All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.joml.AxisAngle4f Maven / Gradle / Ivy

There is a newer version: 1.10.8
Show newest version
/*
 * The MIT License
 *
 * Copyright (c) 2015-2024 Kai Burjack
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
package org.joml;

import java.io.Externalizable;
import java.io.IOException;
import java.io.ObjectInput;
import java.io.ObjectOutput;
import java.text.DecimalFormat;
import java.text.NumberFormat;

/**
 * Represents a 3D rotation of a given radians about an axis represented as an
 * unit 3D vector.
 * 

* This class uses single-precision components. * * @author Kai Burjack */ public class AxisAngle4f implements Externalizable, Cloneable { private static final long serialVersionUID = 1L; /** * The angle in radians. */ public float angle; /** * The x-component of the rotation axis. */ public float x; /** * The y-component of the rotation axis. */ public float y; /** * The z-component of the rotation axis. */ public float z; /** * Create a new {@link AxisAngle4f} with zero rotation about (0, 0, 1). */ public AxisAngle4f() { z = 1.0f; } /** * Create a new {@link AxisAngle4f} with the same values of a. * * @param a * the AngleAxis4f to copy the values from */ public AxisAngle4f(AxisAngle4f a) { x = a.x; y = a.y; z = a.z; angle = (a.angle < 0.0 ? Math.PI_TIMES_2_f + a.angle % Math.PI_TIMES_2_f : a.angle) % Math.PI_TIMES_2_f; } /** * Create a new {@link AxisAngle4f} from the given {@link Quaternionfc}. *

* Reference: http://www.euclideanspace.com * * @param q * the quaternion from which to create the new AngleAxis4f */ public AxisAngle4f(Quaternionfc q) { float acos = Math.safeAcos(q.w()); float invSqrt = Math.invsqrt(1.0f - q.w() * q.w()); if (Float.isInfinite(invSqrt)) { this.x = 0.0f; this.y = 0.0f; this.z = 1.0f; } else { this.x = q.x() * invSqrt; this.y = q.y() * invSqrt; this.z = q.z() * invSqrt; } this.angle = acos + acos; } /** * Create a new {@link AxisAngle4f} with the given values. * * @param angle * the angle in radians * @param x * the x-coordinate of the rotation axis * @param y * the y-coordinate of the rotation axis * @param z * the z-coordinate of the rotation axis */ public AxisAngle4f(float angle, float x, float y, float z) { this.x = x; this.y = y; this.z = z; this.angle = (angle < 0.0 ? Math.PI_TIMES_2_f + angle % Math.PI_TIMES_2_f : angle) % Math.PI_TIMES_2_f; } /** * Create a new {@link AxisAngle4f} with the given values. * * @param angle the angle in radians * @param v the rotation axis as a {@link Vector3f} */ public AxisAngle4f(float angle, Vector3fc v) { this(angle, v.x(), v.y(), v.z()); } /** * Set this {@link AxisAngle4f} to the values of a. * * @param a * the AngleAxis4f to copy the values from * @return this */ public AxisAngle4f set(AxisAngle4f a) { x = a.x; y = a.y; z = a.z; angle = a.angle; angle = (angle < 0.0 ? Math.PI_TIMES_2_f + angle % Math.PI_TIMES_2_f : angle) % Math.PI_TIMES_2_f; return this; } /** * Set this {@link AxisAngle4f} to the values of a. * * @param a * the AngleAxis4d to copy the values from * @return this */ public AxisAngle4f set(AxisAngle4d a) { x = (float) a.x; y = (float) a.y; z = (float) a.z; angle = (float) a.angle; angle = (angle < 0.0 ? Math.PI_TIMES_2_f + angle % Math.PI_TIMES_2_f : angle) % Math.PI_TIMES_2_f; return this; } /** * Set this {@link AxisAngle4f} to the given values. * * @param angle * the angle in radians * @param x * the x-coordinate of the rotation axis * @param y * the y-coordinate of the rotation axis * @param z * the z-coordinate of the rotation axis * @return this */ public AxisAngle4f set(float angle, float x, float y, float z) { this.x = x; this.y = y; this.z = z; this.angle = (angle < 0.0 ? Math.PI_TIMES_2_f + angle % Math.PI_TIMES_2_f : angle) % Math.PI_TIMES_2_f; return this; } /** * Set this {@link AxisAngle4f} to the given values. * * @param angle * the angle in radians * @param v * the rotation axis as a {@link Vector3f} * @return this */ public AxisAngle4f set(float angle, Vector3fc v) { return set(angle, v.x(), v.y(), v.z()); } /** * Set this {@link AxisAngle4f} to be equivalent to the given * {@link Quaternionfc}. * * @param q * the quaternion to set this AngleAxis4f from * @return this */ public AxisAngle4f set(Quaternionfc q) { float acos = Math.safeAcos(q.w()); float invSqrt = Math.invsqrt(1.0f - q.w() * q.w()); if (Float.isInfinite(invSqrt)) { this.x = 0.0f; this.y = 0.0f; this.z = 1.0f; } else { this.x = q.x() * invSqrt; this.y = q.y() * invSqrt; this.z = q.z() * invSqrt; } this.angle = acos + acos; return this; } /** * Set this {@link AxisAngle4f} to be equivalent to the given * {@link Quaterniondc}. * * @param q * the quaternion to set this AngleAxis4f from * @return this */ public AxisAngle4f set(Quaterniondc q) { double acos = Math.safeAcos(q.w()); double invSqrt = Math.invsqrt(1.0 - q.w() * q.w()); if (Double.isInfinite(invSqrt)) { this.x = 0.0f; this.y = 0.0f; this.z = 1.0f; } else { this.x = (float) (q.x() * invSqrt); this.y = (float) (q.y() * invSqrt); this.z = (float) (q.z() * invSqrt); } this.angle = (float) (acos + acos); return this; } /** * Set this {@link AxisAngle4f} to be equivalent to the rotation * of the given {@link Matrix3fc}. *

* Reference: http://www.euclideanspace.com * * @param m * the Matrix3fc to set this AngleAxis4f from * @return this */ public AxisAngle4f set(Matrix3fc m) { float nm00 = m.m00(), nm01 = m.m01(), nm02 = m.m02(); float nm10 = m.m10(), nm11 = m.m11(), nm12 = m.m12(); float nm20 = m.m20(), nm21 = m.m21(), nm22 = m.m22(); float lenX = Math.invsqrt(m.m00() * m.m00() + m.m01() * m.m01() + m.m02() * m.m02()); float lenY = Math.invsqrt(m.m10() * m.m10() + m.m11() * m.m11() + m.m12() * m.m12()); float lenZ = Math.invsqrt(m.m20() * m.m20() + m.m21() * m.m21() + m.m22() * m.m22()); nm00 *= lenX; nm01 *= lenX; nm02 *= lenX; nm10 *= lenY; nm11 *= lenY; nm12 *= lenY; nm20 *= lenZ; nm21 *= lenZ; nm22 *= lenZ; float epsilon = 1E-4f, epsilon2 = 1E-3f; if (Math.abs(nm10 - nm01) < epsilon && Math.abs(nm20 - nm02) < epsilon && Math.abs(nm21 - nm12) < epsilon) { if (Math.abs(nm10 + nm01) < epsilon2 && Math.abs(nm20 + nm02) < epsilon2 && Math.abs(nm21 + nm12) < epsilon2 && Math.abs(nm00 + nm11 + nm22 - 3) < epsilon2) { x = 0; y = 0; z = 1; angle = 0; return this; } angle = Math.PI_f; float xx = (nm00 + 1) / 2; float yy = (nm11 + 1) / 2; float zz = (nm22 + 1) / 2; float xy = (nm10 + nm01) / 4; float xz = (nm20 + nm02) / 4; float yz = (nm21 + nm12) / 4; if ((xx > yy) && (xx > zz)) { x = Math.sqrt(xx); float invX = 1.0f / x; y = xy * invX; z = xz * invX; } else if (yy > zz) { y = Math.sqrt(yy); float invZ = 1.0f / z; x = xy * invZ; z = yz * invZ; } else { z = Math.sqrt(zz); float invY = 1.0f / y; x = xz * invY; y = yz * invY; } return this; } float s = Math.invsqrt((nm12 - nm21) * (nm12 - nm21) + (nm20 - nm02) * (nm20 - nm02) + (nm01 - nm10) * (nm01 - nm10)); angle = Math.safeAcos((nm00 + nm11 + nm22 - 1) / 2); x = (nm12 - nm21) * s; y = (nm20 - nm02) * s; z = (nm01 - nm10) * s; return this; } /** * Set this {@link AxisAngle4f} to be equivalent to the rotation * of the given {@link Matrix3dc}. *

* Reference: http://www.euclideanspace.com * * @param m * the Matrix3d to set this AngleAxis4f from * @return this */ public AxisAngle4f set(Matrix3dc m) { double nm00 = m.m00(), nm01 = m.m01(), nm02 = m.m02(); double nm10 = m.m10(), nm11 = m.m11(), nm12 = m.m12(); double nm20 = m.m20(), nm21 = m.m21(), nm22 = m.m22(); double lenX = Math.invsqrt(m.m00() * m.m00() + m.m01() * m.m01() + m.m02() * m.m02()); double lenY = Math.invsqrt(m.m10() * m.m10() + m.m11() * m.m11() + m.m12() * m.m12()); double lenZ = Math.invsqrt(m.m20() * m.m20() + m.m21() * m.m21() + m.m22() * m.m22()); nm00 *= lenX; nm01 *= lenX; nm02 *= lenX; nm10 *= lenY; nm11 *= lenY; nm12 *= lenY; nm20 *= lenZ; nm21 *= lenZ; nm22 *= lenZ; double epsilon = 1E-4, epsilon2 = 1E-3; if (Math.abs(nm10 - nm01) < epsilon && Math.abs(nm20 - nm02) < epsilon && Math.abs(nm21 - nm12) < epsilon) { if (Math.abs(nm10 + nm01) < epsilon2 && Math.abs(nm20 + nm02) < epsilon2 && Math.abs(nm21 + nm12) < epsilon2 && Math.abs(nm00 + nm11 + nm22 - 3) < epsilon2) { x = 0; y = 0; z = 1; angle = 0; return this; } angle = (float) Math.PI; double xx = (nm00 + 1) / 2; double yy = (nm11 + 1) / 2; double zz = (nm22 + 1) / 2; double xy = (nm10 + nm01) / 4; double xz = (nm20 + nm02) / 4; double yz = (nm21 + nm12) / 4; if ((xx > yy) && (xx > zz)) { x = (float) Math.sqrt(xx); float invX = 1.0f / x; y = (float) (xy * invX); z = (float) (xz * invX); } else if (yy > zz) { y = (float) Math.sqrt(yy); float invY = 1.0f / y; x = (float) (xy * invY); z = (float) (yz * invY); } else { z = (float) Math.sqrt(zz); float invZ = 1.0f / z; x = (float) (xz * invZ); y = (float) (yz * invZ); } return this; } double s = Math.invsqrt((nm12 - nm21) * (nm12 - nm21) + (nm20 - nm02) * (nm20 - nm02) + (nm01 - nm10) * (nm01 - nm10)); angle = (float) Math.safeAcos((nm00 + nm11 + nm22 - 1) / 2); x = (float) ((nm12 - nm21) * s); y = (float) ((nm20 - nm02) * s); z = (float) ((nm01 - nm10) * s); return this; } /** * Set this {@link AxisAngle4f} to be equivalent to the rotational component * of the given {@link Matrix4fc}. *

* Reference: http://www.euclideanspace.com * * @param m * the Matrix4fc to set this AngleAxis4f from * @return this */ public AxisAngle4f set(Matrix4fc m) { float nm00 = m.m00(), nm01 = m.m01(), nm02 = m.m02(); float nm10 = m.m10(), nm11 = m.m11(), nm12 = m.m12(); float nm20 = m.m20(), nm21 = m.m21(), nm22 = m.m22(); float lenX = Math.invsqrt(m.m00() * m.m00() + m.m01() * m.m01() + m.m02() * m.m02()); float lenY = Math.invsqrt(m.m10() * m.m10() + m.m11() * m.m11() + m.m12() * m.m12()); float lenZ = Math.invsqrt(m.m20() * m.m20() + m.m21() * m.m21() + m.m22() * m.m22()); nm00 *= lenX; nm01 *= lenX; nm02 *= lenX; nm10 *= lenY; nm11 *= lenY; nm12 *= lenY; nm20 *= lenZ; nm21 *= lenZ; nm22 *= lenZ; float epsilon = 1E-4f, epsilon2 = 1E-3f; if (Math.abs(nm10 - nm01) < epsilon && Math.abs(nm20 - nm02) < epsilon && Math.abs(nm21 - nm12) < epsilon) { if (Math.abs(nm10 + nm01) < epsilon2 && Math.abs(nm20 + nm02) < epsilon2 && Math.abs(nm21 + nm12) < epsilon2 && Math.abs(nm00 + nm11 + nm22 - 3) < epsilon2) { x = 0; y = 0; z = 1; angle = 0; return this; } angle = Math.PI_f; float xx = (nm00 + 1) / 2; float yy = (nm11 + 1) / 2; float zz = (nm22 + 1) / 2; float xy = (nm10 + nm01) / 4; float xz = (nm20 + nm02) / 4; float yz = (nm21 + nm12) / 4; if ((xx > yy) && (xx > zz)) { x = Math.sqrt(xx); float invX = 1.0f / x; y = xy * invX; z = xz * invX; } else if (yy > zz) { y = Math.sqrt(yy); float invZ = 1.0f / z; x = xy * invZ; z = yz * invZ; } else { z = Math.sqrt(zz); float invY = 1.0f / y; x = xz * invY; y = yz * invY; } return this; } float s = Math.invsqrt((nm12 - nm21) * (nm12 - nm21) + (nm20 - nm02) * (nm20 - nm02) + (nm01 - nm10) * (nm01 - nm10)); angle = Math.safeAcos((nm00 + nm11 + nm22 - 1) / 2); x = (nm12 - nm21) * s; y = (nm20 - nm02) * s; z = (nm01 - nm10) * s; return this; } /** * Set this {@link AxisAngle4f} to be equivalent to the rotational component * of the given {@link Matrix4x3fc}. *

* Reference: http://www.euclideanspace.com * * @param m * the Matrix4x3fc to set this AngleAxis4f from * @return this */ public AxisAngle4f set(Matrix4x3fc m) { float nm00 = m.m00(), nm01 = m.m01(), nm02 = m.m02(); float nm10 = m.m10(), nm11 = m.m11(), nm12 = m.m12(); float nm20 = m.m20(), nm21 = m.m21(), nm22 = m.m22(); float lenX = Math.invsqrt(m.m00() * m.m00() + m.m01() * m.m01() + m.m02() * m.m02()); float lenY = Math.invsqrt(m.m10() * m.m10() + m.m11() * m.m11() + m.m12() * m.m12()); float lenZ = Math.invsqrt(m.m20() * m.m20() + m.m21() * m.m21() + m.m22() * m.m22()); nm00 *= lenX; nm01 *= lenX; nm02 *= lenX; nm10 *= lenY; nm11 *= lenY; nm12 *= lenY; nm20 *= lenZ; nm21 *= lenZ; nm22 *= lenZ; float epsilon = 1E-4f, epsilon2 = 1E-3f; if (Math.abs(nm10 - nm01) < epsilon && Math.abs(nm20 - nm02) < epsilon && Math.abs(nm21 - nm12) < epsilon) { if (Math.abs(nm10 + nm01) < epsilon2 && Math.abs(nm20 + nm02) < epsilon2 && Math.abs(nm21 + nm12) < epsilon2 && Math.abs(nm00 + nm11 + nm22 - 3) < epsilon2) { x = 0; y = 0; z = 1; angle = 0; return this; } angle = Math.PI_f; float xx = (nm00 + 1) / 2; float yy = (nm11 + 1) / 2; float zz = (nm22 + 1) / 2; float xy = (nm10 + nm01) / 4; float xz = (nm20 + nm02) / 4; float yz = (nm21 + nm12) / 4; if ((xx > yy) && (xx > zz)) { x = Math.sqrt(xx); float invX = 1.0f / x; y = xy * invX; z = xz * invX; } else if (yy > zz) { y = Math.sqrt(yy); float invZ = 1.0f / z; x = xy * invZ; z = yz * invZ; } else { z = Math.sqrt(zz); float invY = 1.0f / y; x = xz * invY; y = yz * invY; } return this; } float s = Math.invsqrt((nm12 - nm21) * (nm12 - nm21) + (nm20 - nm02) * (nm20 - nm02) + (nm01 - nm10) * (nm01 - nm10)); angle = Math.safeAcos((nm00 + nm11 + nm22 - 1) / 2); x = (nm12 - nm21) * s; y = (nm20 - nm02) * s; z = (nm01 - nm10) * s; return this; } /** * Set this {@link AxisAngle4f} to be equivalent to the rotational component * of the given {@link Matrix4dc}. *

* Reference: http://www.euclideanspace.com * * @param m * the Matrix4dc to set this AngleAxis4f from * @return this */ public AxisAngle4f set(Matrix4dc m) { double nm00 = m.m00(), nm01 = m.m01(), nm02 = m.m02(); double nm10 = m.m10(), nm11 = m.m11(), nm12 = m.m12(); double nm20 = m.m20(), nm21 = m.m21(), nm22 = m.m22(); double lenX = Math.invsqrt(m.m00() * m.m00() + m.m01() * m.m01() + m.m02() * m.m02()); double lenY = Math.invsqrt(m.m10() * m.m10() + m.m11() * m.m11() + m.m12() * m.m12()); double lenZ = Math.invsqrt(m.m20() * m.m20() + m.m21() * m.m21() + m.m22() * m.m22()); nm00 *= lenX; nm01 *= lenX; nm02 *= lenX; nm10 *= lenY; nm11 *= lenY; nm12 *= lenY; nm20 *= lenZ; nm21 *= lenZ; nm22 *= lenZ; double epsilon = 1E-4, epsilon2 = 1E-3; if (Math.abs(nm10 - nm01) < epsilon && Math.abs(nm20 - nm02) < epsilon && Math.abs(nm21 - nm12) < epsilon) { if (Math.abs(nm10 + nm01) < epsilon2 && Math.abs(nm20 + nm02) < epsilon2 && Math.abs(nm21 + nm12) < epsilon2 && Math.abs(nm00 + nm11 + nm22 - 3) < epsilon2) { x = 0; y = 0; z = 1; angle = 0; return this; } angle = (float) Math.PI; double xx = (nm00 + 1) / 2; double yy = (nm11 + 1) / 2; double zz = (nm22 + 1) / 2; double xy = (nm10 + nm01) / 4; double xz = (nm20 + nm02) / 4; double yz = (nm21 + nm12) / 4; if ((xx > yy) && (xx > zz)) { x = (float) Math.sqrt(xx); float invX = 1.0f / x; y = (float) (xy * invX); z = (float) (xz * invX); } else if (yy > zz) { y = (float) Math.sqrt(yy); float invY = 1.0f / y; x = (float) (xy * invY); z = (float) (yz * invY); } else { z = (float) Math.sqrt(zz); float invZ = 1.0f / z; x = (float) (xz * invZ); y = (float) (yz * invZ); } return this; } double s = Math.invsqrt((nm12 - nm21) * (nm12 - nm21) + (nm20 - nm02) * (nm20 - nm02) + (nm01 - nm10) * (nm01 - nm10)); angle = (float) Math.safeAcos((nm00 + nm11 + nm22 - 1) / 2); x = (float) ((nm12 - nm21) * s); y = (float) ((nm20 - nm02) * s); z = (float) ((nm01 - nm10) * s); return this; } /** * Set the given {@link Quaternionf} to be equivalent to this {@link AxisAngle4f} rotation. * * @see Quaternionf#set(AxisAngle4f) * * @param q * the quaternion to set * @return q */ public Quaternionf get(Quaternionf q) { return q.set(this); } /** * Set the given {@link Quaterniond} to be equivalent to this {@link AxisAngle4f} rotation. * * @see Quaterniond#set(AxisAngle4f) * * @param q * the quaternion to set * @return q */ public Quaterniond get(Quaterniond q) { return q.set(this); } /** * Set the given {@link Matrix4f} to a rotation transformation equivalent to this {@link AxisAngle4f}. * * @see Matrix4f#set(AxisAngle4f) * * @param m * the matrix to set * @return m */ public Matrix4f get(Matrix4f m) { return m.set(this); } /** * Set the given {@link Matrix3f} to a rotation transformation equivalent to this {@link AxisAngle4f}. * * @see Matrix3f#set(AxisAngle4f) * * @param m * the matrix to set * @return m */ public Matrix3f get(Matrix3f m) { return m.set(this); } /** * Set the given {@link Matrix4d} to a rotation transformation equivalent to this {@link AxisAngle4f}. * * @see Matrix4f#set(AxisAngle4f) * * @param m * the matrix to set * @return m */ public Matrix4d get(Matrix4d m) { return m.set(this); } /** * Set the given {@link Matrix3d} to a rotation transformation equivalent to this {@link AxisAngle4f}. * * @see Matrix3f#set(AxisAngle4f) * * @param m * the matrix to set * @return m */ public Matrix3d get(Matrix3d m) { return m.set(this); } /** * Set the given {@link AxisAngle4d} to this {@link AxisAngle4f}. * * @param dest * will hold the result * @return dest */ public AxisAngle4d get(AxisAngle4d dest) { return dest.set(this); } /** * Set the given {@link AxisAngle4f} to this {@link AxisAngle4f}. * * @param dest * will hold the result * @return dest */ public AxisAngle4f get(AxisAngle4f dest) { return dest.set(this); } public void writeExternal(ObjectOutput out) throws IOException { out.writeFloat(angle); out.writeFloat(x); out.writeFloat(y); out.writeFloat(z); } public void readExternal(ObjectInput in) throws IOException, ClassNotFoundException { angle = in.readFloat(); x = in.readFloat(); y = in.readFloat(); z = in.readFloat(); } /** * Normalize the axis vector. * * @return this */ public AxisAngle4f normalize() { float invLength = Math.invsqrt(x * x + y * y + z * z); x *= invLength; y *= invLength; z *= invLength; return this; } /** * Increase the rotation angle by the given amount. *

* This method also takes care of wrapping around. * * @param ang * the angle increase * @return this */ public AxisAngle4f rotate(float ang) { angle += ang; angle = (angle < 0.0 ? Math.PI_TIMES_2_f + angle % (Math.PI_TIMES_2_f) : angle) % (Math.PI_TIMES_2_f); return this; } /** * Transform the given vector by the rotation transformation described by this {@link AxisAngle4f}. * * @param v * the vector to transform * @return v */ public Vector3f transform(Vector3f v) { return transform(v, v); } /** * Transform the given vector by the rotation transformation described by this {@link AxisAngle4f} * and store the result in dest. * * @param v * the vector to transform * @param dest * will hold the result * @return dest */ public Vector3f transform(Vector3fc v, Vector3f dest) { double sin = Math.sin(angle); double cos = Math.cosFromSin(sin, angle); float dot = x * v.x() + y * v.y() + z * v.z(); dest.set((float) (v.x() * cos + sin * (y * v.z() - z * v.y()) + (1.0 - cos) * dot * x), (float) (v.y() * cos + sin * (z * v.x() - x * v.z()) + (1.0 - cos) * dot * y), (float) (v.z() * cos + sin * (x * v.y() - y * v.x()) + (1.0 - cos) * dot * z)); return dest; } /** * Transform the given vector by the rotation transformation described by this {@link AxisAngle4f}. * * @param v * the vector to transform * @return v */ public Vector4f transform(Vector4f v) { return transform(v, v); } /** * Transform the given vector by the rotation transformation described by this {@link AxisAngle4f} * and store the result in dest. * * @param v * the vector to transform * @param dest * will hold the result * @return dest */ public Vector4f transform(Vector4fc v, Vector4f dest) { double sin = Math.sin(angle); double cos = Math.cosFromSin(sin, angle); float dot = x * v.x() + y * v.y() + z * v.z(); dest.set((float) (v.x() * cos + sin * (y * v.z() - z * v.y()) + (1.0 - cos) * dot * x), (float) (v.y() * cos + sin * (z * v.x() - x * v.z()) + (1.0 - cos) * dot * y), (float) (v.z() * cos + sin * (x * v.y() - y * v.x()) + (1.0 - cos) * dot * z), dest.w); return dest; } /** * Return a string representation of this {@link AxisAngle4f}. *

* This method creates a new {@link DecimalFormat} on every invocation with the format string " 0.000E0;-". * * @return the string representation */ public String toString() { return Runtime.formatNumbers(toString(Options.NUMBER_FORMAT)); } /** * Return a string representation of this {@link AxisAngle4f} by formatting the components with the given {@link NumberFormat}. * * @param formatter * the {@link NumberFormat} used to format the vector components with * @return the string representation */ public String toString(NumberFormat formatter) { return "(" + Runtime.format(x, formatter) + " " + Runtime.format(y, formatter) + " " + Runtime.format(z, formatter) + " <| " + Runtime.format(angle, formatter) + ")"; } public int hashCode() { final int prime = 31; int result = 1; float nangle = (angle < 0.0 ? Math.PI_TIMES_2_f + angle % Math.PI_TIMES_2_f : angle) % Math.PI_TIMES_2_f; result = prime * result + Float.floatToIntBits(nangle); result = prime * result + Float.floatToIntBits(x); result = prime * result + Float.floatToIntBits(y); result = prime * result + Float.floatToIntBits(z); return result; } public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (getClass() != obj.getClass()) return false; AxisAngle4f other = (AxisAngle4f) obj; float nangle = (angle < 0.0 ? Math.PI_TIMES_2_f + angle % Math.PI_TIMES_2_f : angle) % Math.PI_TIMES_2_f; float nangleOther = (other.angle < 0.0 ? Math.PI_TIMES_2_f + other.angle % Math.PI_TIMES_2_f : other.angle) % Math.PI_TIMES_2_f; if (Float.floatToIntBits(nangle) != Float.floatToIntBits(nangleOther)) return false; if (Float.floatToIntBits(x) != Float.floatToIntBits(other.x)) return false; if (Float.floatToIntBits(y) != Float.floatToIntBits(other.y)) return false; if (Float.floatToIntBits(z) != Float.floatToIntBits(other.z)) return false; return true; } public Object clone() throws CloneNotSupportedException { return super.clone(); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy