * Apply a model transformation to this matrix for a right-handed coordinate system, * that aligns the local +Z axis with direction * and store the result in dest. *

* If M is this matrix and L the lookat matrix, * then the new matrix will be M * L. So when transforming a * vector v with the new matrix by using M * L * v, * the lookat transformation will be applied first! *

* In order to set the matrix to a rotation transformation without post-multiplying it, * use {@link #rotationTowards(Vector3dc, Vector3dc) rotationTowards()}. *

* This method is equivalent to calling: mulAffine(new Matrix4d().lookAt(new Vector3d(), new Vector3d(dir).negate(), up).invertAffine(), dest) * * @see #rotateTowards(double, double, double, double, double, double, Matrix4d) * @see #rotationTowards(Vector3dc, Vector3dc) * * @param direction * the direction to rotate towards * @param up * the up vector * @param dest * will hold the result * @return dest */ public Matrix4d rotateTowards(Vector3dc direction, Vector3dc up, Matrix4d dest) { return rotateTowards(direction.x(), direction.y(), direction.z(), up.x(), up.y(), up.z(), dest); } /** * Apply a model transformation to this matrix for a right-handed coordinate system, * that aligns the local +Z axis with direction. *

* If M is this matrix and L the lookat matrix, * then the new matrix will be M * L. So when transforming a * vector v with the new matrix by using M * L * v, * the lookat transformation will be applied first! *

* In order to set the matrix to a rotation transformation without post-multiplying it, * use {@link #rotationTowards(Vector3dc, Vector3dc) rotationTowards()}. *

* This method is equivalent to calling: mulAffine(new Matrix4d().lookAt(new Vector3d(), new Vector3d(dir).negate(), up).invertAffine()) * * @see #rotateTowards(double, double, double, double, double, double) * @see #rotationTowards(Vector3dc, Vector3dc) * * @param direction * the direction to orient towards * @param up * the up vector * @return this */ public Matrix4d rotateTowards(Vector3dc direction, Vector3dc up) { return rotateTowards(direction.x(), direction.y(), direction.z(), up.x(), up.y(), up.z(), this); } /** * Apply a model transformation to this matrix for a right-handed coordinate system, * that aligns the local +Z axis with (dirX, dirY, dirZ). *

* If M is this matrix and L the lookat matrix, * then the new matrix will be M * L. So when transforming a * vector v with the new matrix by using M * L * v, * the lookat transformation will be applied first! *

* In order to set the matrix to a rotation transformation without post-multiplying it, * use {@link #rotationTowards(double, double, double, double, double, double) rotationTowards()}. *

* This method is equivalent to calling: mulAffine(new Matrix4d().lookAt(0, 0, 0, -dirX, -dirY, -dirZ, upX, upY, upZ).invertAffine()) * * @see #rotateTowards(Vector3dc, Vector3dc) * @see #rotationTowards(double, double, double, double, double, double) * * @param dirX * the x-coordinate of the direction to rotate towards * @param dirY * the y-coordinate of the direction to rotate towards * @param dirZ * the z-coordinate of the direction to rotate towards * @param upX * the x-coordinate of the up vector * @param upY * the y-coordinate of the up vector * @param upZ * the z-coordinate of the up vector * @return this */ public Matrix4d rotateTowards(double dirX, double dirY, double dirZ, double upX, double upY, double upZ) { return rotateTowards(dirX, dirY, dirZ, upX, upY, upZ, this); } /** * Apply a model transformation to this matrix for a right-handed coordinate system, * that aligns the local +Z axis with dir * and store the result in dest. *

* If M is this matrix and L the lookat matrix, * then the new matrix will be M * L. So when transforming a * vector v with the new matrix by using M * L * v, * the lookat transformation will be applied first! *

* In order to set the matrix to a rotation transformation without post-multiplying it, * use {@link #rotationTowards(double, double, double, double, double, double) rotationTowards()}. *

* This method is equivalent to calling: mulAffine(new Matrix4d().lookAt(0, 0, 0, -dirX, -dirY, -dirZ, upX, upY, upZ).invertAffine(), dest) * * @see #rotateTowards(Vector3dc, Vector3dc) * @see #rotationTowards(double, double, double, double, double, double) * * @param dirX * the x-coordinate of the direction to rotate towards * @param dirY * the y-coordinate of the direction to rotate towards * @param dirZ * the z-coordinate of the direction to rotate towards * @param upX * the x-coordinate of the up vector * @param upY * the y-coordinate of the up vector * @param upZ * the z-coordinate of the up vector * @param dest * will hold the result * @return dest */ public Matrix4d rotateTowards(double dirX, double dirY, double dirZ, double upX, double upY, double upZ, Matrix4d dest) { // Normalize direction double invDirLength = Math.invsqrt(dirX * dirX + dirY * dirY + dirZ * dirZ); double ndirX = dirX * invDirLength; double ndirY = dirY * invDirLength; double ndirZ = dirZ * invDirLength; // left = up x direction double leftX, leftY, leftZ; leftX = upY * ndirZ - upZ * ndirY; leftY = upZ * ndirX - upX * ndirZ; leftZ = upX * ndirY - upY * ndirX; // normalize left double invLeftLength = Math.invsqrt(leftX * leftX + leftY * leftY + leftZ * leftZ); leftX *= invLeftLength; leftY *= invLeftLength; leftZ *= invLeftLength; // up = direction x left double upnX = ndirY * leftZ - ndirZ * leftY; double upnY = ndirZ * leftX - ndirX * leftZ; double upnZ = ndirX * leftY - ndirY * leftX; double rm00 = leftX; double rm01 = leftY; double rm02 = leftZ; double rm10 = upnX; double rm11 = upnY; double rm12 = upnZ; double rm20 = ndirX; double rm21 = ndirY; double rm22 = ndirZ; double nm00 = m00 * rm00 + m10 * rm01 + m20 * rm02; double nm01 = m01 * rm00 + m11 * rm01 + m21 * rm02; double nm02 = m02 * rm00 + m12 * rm01 + m22 * rm02; double nm03 = m03 * rm00 + m13 * rm01 + m23 * rm02; double nm10 = m00 * rm10 + m10 * rm11 + m20 * rm12; double nm11 = m01 * rm10 + m11 * rm11 + m21 * rm12; double nm12 = m02 * rm10 + m12 * rm11 + m22 * rm12; double nm13 = m03 * rm10 + m13 * rm11 + m23 * rm12; dest._m30(m30) ._m31(m31) ._m32(m32) ._m33(m33) ._m20(m00 * rm20 + m10 * rm21 + m20 * rm22) ._m21(m01 * rm20 + m11 * rm21 + m21 * rm22) ._m22(m02 * rm20 + m12 * rm21 + m22 * rm22) ._m23(m03 * rm20 + m13 * rm21 + m23 * rm22) ._m00(nm00) ._m01(nm01) ._m02(nm02) ._m03(nm03) ._m10(nm10) ._m11(nm11) ._m12(nm12) ._m13(nm13) ._properties(properties & ~(PROPERTY_PERSPECTIVE | PROPERTY_IDENTITY | PROPERTY_TRANSLATION)); return dest; } /** * Set this matrix to a model transformation for a right-handed coordinate system, * that aligns the local -z axis with dir. *

* In order to apply the rotation transformation to a previous existing transformation, * use {@link #rotateTowards(double, double, double, double, double, double) rotateTowards}. *

* This method is equivalent to calling: setLookAt(new Vector3d(), new Vector3d(dir).negate(), up).invertAffine() * * @see #rotationTowards(Vector3dc, Vector3dc) * @see #rotateTowards(double, double, double, double, double, double) * * @param dir * the direction to orient the local -z axis towards * @param up * the up vector * @return this */ public Matrix4d rotationTowards(Vector3dc dir, Vector3dc up) { return rotationTowards(dir.x(), dir.y(), dir.z(), up.x(), up.y(), up.z()); } /** * Set this matrix to a model transformation for a right-handed coordinate system, * that aligns the local -z axis with dir. *

* In order to apply the rotation transformation to a previous existing transformation, * use {@link #rotateTowards(double, double, double, double, double, double) rotateTowards}. *

* This method is equivalent to calling: setLookAt(0, 0, 0, -dirX, -dirY, -dirZ, upX, upY, upZ).invertAffine() * * @see #rotateTowards(Vector3dc, Vector3dc) * @see #rotationTowards(double, double, double, double, double, double) * * @param dirX * the x-coordinate of the direction to rotate towards * @param dirY * the y-coordinate of the direction to rotate towards * @param dirZ * the z-coordinate of the direction to rotate towards * @param upX * the x-coordinate of the up vector * @param upY * the y-coordinate of the up vector * @param upZ * the z-coordinate of the up vector * @return this */ public Matrix4d rotationTowards(double dirX, double dirY, double dirZ, double upX, double upY, double upZ) { // Normalize direction double invDirLength = Math.invsqrt(dirX * dirX + dirY * dirY + dirZ * dirZ); double ndirX = dirX * invDirLength; double ndirY = dirY * invDirLength; double ndirZ = dirZ * invDirLength; // left = up x direction double leftX, leftY, leftZ; leftX = upY * ndirZ - upZ * ndirY; leftY = upZ * ndirX - upX * ndirZ; leftZ = upX * ndirY - upY * ndirX; // normalize left double invLeftLength = Math.invsqrt(leftX * leftX + leftY * leftY + leftZ * leftZ); leftX *= invLeftLength; leftY *= invLeftLength; leftZ *= invLeftLength; // up = direction x left double upnX = ndirY * leftZ - ndirZ * leftY; double upnY = ndirZ * leftX - ndirX * leftZ; double upnZ = ndirX * leftY - ndirY * leftX; if ((properties & PROPERTY_IDENTITY) == 0) this._identity(); this.m00 = leftX; this.m01 = leftY; this.m02 = leftZ; this.m10 = upnX; this.m11 = upnY; this.m12 = upnZ; this.m20 = ndirX; this.m21 = ndirY; this.m22 = ndirZ; properties = PROPERTY_AFFINE | PROPERTY_ORTHONORMAL; return this; } /** * Set this matrix to a model transformation for a right-handed coordinate system, * that translates to the given pos and aligns the local -z * axis with dir. *

* This method is equivalent to calling: translation(pos).rotateTowards(dir, up) * * @see #translation(Vector3dc) * @see #rotateTowards(Vector3dc, Vector3dc) * * @param pos * the position to translate to * @param dir * the direction to rotate towards * @param up * the up vector * @return this */ public Matrix4d translationRotateTowards(Vector3dc pos, Vector3dc dir, Vector3dc up) { return translationRotateTowards(pos.x(), pos.y(), pos.z(), dir.x(), dir.y(), dir.z(), up.x(), up.y(), up.z()); } /** * Set this matrix to a model transformation for a right-handed coordinate system, * that translates to the given (posX, posY, posZ) and aligns the local -z * axis with (dirX, dirY, dirZ). *

* This method is equivalent to calling: translation(posX, posY, posZ).rotateTowards(dirX, dirY, dirZ, upX, upY, upZ) * * @see #translation(double, double, double) * @see #rotateTowards(double, double, double, double, double, double) * * @param posX * the x-coordinate of the position to translate to * @param posY * the y-coordinate of the position to translate to * @param posZ * the z-coordinate of the position to translate to * @param dirX * the x-coordinate of the direction to rotate towards * @param dirY * the y-coordinate of the direction to rotate towards * @param dirZ * the z-coordinate of the direction to rotate towards * @param upX * the x-coordinate of the up vector * @param upY * the y-coordinate of the up vector * @param upZ * the z-coordinate of the up vector * @return this */ public Matrix4d translationRotateTowards(double posX, double posY, double posZ, double dirX, double dirY, double dirZ, double upX, double upY, double upZ) { // Normalize direction double invDirLength = Math.invsqrt(dirX * dirX + dirY * dirY + dirZ * dirZ); double ndirX = dirX * invDirLength; double ndirY = dirY * invDirLength; double ndirZ = dirZ * invDirLength; // left = up x direction double leftX, leftY, leftZ; leftX = upY * ndirZ - upZ * ndirY; leftY = upZ * ndirX - upX * ndirZ; leftZ = upX * ndirY - upY * ndirX; // normalize left double invLeftLength = Math.invsqrt(leftX * leftX + leftY * leftY + leftZ * leftZ); leftX *= invLeftLength; leftY *= invLeftLength; leftZ *= invLeftLength; // up = direction x left double upnX = ndirY * leftZ - ndirZ * leftY; double upnY = ndirZ * leftX - ndirX * leftZ; double upnZ = ndirX * leftY - ndirY * leftX; this.m00 = leftX; this.m01 = leftY; this.m02 = leftZ; this.m03 = 0.0; this.m10 = upnX; this.m11 = upnY; this.m12 = upnZ; this.m13 = 0.0; this.m20 = ndirX; this.m21 = ndirY; this.m22 = ndirZ; this.m23 = 0.0; this.m30 = posX; this.m31 = posY; this.m32 = posZ; this.m33 = 1.0; properties = PROPERTY_AFFINE | PROPERTY_ORTHONORMAL; return this; } public Vector3d getEulerAnglesZYX(Vector3d dest) { dest.x = Math.atan2(m12, m22); dest.y = Math.atan2(-m02, Math.sqrt(1.0 - m02 * m02)); dest.z = Math.atan2(m01, m00); return dest; } public Vector3d getEulerAnglesXYZ(Vector3d dest) { dest.x = Math.atan2(-m21, m22); dest.y = Math.atan2(m20, Math.sqrt(1.0 - m20 * m20)); dest.z = Math.atan2(-m10, m00); return dest; } /** * Compute the extents of the coordinate system before this {@link #isAffine() affine} transformation was applied * and store the resulting corner coordinates in corner and the span vectors in * xDir, yDir and zDir. *

* That means, given the maximum extents of the coordinate system between [-1..+1] in all dimensions, * this method returns one corner and the length and direction of the three base axis vectors in the coordinate * system before this transformation is applied, which transforms into the corner coordinates [-1, +1]. *

* This method is equivalent to computing at least three adjacent corners using {@link #frustumCorner(int, Vector3d)} * and subtracting them to obtain the length and direction of the span vectors. * * @param corner * will hold one corner of the span (usually the corner {@link Matrix4dc#CORNER_NXNYNZ}) * @param xDir * will hold the direction and length of the span along the positive X axis * @param yDir * will hold the direction and length of the span along the positive Y axis * @param zDir * will hold the direction and length of the span along the positive z axis * @return this */ public Matrix4d affineSpan(Vector3d corner, Vector3d xDir, Vector3d yDir, Vector3d zDir) { double a = m10 * m22, b = m10 * m21, c = m10 * m02, d = m10 * m01; double e = m11 * m22, f = m11 * m20, g = m11 * m02, h = m11 * m00; double i = m12 * m21, j = m12 * m20, k = m12 * m01, l = m12 * m00; double m = m20 * m02, n = m20 * m01, o = m21 * m02, p = m21 * m00; double q = m22 * m01, r = m22 * m00; double s = 1.0 / (m00 * m11 - m01 * m10) * m22 + (m02 * m10 - m00 * m12) * m21 + (m01 * m12 - m02 * m11) * m20; double nm00 = (e - i) * s, nm01 = (o - q) * s, nm02 = (k - g) * s; double nm10 = (j - a) * s, nm11 = (r - m) * s, nm12 = (c - l) * s; double nm20 = (b - f) * s, nm21 = (n - p) * s, nm22 = (h - d) * s; corner.x = -nm00 - nm10 - nm20 + (a * m31 - b * m32 + f * m32 - e * m30 + i * m30 - j * m31) * s; corner.y = -nm01 - nm11 - nm21 + (m * m31 - n * m32 + p * m32 - o * m30 + q * m30 - r * m31) * s; corner.z = -nm02 - nm12 - nm22 + (g * m30 - k * m30 + l * m31 - c * m31 + d * m32 - h * m32) * s; xDir.x = 2.0 * nm00; xDir.y = 2.0 * nm01; xDir.z = 2.0 * nm02; yDir.x = 2.0 * nm10; yDir.y = 2.0 * nm11; yDir.z = 2.0 * nm12; zDir.x = 2.0 * nm20; zDir.y = 2.0 * nm21; zDir.z = 2.0 * nm22; return this; } public boolean testPoint(double x, double y, double z) { double nxX = m03 + m00, nxY = m13 + m10, nxZ = m23 + m20, nxW = m33 + m30; double pxX = m03 - m00, pxY = m13 - m10, pxZ = m23 - m20, pxW = m33 - m30; double nyX = m03 + m01, nyY = m13 + m11, nyZ = m23 + m21, nyW = m33 + m31; double pyX = m03 - m01, pyY = m13 - m11, pyZ = m23 - m21, pyW = m33 - m31; double nzX = m03 + m02, nzY = m13 + m12, nzZ = m23 + m22, nzW = m33 + m32; double pzX = m03 - m02, pzY = m13 - m12, pzZ = m23 - m22, pzW = m33 - m32; return nxX * x + nxY * y + nxZ * z + nxW >= 0 && pxX * x + pxY * y + pxZ * z + pxW >= 0 && nyX * x + nyY * y + nyZ * z + nyW >= 0 && pyX * x + pyY * y + pyZ * z + pyW >= 0 && nzX * x + nzY * y + nzZ * z + nzW >= 0 && pzX * x + pzY * y + pzZ * z + pzW >= 0; } public boolean testSphere(double x, double y, double z, double r) { double invl; double nxX = m03 + m00, nxY = m13 + m10, nxZ = m23 + m20, nxW = m33 + m30; invl = Math.invsqrt(nxX * nxX + nxY * nxY + nxZ * nxZ); nxX *= invl; nxY *= invl; nxZ *= invl; nxW *= invl; double pxX = m03 - m00, pxY = m13 - m10, pxZ = m23 - m20, pxW = m33 - m30; invl = Math.invsqrt(pxX * pxX + pxY * pxY + pxZ * pxZ); pxX *= invl; pxY *= invl; pxZ *= invl; pxW *= invl; double nyX = m03 + m01, nyY = m13 + m11, nyZ = m23 + m21, nyW = m33 + m31; invl = Math.invsqrt(nyX * nyX + nyY * nyY + nyZ * nyZ); nyX *= invl; nyY *= invl; nyZ *= invl; nyW *= invl; double pyX = m03 - m01, pyY = m13 - m11, pyZ = m23 - m21, pyW = m33 - m31; invl = Math.invsqrt(pyX * pyX + pyY * pyY + pyZ * pyZ); pyX *= invl; pyY *= invl; pyZ *= invl; pyW *= invl; double nzX = m03 + m02, nzY = m13 + m12, nzZ = m23 + m22, nzW = m33 + m32; invl = Math.invsqrt(nzX * nzX + nzY * nzY + nzZ * nzZ); nzX *= invl; nzY *= invl; nzZ *= invl; nzW *= invl; double pzX = m03 - m02, pzY = m13 - m12, pzZ = m23 - m22, pzW = m33 - m32; invl = Math.invsqrt(pzX * pzX + pzY * pzY + pzZ * pzZ); pzX *= invl; pzY *= invl; pzZ *= invl; pzW *= invl; return nxX * x + nxY * y + nxZ * z + nxW >= -r && pxX * x + pxY * y + pxZ * z + pxW >= -r && nyX * x + nyY * y + nyZ * z + nyW >= -r && pyX * x + pyY * y + pyZ * z + pyW >= -r && nzX * x + nzY * y + nzZ * z + nzW >= -r && pzX * x + pzY * y + pzZ * z + pzW >= -r; } public boolean testAab(double minX, double minY, double minZ, double maxX, double maxY, double maxZ) { double nxX = m03 + m00, nxY = m13 + m10, nxZ = m23 + m20, nxW = m33 + m30; double pxX = m03 - m00, pxY = m13 - m10, pxZ = m23 - m20, pxW = m33 - m30; double nyX = m03 + m01, nyY = m13 + m11, nyZ = m23 + m21, nyW = m33 + m31; double pyX = m03 - m01, pyY = m13 - m11, pyZ = m23 - m21, pyW = m33 - m31; double nzX = m03 + m02, nzY = m13 + m12, nzZ = m23 + m22, nzW = m33 + m32; double pzX = m03 - m02, pzY = m13 - m12, pzZ = m23 - m22, pzW = m33 - m32; /* * This is an implementation of the "2.4 Basic intersection test" of the mentioned site. * It does not distinguish between partially inside and fully inside, though, so the test with the 'p' vertex is omitted. */ return nxX * (nxX < 0 ? minX : maxX) + nxY * (nxY < 0 ? minY : maxY) + nxZ * (nxZ < 0 ? minZ : maxZ) >= -nxW && pxX * (pxX < 0 ? minX : maxX) + pxY * (pxY < 0 ? minY : maxY) + pxZ * (pxZ < 0 ? minZ : maxZ) >= -pxW && nyX * (nyX < 0 ? minX : maxX) + nyY * (nyY < 0 ? minY : maxY) + nyZ * (nyZ < 0 ? minZ : maxZ) >= -nyW && pyX * (pyX < 0 ? minX : maxX) + pyY * (pyY < 0 ? minY : maxY) + pyZ * (pyZ < 0 ? minZ : maxZ) >= -pyW && nzX * (nzX < 0 ? minX : maxX) + nzY * (nzY < 0 ? minY : maxY) + nzZ * (nzZ < 0 ? minZ : maxZ) >= -nzW && pzX * (pzX < 0 ? minX : maxX) + pzY * (pzY < 0 ? minY : maxY) + pzZ * (pzZ < 0 ? minZ : maxZ) >= -pzW; } /** * Apply an oblique projection transformation to this matrix with the given values for a and * b. *

* If M is this matrix and O the oblique transformation matrix, * then the new matrix will be M * O. So when transforming a * vector v with the new matrix by using M * O * v, the * oblique transformation will be applied first! *

* The oblique transformation is defined as: *

     * x' = x + a*z
     * y' = y + a*z
     * z' = z
     * 
* or in matrix form: *
     * 1 0 a 0
     * 0 1 b 0
     * 0 0 1 0
     * 0 0 0 1
     * 
* * @param a * the value for the z factor that applies to x * @param b * the value for the z factor that applies to y * @return this */ public Matrix4d obliqueZ(double a, double b) { this.m20 = m00 * a + m10 * b + m20; this.m21 = m01 * a + m11 * b + m21; this.m22 = m02 * a + m12 * b + m22; this.properties &= PROPERTY_AFFINE; return this; } /** * Apply an oblique projection transformation to this matrix with the given values for a and * b and store the result in dest. *

* If M is this matrix and O the oblique transformation matrix, * then the new matrix will be M * O. So when transforming a * vector v with the new matrix by using M * O * v, the * oblique transformation will be applied first! *

* The oblique transformation is defined as: *

     * x' = x + a*z
     * y' = y + a*z
     * z' = z
     * 
* or in matrix form: *
     * 1 0 a 0
     * 0 1 b 0
     * 0 0 1 0
     * 0 0 0 1
     * 
* * @param a * the value for the z factor that applies to x * @param b * the value for the z factor that applies to y * @param dest * will hold the result * @return dest */ public Matrix4d obliqueZ(double a, double b, Matrix4d dest) { dest._m00(m00) ._m01(m01) ._m02(m02) ._m03(m03) ._m10(m10) ._m11(m11) ._m12(m12) ._m13(m13) ._m20(m00 * a + m10 * b + m20) ._m21(m01 * a + m11 * b + m21) ._m22(m02 * a + m12 * b + m22) ._m23(m23) ._m30(m30) ._m31(m31) ._m32(m32) ._m33(m33) ._properties(properties & PROPERTY_AFFINE); return dest; } /** * Create a view and projection matrix from a given eye position, a given bottom left corner position p of the near plane rectangle * and the extents of the near plane rectangle along its local x and y axes, and store the resulting matrices * in projDest and viewDest. *

* This method creates a view and perspective projection matrix assuming that there is a pinhole camera at position eye * projecting the scene onto the near plane defined by the rectangle. *

* All positions and lengths are in the same (world) unit. * * @param eye * the position of the camera * @param p * the bottom left corner of the near plane rectangle (will map to the bottom left corner in window coordinates) * @param x * the direction and length of the local "bottom/top" X axis/side of the near plane rectangle * @param y * the direction and length of the local "left/right" Y axis/side of the near plane rectangle * @param nearFarDist * the distance between the far and near plane (the near plane will be calculated by this method). * If the special value {@link Double#POSITIVE_INFINITY} is used, the far clipping plane will be at positive infinity. * If the special value {@link Double#NEGATIVE_INFINITY} is used, the near and far planes will be swapped and * the near clipping plane will be at positive infinity. * If a negative value is used (except for {@link Double#NEGATIVE_INFINITY}) the near and far planes will be swapped * @param zeroToOne * whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true * or whether to use OpenGL's NDC z range of [-1..+1] when false * @param projDest * will hold the resulting projection matrix * @param viewDest * will hold the resulting view matrix */ public static void projViewFromRectangle( Vector3d eye, Vector3d p, Vector3d x, Vector3d y, double nearFarDist, boolean zeroToOne, Matrix4d projDest, Matrix4d viewDest) { double zx = y.y * x.z - y.z * x.y, zy = y.z * x.x - y.x * x.z, zz = y.x * x.y - y.y * x.x; double zd = zx * (p.x - eye.x) + zy * (p.y - eye.y) + zz * (p.z - eye.z); double zs = zd >= 0 ? 1 : -1; zx *= zs; zy *= zs; zz *= zs; zd *= zs; viewDest.setLookAt(eye.x, eye.y, eye.z, eye.x + zx, eye.y + zy, eye.z + zz, y.x, y.y, y.z); double px = viewDest.m00 * p.x + viewDest.m10 * p.y + viewDest.m20 * p.z + viewDest.m30; double py = viewDest.m01 * p.x + viewDest.m11 * p.y + viewDest.m21 * p.z + viewDest.m31; double tx = viewDest.m00 * x.x + viewDest.m10 * x.y + viewDest.m20 * x.z; double ty = viewDest.m01 * y.x + viewDest.m11 * y.y + viewDest.m21 * y.z; double len = Math.sqrt(zx * zx + zy * zy + zz * zz); double near = zd / len, far; if (Double.isInfinite(nearFarDist) && nearFarDist < 0.0) { far = near; near = Double.POSITIVE_INFINITY; } else if (Double.isInfinite(nearFarDist) && nearFarDist > 0.0) { far = Double.POSITIVE_INFINITY; } else if (nearFarDist < 0.0) { far = near; near = near + nearFarDist; } else { far = near + nearFarDist; } projDest.setFrustum(px, px + tx, py, py + ty, near, far, zeroToOne); } /** * Apply a transformation to this matrix to ensure that the local Y axis (as obtained by {@link #positiveY(Vector3d)}) * will be coplanar to the plane spanned by the local Z axis (as obtained by {@link #positiveZ(Vector3d)}) and the * given vector up. *

* This effectively ensures that the resulting matrix will be equal to the one obtained from * {@link #setLookAt(Vector3dc, Vector3dc, Vector3dc)} called with the current * local origin of this matrix (as obtained by {@link #originAffine(Vector3d)}), the sum of this position and the * negated local Z axis as well as the given vector up. *

* This method must only be called on {@link #isAffine()} matrices. * * @param up * the up vector * @return this */ public Matrix4d withLookAtUp(Vector3dc up) { return withLookAtUp(up.x(), up.y(), up.z(), this); } public Matrix4d withLookAtUp(Vector3dc up, Matrix4d dest) { return withLookAtUp(up.x(), up.y(), up.z()); } /** * Apply a transformation to this matrix to ensure that the local Y axis (as obtained by {@link #positiveY(Vector3d)}) * will be coplanar to the plane spanned by the local Z axis (as obtained by {@link #positiveZ(Vector3d)}) and the * given vector (upX, upY, upZ). *

* This effectively ensures that the resulting matrix will be equal to the one obtained from * {@link #setLookAt(double, double, double, double, double, double, double, double, double)} called with the current * local origin of this matrix (as obtained by {@link #originAffine(Vector3d)}), the sum of this position and the * negated local Z axis as well as the given vector (upX, upY, upZ). *

* This method must only be called on {@link #isAffine()} matrices. * * @param upX * the x coordinate of the up vector * @param upY * the y coordinate of the up vector * @param upZ * the z coordinate of the up vector * @return this */ public Matrix4d withLookAtUp(double upX, double upY, double upZ) { return withLookAtUp(upX, upY, upZ, this); } public Matrix4d withLookAtUp(double upX, double upY, double upZ, Matrix4d dest) { double y = (upY * m21 - upZ * m11) * m02 + (upZ * m01 - upX * m21) * m12 + (upX * m11 - upY * m01) * m22; double x = upX * m01 + upY * m11 + upZ * m21; if ((properties & PROPERTY_ORTHONORMAL) == 0) x *= Math.sqrt(m01 * m01 + m11 * m11 + m21 * m21); double invsqrt = Math.invsqrt(y * y + x * x); double c = x * invsqrt, s = y * invsqrt; double nm00 = c * m00 - s * m01, nm10 = c * m10 - s * m11, nm20 = c * m20 - s * m21, nm31 = s * m30 + c * m31; double nm01 = s * m00 + c * m01, nm11 = s * m10 + c * m11, nm21 = s * m20 + c * m21, nm30 = c * m30 - s * m31; dest._m00(nm00)._m10(nm10)._m20(nm20)._m30(nm30) ._m01(nm01)._m11(nm11)._m21(nm21)._m31(nm31); if (dest != this) { dest ._m02(m02)._m12(m12)._m22(m22)._m32(m32) ._m03(m03)._m13(m13)._m23(m23)._m33(m33); } dest._properties(properties & ~(PROPERTY_PERSPECTIVE | PROPERTY_IDENTITY | PROPERTY_TRANSLATION)); return dest; } /** * Multiply this by the matrix *

     * 1 0 0 0
     * 0 0 1 0
     * 0 1 0 0
     * 0 0 0 1
     * 
* * @return this */ public Matrix4d mapXZY() { return mapXZY(this); } public Matrix4d mapXZY(Matrix4d dest) { double m10 = this.m10, m11 = this.m11, m12 = this.m12; return dest._m00(m00)._m01(m01)._m02(m02)._m03(m03)._m10(m20)._m11(m21)._m12(m22)._m13(m13)._m20(m10)._m21(m11)._m22(m12)._m23(m23)._m30(m30)._m31(m31)._m32(m32)._m33(m33)._properties(properties & (PROPERTY_AFFINE | PROPERTY_ORTHONORMAL)); } /** * Multiply this by the matrix *
     * 1 0  0 0
     * 0 0 -1 0
     * 0 1  0 0
     * 0 0  0 1
     * 
* * @return this */ public Matrix4d mapXZnY() { return mapXZnY(this); } public Matrix4d mapXZnY(Matrix4d dest) { double m10 = this.m10, m11 = this.m11, m12 = this.m12; return dest._m00(m00)._m01(m01)._m02(m02)._m03(m03)._m10(m20)._m11(m21)._m12(m22)._m13(m13)._m20(-m10)._m21(-m11)._m22(-m12)._m23(m23)._m30(m30)._m31(m31)._m32(m32)._m33(m33)._properties(properties & (PROPERTY_AFFINE | PROPERTY_ORTHONORMAL)); } /** * Multiply this by the matrix *
     * 1  0  0 0
     * 0 -1  0 0
     * 0  0 -1 0
     * 0  0  0 1
     * 
* * @return this */ public Matrix4d mapXnYnZ() { return mapXnYnZ(this); } public Matrix4d mapXnYnZ(Matrix4d dest) { return dest._m00(m00)._m01(m01)._m02(m02)._m03(m03)._m10(-m10)._m11(-m11)._m12(-m12)._m13(m13)._m20(-m20)._m21(-m21)._m22(-m22)._m23(m23)._m30(m30)._m31(m31)._m32(m32)._m33(m33)._properties(properties & (PROPERTY_AFFINE | PROPERTY_ORTHONORMAL)); } /** * Multiply this by the matrix *
     * 1  0 0 0
     * 0  0 1 0
     * 0 -1 0 0
     * 0  0 0 1
     * 
* * @return this */ public Matrix4d mapXnZY() { return mapXnZY(this); } public Matrix4d mapXnZY(Matrix4d dest) { double m10 = this.m10, m11 = this.m11, m12 = this.m12; return dest._m00(m00)._m01(m01)._m02(m02)._m03(m03)._m10(-m20)._m11(-m21)._m12(-m22)._m13(m13)._m20(m10)._m21(m11)._m22(m12)._m23(m23)._m30(m30)._m31(m31)._m32(m32)._m33(m33)._properties(properties & (PROPERTY_AFFINE | PROPERTY_ORTHONORMAL)); } /** * Multiply this by the matrix *
     * 1  0  0 0
     * 0  0 -1 0
     * 0 -1  0 0
     * 0  0  0 1
     * 
* * @return this */ public Matrix4d mapXnZnY() { return mapXnZnY(this); } public Matrix4d mapXnZnY(Matrix4d dest) { double m10 = this.m10, m11 = this.m11, m12 = this.m12; return dest._m00(m00)._m01(m01)._m02(m02)._m03(m03)._m10(-m20)._m11(-m21)._m12(-m22)._m13(m13)._m20(-m10)._m21(-m11)._m22(-m12)._m23(m23)._m30(m30)._m31(m31)._m32(m32)._m33(m33)._properties(properties & (PROPERTY_AFFINE | PROPERTY_ORTHONORMAL)); } /** * Multiply this by the matrix *
     * 0 1 0 0
     * 1 0 0 0
     * 0 0 1 0
     * 0 0 0 1
     * 
* * @return this */ public Matrix4d mapYXZ() { return mapYXZ(this); } public Matrix4d mapYXZ(Matrix4d dest) { double m00 = this.m00, m01 = this.m01, m02 = this.m02; return dest._m00(m10)._m01(m11)._m02(m12)._m03(m03)._m10(m00)._m11(m01)._m12(m02)._m13(m13)._m20(m20)._m21(m21)._m22(m22)._m23(m23)._m30(m30)._m31(m31)._m32(m32)._m33(m33)._properties(properties & (PROPERTY_AFFINE | PROPERTY_ORTHONORMAL)); } /** * Multiply this by the matrix *
     * 0 1  0 0
     * 1 0  0 0
     * 0 0 -1 0
     * 0 0  0 1
     * 
* * @return this */ public Matrix4d mapYXnZ() { return mapYXnZ(this); } public Matrix4d mapYXnZ(Matrix4d dest) { double m00 = this.m00, m01 = this.m01, m02 = this.m02; return dest._m00(m10)._m01(m11)._m02(m12)._m03(m03)._m10(m00)._m11(m01)._m12(m02)._m13(m13)._m20(-m20)._m21(-m21)._m22(-m22)._m23(m23)._m30(m30)._m31(m31)._m32(m32)._m33(m33)._properties(properties & (PROPERTY_AFFINE | PROPERTY_ORTHONORMAL)); } /** * Multiply this by the matrix *
     * 0 0 1 0
     * 1 0 0 0
     * 0 1 0 0
     * 0 0 0 1
     * 
* * @return this */ public Matrix4d mapYZX() { return mapYZX(this); } public Matrix4d mapYZX(Matrix4d dest) { double m00 = this.m00, m01 = this.m01, m02 = this.m02; return dest._m00(m10)._m01(m11)._m02(m12)._m03(m03)._m10(m20)._m11(m21)._m12(m22)._m13(m13)._m20(m00)._m21(m01)._m22(m02)._m23(m23)._m30(m30)._m31(m31)._m32(m32)._m33(m33)._properties(properties & (PROPERTY_AFFINE | PROPERTY_ORTHONORMAL)); } /** * Multiply this by the matrix *
     * 0 0 -1 0
     * 1 0  0 0
     * 0 1  0 0
     * 0 0  0 1
     * 
* * @return this */ public Matrix4d mapYZnX() { return mapYZnX(this); } public Matrix4d mapYZnX(Matrix4d dest) { double m00 = this.m00, m01 = this.m01, m02 = this.m02; return dest._m00(m10)._m01(m11)._m02(m12)._m03(m03)._m10(m20)._m11(m21)._m12(m22)._m13(m13)._m20(-m00)._m21(-m01)._m22(-m02)._m23(m23)._m30(m30)._m31(m31)._m32(m32)._m33(m33)._properties(properties & (PROPERTY_AFFINE | PROPERTY_ORTHONORMAL)); } /** * Multiply this by the matrix *
     * 0 -1 0 0
     * 1  0 0 0
     * 0  0 1 0
     * 0  0 0 1
     * 
* * @return this */ public Matrix4d mapYnXZ() { return mapYnXZ(this); } public Matrix4d mapYnXZ(Matrix4d dest) { double m00 = this.m00, m01 = this.m01, m02 = this.m02; return dest._m00(m10)._m01(m11)._m02(m12)._m03(m03)._m10(-m00)._m11(-m01)._m12(-m02)._m13(m13)._m20(m20)._m21(m21)._m22(m22)._m23(m23)._m30(m30)._m31(m31)._m32(m32)._m33(m33)._properties(properties & (PROPERTY_AFFINE | PROPERTY_ORTHONORMAL)); } /** * Multiply this by the matrix *
     * 0 -1  0 0
     * 1  0  0 0
     * 0  0 -1 0
     * 0  0  0 1
     * 
* * @return this */ public Matrix4d mapYnXnZ() { return mapYnXnZ(this); } public Matrix4d mapYnXnZ(Matrix4d dest) { double m00 = this.m00, m01 = this.m01, m02 = this.m02; return dest._m00(m10)._m01(m11)._m02(m12)._m03(m03)._m10(-m00)._m11(-m01)._m12(-m02)._m13(m13)._m20(-m20)._m21(-m21)._m22(-m22)._m23(m23)._m30(m30)._m31(m31)._m32(m32)._m33(m33)._properties(properties & (PROPERTY_AFFINE | PROPERTY_ORTHONORMAL)); } /** * Multiply this by the matrix *
     * 0  0 1 0
     * 1  0 0 0
     * 0 -1 0 0
     * 0  0 0 1
     * 
* * @return this */ public Matrix4d mapYnZX() { return mapYnZX(this); } public Matrix4d mapYnZX(Matrix4d dest) { double m00 = this.m00, m01 = this.m01, m02 = this.m02; return dest._m00(m10)._m01(m11)._m02(m12)._m03(m03)._m10(-m20)._m11(-m21)._m12(-m22)._m13(m13)._m20(m00)._m21(m01)._m22(m02)._m23(m23)._m30(m30)._m31(m31)._m32(m32)._m33(m33)._properties(properties & (PROPERTY_AFFINE | PROPERTY_ORTHONORMAL)); } /** * Multiply this by the matrix *
     * 0  0 -1 0
     * 1  0  0 0
     * 0 -1  0 0
     * 0  0  0 1
     * 
* * @return this */ public Matrix4d mapYnZnX() { return mapYnZnX(this); } public Matrix4d mapYnZnX(Matrix4d dest) { double m00 = this.m00, m01 = this.m01, m02 = this.m02; return dest._m00(m10)._m01(m11)._m02(m12)._m03(m03)._m10(-m20)._m11(-m21)._m12(-m22)._m13(m13)._m20(-m00)._m21(-m01)._m22(-m02)._m23(m23)._m30(m30)._m31(m31)._m32(m32)._m33(m33)._properties(properties & (PROPERTY_AFFINE | PROPERTY_ORTHONORMAL)); } /** * Multiply this by the matrix *
     * 0 1 0 0
     * 0 0 1 0
     * 1 0 0 0
     * 0 0 0 1
     * 
* * @return this */ public Matrix4d mapZXY() { return mapZXY(this); } public Matrix4d mapZXY(Matrix4d dest) { double m00 = this.m00, m01 = this.m01, m02 = this.m02; double m10 = this.m10, m11 = this.m11, m12 = this.m12; return dest._m00(m20)._m01(m21)._m02(m22)._m03(m03)._m10(m00)._m11(m01)._m12(m02)._m13(m13)._m20(m10)._m21(m11)._m22(m12)._m23(m23)._m30(m30)._m31(m31)._m32(m32)._m33(m33)._properties(properties & (PROPERTY_AFFINE | PROPERTY_ORTHONORMAL)); } /** * Multiply this by the matrix *
     * 0 1  0 0
     * 0 0 -1 0
     * 1 0  0 0
     * 0 0  0 1
     * 
* * @return this */ public Matrix4d mapZXnY() { return mapZXnY(this); } public Matrix4d mapZXnY(Matrix4d dest) { double m00 = this.m00, m01 = this.m01, m02 = this.m02; double m10 = this.m10, m11 = this.m11, m12 = this.m12; return dest._m00(m20)._m01(m21)._m02(m22)._m03(m03)._m10(m00)._m11(m01)._m12(m02)._m13(m13)._m20(-m10)._m21(-m11)._m22(-m12)._m23(m23)._m30(m30)._m31(m31)._m32(m32)._m33(m33)._properties(properties & (PROPERTY_AFFINE | PROPERTY_ORTHONORMAL)); } /** * Multiply this by the matrix *
     * 0 0 1 0
     * 0 1 0 0
     * 1 0 0 0
     * 0 0 0 1
     * 
* * @return this */ public Matrix4d mapZYX() { return mapZYX(this); } public Matrix4d mapZYX(Matrix4d dest) { double m00 = this.m00, m01 = this.m01, m02 = this.m02; return dest._m00(m20)._m01(m21)._m02(m22)._m03(m03)._m10(m10)._m11(m11)._m12(m12)._m13(m13)._m20(m00)._m21(m01)._m22(m02)._m23(m23)._m30(m30)._m31(m31)._m32(m32)._m33(m33)._properties(properties & (PROPERTY_AFFINE | PROPERTY_ORTHONORMAL)); } /** * Multiply this by the matrix *
     * 0 0 -1 0
     * 0 1  0 0
     * 1 0  0 0
     * 0 0  0 1
     * 
* * @return this */ public Matrix4d mapZYnX() { return mapZYnX(this); } public Matrix4d mapZYnX(Matrix4d dest) { double m00 = this.m00, m01 = this.m01, m02 = this.m02; return dest._m00(m20)._m01(m21)._m02(m22)._m03(m03)._m10(m10)._m11(m11)._m12(m12)._m13(m13)._m20(-m00)._m21(-m01)._m22(-m02)._m23(m23)._m30(m30)._m31(m31)._m32(m32)._m33(m33)._properties(properties & (PROPERTY_AFFINE | PROPERTY_ORTHONORMAL)); } /** * Multiply this by the matrix *
     * 0 -1 0 0
     * 0  0 1 0
     * 1  0 0 0
     * 0  0 0 1
     * 
* * @return this */ public Matrix4d mapZnXY() { return mapZnXY(this); } public Matrix4d mapZnXY(Matrix4d dest) { double m00 = this.m00, m01 = this.m01, m02 = this.m02; double m10 = this.m10, m11 = this.m11, m12 = this.m12; return dest._m00(m20)._m01(m21)._m02(m22)._m03(m03)._m10(-m00)._m11(-m01)._m12(-m02)._m13(m13)._m20(m10)._m21(m11)._m22(m12)._m23(m23)._m30(m30)._m31(m31)._m32(m32)._m33(m33)._properties(properties & (PROPERTY_AFFINE | PROPERTY_ORTHONORMAL)); } /** * Multiply this by the matrix *
     * 0 -1  0 0
     * 0  0 -1 0
     * 1  0  0 0
     * 0  0  0 1
     * 
* * @return this */ public Matrix4d mapZnXnY() { return mapZnXnY(this); } public Matrix4d mapZnXnY(Matrix4d dest) { double m00 = this.m00, m01 = this.m01, m02 = this.m02; double m10 = this.m10, m11 = this.m11, m12 = this.m12; return dest._m00(m20)._m01(m21)._m02(m22)._m03(m03)._m10(-m00)._m11(-m01)._m12(-m02)._m13(m13)._m20(-m10)._m21(-m11)._m22(-m12)._m23(m23)._m30(m30)._m31(m31)._m32(m32)._m33(m33)._properties(properties & (PROPERTY_AFFINE | PROPERTY_ORTHONORMAL)); } /** * Multiply this by the matrix *
     * 0  0 1 0
     * 0 -1 0 0
     * 1  0 0 0
     * 0  0 0 1
     * 
* * @return this */ public Matrix4d mapZnYX() { return mapZnYX(this); } public Matrix4d mapZnYX(Matrix4d dest) { double m00 = this.m00, m01 = this.m01, m02 = this.m02; return dest._m00(m20)._m01(m21)._m02(m22)._m03(m03)._m10(-m10)._m11(-m11)._m12(-m12)._m13(m13)._m20(m00)._m21(m01)._m22(m02)._m23(m23)._m30(m30)._m31(m31)._m32(m32)._m33(m33)._properties(properties & (PROPERTY_AFFINE | PROPERTY_ORTHONORMAL)); } /** * Multiply this by the matrix *
     * 0  0 -1 0
     * 0 -1  0 0
     * 1  0  0 0
     * 0  0  0 1
     * 
* * @return this */ public Matrix4d mapZnYnX() { return mapZnYnX(this); } public Matrix4d mapZnYnX(Matrix4d dest) { double m00 = this.m00, m01 = this.m01, m02 = this.m02; return dest._m00(m20)._m01(m21)._m02(m22)._m03(m03)._m10(-m10)._m11(-m11)._m12(-m12)._m13(m13)._m20(-m00)._m21(-m01)._m22(-m02)._m23(m23)._m30(m30)._m31(m31)._m32(m32)._m33(m33)._properties(properties & (PROPERTY_AFFINE | PROPERTY_ORTHONORMAL)); } /** * Multiply this by the matrix *
     * -1 0  0 0
     *  0 1  0 0
     *  0 0 -1 0
     *  0 0  0 1
     * 
* * @return this */ public Matrix4d mapnXYnZ() { return mapnXYnZ(this); } public Matrix4d mapnXYnZ(Matrix4d dest) { return dest._m00(-m00)._m01(-m01)._m02(-m02)._m03(m03)._m10(m10)._m11(m11)._m12(m12)._m13(m13)._m20(-m20)._m21(-m21)._m22(-m22)._m23(m23)._m30(m30)._m31(m31)._m32(m32)._m33(m33)._properties(properties & (PROPERTY_AFFINE | PROPERTY_ORTHONORMAL)); } /** * Multiply this by the matrix *
     * -1 0 0 0
     *  0 0 1 0
     *  0 1 0 0
     *  0 0 0 1
     * 
* * @return this */ public Matrix4d mapnXZY() { return mapnXZY(this); } public Matrix4d mapnXZY(Matrix4d dest) { double m10 = this.m10, m11 = this.m11, m12 = this.m12; return dest._m00(-m00)._m01(-m01)._m02(-m02)._m03(m03)._m10(m20)._m11(m21)._m12(m22)._m13(m13)._m20(m10)._m21(m11)._m22(m12)._m23(m23)._m30(m30)._m31(m31)._m32(m32)._m33(m33)._properties(properties & (PROPERTY_AFFINE | PROPERTY_ORTHONORMAL)); } /** * Multiply this by the matrix *
     * -1 0  0 0
     *  0 0 -1 0
     *  0 1  0 0
     *  0 0  0 1
     * 
* * @return this */ public Matrix4d mapnXZnY() { return mapnXZnY(this); } public Matrix4d mapnXZnY(Matrix4d dest) { double m10 = this.m10, m11 = this.m11, m12 = this.m12; return dest._m00(-m00)._m01(-m01)._m02(-m02)._m03(m03)._m10(m20)._m11(m21)._m12(m22)._m13(m13)._m20(-m10)._m21(-m11)._m22(-m12)._m23(m23)._m30(m30)._m31(m31)._m32(m32)._m33(m33)._properties(properties & (PROPERTY_AFFINE | PROPERTY_ORTHONORMAL)); } /** * Multiply this by the matrix *
     * -1  0 0 0
     *  0 -1 0 0
     *  0  0 1 0
     *  0  0 0 1
     * 
* * @return this */ public Matrix4d mapnXnYZ() { return mapnXnYZ(this); } public Matrix4d mapnXnYZ(Matrix4d dest) { return dest._m00(-m00)._m01(-m01)._m02(-m02)._m03(m03)._m10(-m10)._m11(-m11)._m12(-m12)._m13(m13)._m20(m20)._m21(m21)._m22(m22)._m23(m23)._m30(m30)._m31(m31)._m32(m32)._m33(m33)._properties(properties & (PROPERTY_AFFINE | PROPERTY_ORTHONORMAL)); } /** * Multiply this by the matrix *
     * -1  0  0 0
     *  0 -1  0 0
     *  0  0 -1 0
     *  0  0  0 1
     * 
* * @return this */ public Matrix4d mapnXnYnZ() { return mapnXnYnZ(this); } public Matrix4d mapnXnYnZ(Matrix4d dest) { return dest._m00(-m00)._m01(-m01)._m02(-m02)._m03(m03)._m10(-m10)._m11(-m11)._m12(-m12)._m13(m13)._m20(-m20)._m21(-m21)._m22(-m22)._m23(m23)._m30(m30)._m31(m31)._m32(m32)._m33(m33)._properties(properties & (PROPERTY_AFFINE | PROPERTY_ORTHONORMAL)); } /** * Multiply this by the matrix *
     * -1  0 0 0
     *  0  0 1 0
     *  0 -1 0 0
     *  0  0 0 1
     * 
* * @return this */ public Matrix4d mapnXnZY() { return mapnXnZY(this); } public Matrix4d mapnXnZY(Matrix4d dest) { double m10 = this.m10, m11 = this.m11, m12 = this.m12; return dest._m00(-m00)._m01(-m01)._m02(-m02)._m03(m03)._m10(-m20)._m11(-m21)._m12(-m22)._m13(m13)._m20(m10)._m21(m11)._m22(m12)._m23(m23)._m30(m30)._m31(m31)._m32(m32)._m33(m33)._properties(properties & (PROPERTY_AFFINE | PROPERTY_ORTHONORMAL)); } /** * Multiply this by the matrix *
     * -1  0  0 0
     *  0  0 -1 0
     *  0 -1  0 0
     *  0  0  0 1
     * 
* * @return this */ public Matrix4d mapnXnZnY() { return mapnXnZnY(this); } public Matrix4d mapnXnZnY(Matrix4d dest) { double m10 = this.m10, m11 = this.m11, m12 = this.m12; return dest._m00(-m00)._m01(-m01)._m02(-m02)._m03(m03)._m10(-m20)._m11(-m21)._m12(-m22)._m13(m13)._m20(-m10)._m21(-m11)._m22(-m12)._m23(m23)._m30(m30)._m31(m31)._m32(m32)._m33(m33)._properties(properties & (PROPERTY_AFFINE | PROPERTY_ORTHONORMAL)); } /** * Multiply this by the matrix *
     *  0 1 0 0
     * -1 0 0 0
     *  0 0 1 0
     *  0 0 0 1
     * 
* * @return this */ public Matrix4d mapnYXZ() { return mapnYXZ(this); } public Matrix4d mapnYXZ(Matrix4d dest) { double m00 = this.m00, m01 = this.m01, m02 = this.m02; return dest._m00(-m10)._m01(-m11)._m02(-m12)._m03(m03)._m10(m00)._m11(m01)._m12(m02)._m13(m13)._m20(m20)._m21(m21)._m22(m22)._m23(m23)._m30(m30)._m31(m31)._m32(m32)._m33(m33)._properties(properties & (PROPERTY_AFFINE | PROPERTY_ORTHONORMAL)); } /** * Multiply this by the matrix *
     *  0 1  0 0
     * -1 0  0 0
     *  0 0 -1 0
     *  0 0  0 1
     * 
* * @return this */ public Matrix4d mapnYXnZ() { return mapnYXnZ(this); } public Matrix4d mapnYXnZ(Matrix4d dest) { double m00 = this.m00, m01 = this.m01, m02 = this.m02; return dest._m00(-m10)._m01(-m11)._m02(-m12)._m03(m03)._m10(m00)._m11(m01)._m12(m02)._m13(m13)._m20(-m20)._m21(-m21)._m22(-m22)._m23(m23)._m30(m30)._m31(m31)._m32(m32)._m33(m33)._properties(properties & (PROPERTY_AFFINE | PROPERTY_ORTHONORMAL)); } /** * Multiply this by the matrix *
     *  0 0 1 0
     * -1 0 0 0
     *  0 1 0 0
     *  0 0 0 1
     * 
* * @return this */ public Matrix4d mapnYZX() { return mapnYZX(this); } public Matrix4d mapnYZX(Matrix4d dest) { double m00 = this.m00, m01 = this.m01, m02 = this.m02; return dest._m00(-m10)._m01(-m11)._m02(-m12)._m03(m03)._m10(m20)._m11(m21)._m12(m22)._m13(m13)._m20(m00)._m21(m01)._m22(m02)._m23(m23)._m30(m30)._m31(m31)._m32(m32)._m33(m33)._properties(properties & (PROPERTY_AFFINE | PROPERTY_ORTHONORMAL)); } /** * Multiply this by the matrix *
     *  0 0 -1 0
     * -1 0  0 0
     *  0 1  0 0
     *  0 0  0 1
     * 
* * @return this */ public Matrix4d mapnYZnX() { return mapnYZnX(this); } public Matrix4d mapnYZnX(Matrix4d dest) { double m00 = this.m00, m01 = this.m01, m02 = this.m02; return dest._m00(-m10)._m01(-m11)._m02(-m12)._m03(m03)._m10(m20)._m11(m21)._m12(m22)._m13(m13)._m20(-m00)._m21(-m01)._m22(-m02)._m23(m23)._m30(m30)._m31(m31)._m32(m32)._m33(m33)._properties(properties & (PROPERTY_AFFINE | PROPERTY_ORTHONORMAL)); } /** * Multiply this by the matrix *
     *  0 -1 0 0
     * -1  0 0 0
     *  0  0 1 0
     *  0  0 0 1
     * 
* * @return this */ public Matrix4d mapnYnXZ() { return mapnYnXZ(this); } public Matrix4d mapnYnXZ(Matrix4d dest) { double m00 = this.m00, m01 = this.m01, m02 = this.m02; return dest._m00(-m10)._m01(-m11)._m02(-m12)._m03(m03)._m10(-m00)._m11(-m01)._m12(-m02)._m13(m13)._m20(m20)._m21(m21)._m22(m22)._m23(m23)._m30(m30)._m31(m31)._m32(m32)._m33(m33)._properties(properties & (PROPERTY_AFFINE | PROPERTY_ORTHONORMAL)); } /** * Multiply this by the matrix *
     *  0 -1  0 0
     * -1  0  0 0
     *  0  0 -1 0
     *  0  0  0 1
     * 
* * @return this */ public Matrix4d mapnYnXnZ() { return mapnYnXnZ(this); } public Matrix4d mapnYnXnZ(Matrix4d dest) { double m00 = this.m00, m01 = this.m01, m02 = this.m02; return dest._m00(-m10)._m01(-m11)._m02(-m12)._m03(m03)._m10(-m00)._m11(-m01)._m12(-m02)._m13(m13)._m20(-m20)._m21(-m21)._m22(-m22)._m23(m23)._m30(m30)._m31(m31)._m32(m32)._m33(m33)._properties(properties & (PROPERTY_AFFINE | PROPERTY_ORTHONORMAL)); } /** * Multiply this by the matrix *
     *  0  0 1 0
     * -1  0 0 0
     *  0 -1 0 0
     *  0  0 0 1
     * 
* * @return this */ public Matrix4d mapnYnZX() { return mapnYnZX(this); } public Matrix4d mapnYnZX(Matrix4d dest) { double m00 = this.m00, m01 = this.m01, m02 = this.m02; return dest._m00(-m10)._m01(-m11)._m02(-m12)._m03(m03)._m10(-m20)._m11(-m21)._m12(-m22)._m13(m13)._m20(m00)._m21(m01)._m22(m02)._m23(m23)._m30(m30)._m31(m31)._m32(m32)._m33(m33)._properties(properties & (PROPERTY_AFFINE | PROPERTY_ORTHONORMAL)); } /** * Multiply this by the matrix *
     *  0  0 -1 0
     * -1  0  0 0
     *  0 -1  0 0
     *  0  0  0 1
     * 
* * @return this */ public Matrix4d mapnYnZnX() { return mapnYnZnX(this); } public Matrix4d mapnYnZnX(Matrix4d dest) { double m00 = this.m00, m01 = this.m01, m02 = this.m02; return dest._m00(-m10)._m01(-m11)._m02(-m12)._m03(m03)._m10(-m20)._m11(-m21)._m12(-m22)._m13(m13)._m20(-m00)._m21(-m01)._m22(-m02)._m23(m23)._m30(m30)._m31(m31)._m32(m32)._m33(m33)._properties(properties & (PROPERTY_AFFINE | PROPERTY_ORTHONORMAL)); } /** * Multiply this by the matrix *
     *  0 1 0 0
     *  0 0 1 0
     * -1 0 0 0
     *  0 0 0 1
     * 
* * @return this */ public Matrix4d mapnZXY() { return mapnZXY(this); } public Matrix4d mapnZXY(Matrix4d dest) { double m00 = this.m00, m01 = this.m01, m02 = this.m02; double m10 = this.m10, m11 = this.m11, m12 = this.m12; return dest._m00(-m20)._m01(-m21)._m02(-m22)._m03(m03)._m10(m00)._m11(m01)._m12(m02)._m13(m13)._m20(m10)._m21(m11)._m22(m12)._m23(m23)._m30(m30)._m31(m31)._m32(m32)._m33(m33)._properties(properties & (PROPERTY_AFFINE | PROPERTY_ORTHONORMAL)); } /** * Multiply this by the matrix *
     *  0 1  0 0
     *  0 0 -1 0
     * -1 0  0 0
     *  0 0  0 1
     * 
* * @return this */ public Matrix4d mapnZXnY() { return mapnZXnY(this); } public Matrix4d mapnZXnY(Matrix4d dest) { double m00 = this.m00, m01 = this.m01, m02 = this.m02; double m10 = this.m10, m11 = this.m11, m12 = this.m12; return dest._m00(-m20)._m01(-m21)._m02(-m22)._m03(m03)._m10(m00)._m11(m01)._m12(m02)._m13(m13)._m20(-m10)._m21(-m11)._m22(-m12)._m23(m23)._m30(m30)._m31(m31)._m32(m32)._m33(m33)._properties(properties & (PROPERTY_AFFINE | PROPERTY_ORTHONORMAL)); } /** * Multiply this by the matrix *
     *  0 0 1 0
     *  0 1 0 0
     * -1 0 0 0
     *  0 0 0 1
     * 
* * @return this */ public Matrix4d mapnZYX() { return mapnZYX(this); } public Matrix4d mapnZYX(Matrix4d dest) { double m00 = this.m00, m01 = this.m01, m02 = this.m02; return dest._m00(-m20)._m01(-m21)._m02(-m22)._m03(m03)._m10(m10)._m11(m11)._m12(m12)._m13(m13)._m20(m00)._m21(m01)._m22(m02)._m23(m23)._m30(m30)._m31(m31)._m32(m32)._m33(m33)._properties(properties & (PROPERTY_AFFINE | PROPERTY_ORTHONORMAL)); } /** * Multiply this by the matrix *
     *  0 0 -1 0
     *  0 1  0 0
     * -1 0  0 0
     *  0 0  0 1
     * 
* * @return this */ public Matrix4d mapnZYnX() { return mapnZYnX(this); } public Matrix4d mapnZYnX(Matrix4d dest) { double m00 = this.m00, m01 = this.m01, m02 = this.m02; return dest._m00(-m20)._m01(-m21)._m02(-m22)._m03(m03)._m10(m10)._m11(m11)._m12(m12)._m13(m13)._m20(-m00)._m21(-m01)._m22(-m02)._m23(m23)._m30(m30)._m31(m31)._m32(m32)._m33(m33)._properties(properties & (PROPERTY_AFFINE | PROPERTY_ORTHONORMAL)); } /** * Multiply this by the matrix *
     *  0 -1 0 0
     *  0  0 1 0
     * -1  0 0 0
     *  0  0 0 1
     * 
* * @return this */ public Matrix4d mapnZnXY() { return mapnZnXY(this); } public Matrix4d mapnZnXY(Matrix4d dest) { double m00 = this.m00, m01 = this.m01, m02 = this.m02; double m10 = this.m10, m11 = this.m11, m12 = this.m12; return dest._m00(-m20)._m01(-m21)._m02(-m22)._m03(m03)._m10(-m00)._m11(-m01)._m12(-m02)._m13(m13)._m20(m10)._m21(m11)._m22(m12)._m23(m23)._m30(m30)._m31(m31)._m32(m32)._m33(m33)._properties(properties & (PROPERTY_AFFINE | PROPERTY_ORTHONORMAL)); } /** * Multiply this by the matrix *
     *  0 -1  0 0
     *  0  0 -1 0
     * -1  0  0 0
     *  0  0  0 1
     * 
* * @return this */ public Matrix4d mapnZnXnY() { return mapnZnXnY(this); } public Matrix4d mapnZnXnY(Matrix4d dest) { double m00 = this.m00, m01 = this.m01, m02 = this.m02; double m10 = this.m10, m11 = this.m11, m12 = this.m12; return dest._m00(-m20)._m01(-m21)._m02(-m22)._m03(m03)._m10(-m00)._m11(-m01)._m12(-m02)._m13(m13)._m20(-m10)._m21(-m11)._m22(-m12)._m23(m23)._m30(m30)._m31(m31)._m32(m32)._m33(m33)._properties(properties & (PROPERTY_AFFINE | PROPERTY_ORTHONORMAL)); } /** * Multiply this by the matrix *
     *  0  0 1 0
     *  0 -1 0 0
     * -1  0 0 0
     *  0  0 0 1
     * 
* * @return this */ public Matrix4d mapnZnYX() { return mapnZnYX(this); } public Matrix4d mapnZnYX(Matrix4d dest) { double m00 = this.m00, m01 = this.m01, m02 = this.m02; return dest._m00(-m20)._m01(-m21)._m02(-m22)._m03(m03)._m10(-m10)._m11(-m11)._m12(-m12)._m13(m13)._m20(m00)._m21(m01)._m22(m02)._m23(m23)._m30(m30)._m31(m31)._m32(m32)._m33(m33)._properties(properties & (PROPERTY_AFFINE | PROPERTY_ORTHONORMAL)); } /** * Multiply this by the matrix *
     *  0  0 -1 0
     *  0 -1  0 0
     * -1  0  0 0
     *  0  0  0 1
     * 
* * @return this */ public Matrix4d mapnZnYnX() { return mapnZnYnX(this); } public Matrix4d mapnZnYnX(Matrix4d dest) { double m00 = this.m00, m01 = this.m01, m02 = this.m02; return dest._m00(-m20)._m01(-m21)._m02(-m22)._m03(m03)._m10(-m10)._m11(-m11)._m12(-m12)._m13(m13)._m20(-m00)._m21(-m01)._m22(-m02)._m23(m23)._m30(m30)._m31(m31)._m32(m32)._m33(m33)._properties(properties & (PROPERTY_AFFINE | PROPERTY_ORTHONORMAL)); } /** * Multiply this by the matrix *
     * -1 0 0 0
     *  0 1 0 0
     *  0 0 1 0
     *  0 0 0 1
     * 
* * @return this */ public Matrix4d negateX() { return _m00(-m00)._m01(-m01)._m02(-m02)._properties(properties & (PROPERTY_AFFINE | PROPERTY_ORTHONORMAL)); } public Matrix4d negateX(Matrix4d dest) { return dest._m00(-m00)._m01(-m01)._m02(-m02)._m03(m03)._m10(m10)._m11(m11)._m12(m12)._m13(m13)._m20(m20)._m21(m21)._m22(m22)._m23(m23)._m30(m30)._m31(m31)._m32(m32)._m33(m33)._properties(properties & (PROPERTY_AFFINE | PROPERTY_ORTHONORMAL)); } /** * Multiply this by the matrix *
     * 1  0 0 0
     * 0 -1 0 0
     * 0  0 1 0
     * 0  0 0 1
     * 
* * @return this */ public Matrix4d negateY() { return _m10(-m10)._m11(-m11)._m12(-m12)._properties(properties & (PROPERTY_AFFINE | PROPERTY_ORTHONORMAL)); } public Matrix4d negateY(Matrix4d dest) { return dest._m00(m00)._m01(m01)._m02(m02)._m03(m03)._m10(-m10)._m11(-m11)._m12(-m12)._m13(m13)._m20(m20)._m21(m21)._m22(m22)._m23(m23)._m30(m30)._m31(m31)._m32(m32)._m33(m33)._properties(properties & (PROPERTY_AFFINE | PROPERTY_ORTHONORMAL)); } /** * Multiply this by the matrix *
     * 1 0  0 0
     * 0 1  0 0
     * 0 0 -1 0
     * 0 0  0 1
     * 
* * @return this */ public Matrix4d negateZ() { return _m20(-m20)._m21(-m21)._m22(-m22)._properties(properties & (PROPERTY_AFFINE | PROPERTY_ORTHONORMAL)); } public Matrix4d negateZ(Matrix4d dest) { return dest._m00(m00)._m01(m01)._m02(m02)._m03(m03)._m10(m10)._m11(m11)._m12(m12)._m13(m13)._m20(-m20)._m21(-m21)._m22(-m22)._m23(m23)._m30(m30)._m31(m31)._m32(m32)._m33(m33)._properties(properties & (PROPERTY_AFFINE | PROPERTY_ORTHONORMAL)); } public boolean isFinite() { return Math.isFinite(m00) && Math.isFinite(m01) && Math.isFinite(m02) && Math.isFinite(m03) && Math.isFinite(m10) && Math.isFinite(m11) && Math.isFinite(m12) && Math.isFinite(m13) && Math.isFinite(m20) && Math.isFinite(m21) && Math.isFinite(m22) && Math.isFinite(m23) && Math.isFinite(m30) && Math.isFinite(m31) && Math.isFinite(m32) && Math.isFinite(m33); } public Object clone() throws CloneNotSupportedException { return super.clone(); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy