All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.joml.AABBd Maven / Gradle / Ivy

There is a newer version: 1.10.8
Show newest version
/*
 * The MIT License
 *
 * Copyright (c) 2017-2020 JOML
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
package org.joml;

import java.io.Externalizable;
import java.io.IOException;
import java.io.ObjectInput;
import java.io.ObjectOutput;
import java.text.DecimalFormat;
import java.text.NumberFormat;

import org.joml.Math;

/**
 * Represents an axis-aligned box defined via the minimum and maximum corner coordinates.
 * 
 * @author Kai Burjack
 */
public class AABBd implements Externalizable {

    /**
     * The x coordinate of the minimum corner.
     */
    public double minX = Double.POSITIVE_INFINITY;
    /**
     * The y coordinate of the minimum corner.
     */
    public double minY = Double.POSITIVE_INFINITY;
    /**
     * The z coordinate of the minimum corner.
     */
    public double minZ = Double.POSITIVE_INFINITY;
    /**
     * The x coordinate of the maximum corner.
     */
    public double maxX = Double.NEGATIVE_INFINITY;
    /**
     * The y coordinate of the maximum corner.
     */
    public double maxY = Double.NEGATIVE_INFINITY;
    /**
     * The z coordinate of the maximum corner.
     */
    public double maxZ = Double.NEGATIVE_INFINITY;

    /**
     * Create a new {@link AABBd} representing the box with
     * (minX, minY, minZ)=(+inf, +inf, +inf) and (maxX, maxY, maxZ)=(-inf, -inf, -inf).
     */
    public AABBd() {
    }

    /**
     * Create a new {@link AABBd} as a copy of the given source.
     * 
     * @param source
     *          the {@link AABBd} to copy from
     */
    public AABBd(AABBd source) {
        this.minX = source.minX;
        this.minY = source.minY;
        this.minZ = source.minZ;
        this.maxX = source.maxX;
        this.maxY = source.maxY;
        this.maxZ = source.maxZ;
    }

    /**
     * Create a new {@link AABBd} with the given minimum and maximum corner coordinates.
     * 
     * @param min
     *          the minimum coordinates
     * @param max
     *          the maximum coordinates
     */
    public AABBd(Vector3fc min, Vector3fc max) {
        this.minX = min.x();
        this.minY = min.y();
        this.minZ = min.z();
        this.maxX = max.x();
        this.maxY = max.y();
        this.maxZ = max.z();
    }

    /**
     * Create a new {@link AABBd} with the given minimum and maximum corner coordinates.
     * 
     * @param min
     *          the minimum coordinates
     * @param max
     *          the maximum coordinates
     */
    public AABBd(Vector3dc min, Vector3dc max) {
        this.minX = min.x();
        this.minY = min.y();
        this.minZ = min.z();
        this.maxX = max.x();
        this.maxY = max.y();
        this.maxZ = max.z();
    }

    /**
     * Create a new {@link AABBd} with the given minimum and maximum corner coordinates.
     * 
     * @param minX
     *          the x coordinate of the minimum corner
     * @param minY
     *          the y coordinate of the minimum corner
     * @param minZ
     *          the z coordinate of the minimum corner
     * @param maxX
     *          the x coordinate of the maximum corner
     * @param maxY
     *          the y coordinate of the maximum corner
     * @param maxZ
     *          the z coordinate of the maximum corner
     */
    public AABBd(double minX, double minY, double minZ, double maxX, double maxY, double maxZ) {
        this.minX = minX;
        this.minY = minY;
        this.minZ = minZ;
        this.maxX = maxX;
        this.maxY = maxY;
        this.maxZ = maxZ;
    }

    /**
     * Set the minimum corner coordinates.
     * 
     * @param minX
     *          the x coordinate of the minimum corner
     * @param minY
     *          the y coordinate of the minimum corner
     * @param minZ
     *          the z coordinate of the minimum corner
     * @return this
     */
    public AABBd setMin(double minX, double minY, double minZ) {
        this.minX = minX;
        this.minY = minY;
        this.minZ = minZ;
        return this;
    }

    /**
     * Set the maximum corner coordinates.
     * 
     * @param maxX
     *          the x coordinate of the maximum corner
     * @param maxY
     *          the y coordinate of the maximum corner
     * @param maxZ
     *          the z coordinate of the maximum corner
     * @return this
     */
    public AABBd setMax(double maxX, double maxY, double maxZ) {
        this.maxX = maxX;
        this.maxY = maxY;
        this.maxZ = maxZ;
        return this;
    }

    /**
     * Set the minimum corner coordinates.
     * 
     * @param min
     *          the minimum coordinates
     * @return this
     */
    public AABBd setMin(Vector3dc min) {
        return this.setMin(min.x(), min.y(), min.z());
    }

    /**
     * Set the maximum corner coordinates.
     * 
     * @param max
     *          the maximum coordinates
     * @return this
     */
    public AABBd setMax(Vector3dc max) {
        return this.setMax(max.x(), max.y(), max.z());
    }

    /**
     * Get the maximum corner coordinate of the given component.
     * 
     * @param component
     *          the component, within [0..2]
     * @return the maximum coordinate
     * @throws IllegalArgumentException if component is not within [0..2]
     */
    public double getMax(int component) throws IllegalArgumentException {
        switch (component) {
        case 0:
            return maxX;
        case 1:
            return maxY;
        case 2:
            return maxZ;
        default:
            throw new IllegalArgumentException();
        }
    }

    /**
     * Get the minimum corner coordinate of the given component.
     * 
     * @param component
     *          the component, within [0..2]
     * @return the maximum coordinate
     * @throws IllegalArgumentException if component is not within [0..2]
     */
    public double getMin(int component) throws IllegalArgumentException {
        switch (component) {
        case 0:
            return minX;
        case 1:
            return minY;
        case 2:
            return minZ;
        default:
            throw new IllegalArgumentException();
        }
    }

    /**
     * Set this to the union of this and the given point (x, y, z).
     * 
     * @param x
     *          the x coordinate of the point
     * @param y
     *          the y coordinate of the point
     * @param z
     *          the z coordinate of the point
     * @return this
     */
    public AABBd union(double x, double y, double z) {
        return union(x, y, z, this);
    }

    /**
     * Set this to the union of this and the given point p.
     * 
     * @param p
     *          the point
     * @return this
     */
    public AABBd union(Vector3dc p) {
        return union(p.x(), p.y(), p.z(), this);
    }

    /**
     * Compute the union of this and the given point (x, y, z) and store the result in dest.
     * 
     * @param x
     *          the x coordinate of the point
     * @param y
     *          the y coordinate of the point
     * @param z
     *          the z coordinate of the point
     * @param dest
     *          will hold the result
     * @return dest
     */
    public AABBd union(double x, double y, double z, AABBd dest) {
        dest.minX = this.minX < x ? this.minX : x;
        dest.minY = this.minY < y ? this.minY : y;
        dest.minZ = this.minZ < z ? this.minZ : z;
        dest.maxX = this.maxX > x ? this.maxX : x;
        dest.maxY = this.maxY > y ? this.maxY : y;
        dest.maxZ = this.maxZ > z ? this.maxZ : z;
        return dest;
    }

    /**
     * Compute the union of this and the given point p and store the result in dest.
     * 
     * @param p
     *          the point
     * @param dest
     *          will hold the result
     * @return dest
     */
    public AABBd union(Vector3dc p, AABBd dest) {
        return union(p.x(), p.y(), p.z(), dest);
    }

    /**
     * Set this to the union of this and other.
     * 
     * @param other
     *          the other {@link AABBd}
     * @return this
     */
    public AABBd union(AABBd other) {
        return this.union(other, this);
    }

    /**
     * Compute the union of this and other and store the result in dest.
     * 
     * @param other
     *          the other {@link AABBd}
     * @param dest
     *          will hold the result
     * @return dest
     */
    public AABBd union(AABBd other, AABBd dest) {
        dest.minX = this.minX < other.minX ? this.minX : other.minX;
        dest.minY = this.minY < other.minY ? this.minY : other.minY;
        dest.minZ = this.minZ < other.minZ ? this.minZ : other.minZ;
        dest.maxX = this.maxX > other.maxX ? this.maxX : other.maxX;
        dest.maxY = this.maxY > other.maxY ? this.maxY : other.maxY;
        dest.maxZ = this.maxZ > other.maxZ ? this.maxZ : other.maxZ;
        return dest;
    }

    /**
     * Ensure that the minimum coordinates are strictly less than or equal to the maximum coordinates by swapping
     * them if necessary.
     * 
     * @return this
     */
    public AABBd correctBounds() {
        double tmp;
        if (this.minX > this.maxX) {
            tmp = this.minX;
            this.minX = this.maxX;
            this.maxX = tmp;
        }
        if (this.minY > this.maxY) {
            tmp = this.minY;
            this.minY = this.maxY;
            this.maxY = tmp;
        }
        if (this.minZ > this.maxZ) {
            tmp = this.minZ;
            this.minZ = this.maxZ;
            this.maxZ = tmp;
        }
        return this;
    }

    /**
     * Translate this by the given vector xyz.
     * 
     * @param xyz
     *          the vector to translate by
     * @return this
     */
    public AABBd translate(Vector3dc xyz) {
        return translate(xyz.x(), xyz.y(), xyz.z(), this);
    }

    /**
     * Translate this by the given vector xyz and store the result in dest.
     * 
     * @param xyz
     *          the vector to translate by
     * @param dest
     *          will hold the result
     * @return dest
     */
    public AABBd translate(Vector3dc xyz, AABBd dest) {
        return translate(xyz.x(), xyz.y(), xyz.z(), dest);
    }

    /**
     * Translate this by the given vector xyz.
     * 
     * @param xyz
     *          the vector to translate by
     * @return this
     */
    public AABBd translate(Vector3fc xyz) {
        return translate(xyz.x(), xyz.y(), xyz.z(), this);
    }

    /**
     * Translate this by the given vector xyz and store the result in dest.
     * 
     * @param xyz
     *          the vector to translate by
     * @param dest
     *          will hold the result
     * @return dest
     */
    public AABBd translate(Vector3fc xyz, AABBd dest) {
        return translate(xyz.x(), xyz.y(), xyz.z(), dest);
    }

    /**
     * Translate this by the vector (x, y, z).
     * 
     * @param x
     *          the x coordinate to translate by
     * @param y
     *          the y coordinate to translate by
     * @param z
     *          the z coordinate to translate by
     * @return this
     */
    public AABBd translate(double x, double y, double z) {
        return translate(x, y, z, this);
    }

    /**
     * Translate this by the vector (x, y, z) and store the result in dest.
     * 
     * @param x
     *          the x coordinate to translate by
     * @param y
     *          the y coordinate to translate by
     * @param z
     *          the z coordinate to translate by
     * @param dest
     *          will hold the result
     * @return dest
     */
    public AABBd translate(double x, double y, double z, AABBd dest) {
        dest.minX = minX + x;
        dest.minY = minY + y;
        dest.minZ = minZ + z;
        dest.maxX = maxX + x;
        dest.maxY = maxY + y;
        dest.maxZ = maxZ + z;
        return dest;
    }

    /**
     * Test whether the point (x, y, z) lies inside this AABB.
     * 
     * @param x
     *          the x coordinate of the point
     * @param y
     *          the y coordinate of the point
     * @param z
     *          the z coordinate of the point
     * @return true iff the given point lies inside this AABB; false otherwise
     */
    public boolean testPoint(double x, double y, double z) {
        return x >= minX && y >= minY && z >= minZ && x <= maxX && y <= maxY && z <= maxZ;
    }

    /**
     * Test whether the given point lies inside this AABB.
     * 
     * @param point
     *          the coordinates of the point
     * @return true iff the given point lies inside this AABB; false otherwise
     */
    public boolean testPoint(Vector3dc point) {
        return testPoint(point.x(), point.y(), point.z());
    }

    /**
     * Test whether the plane given via its plane equation a*x + b*y + c*z + d = 0 intersects this AABB.
     * 

* Reference: http://www.lighthouse3d.com ("Geometric Approach - Testing Boxes II") * * @param a * the x factor in the plane equation * @param b * the y factor in the plane equation * @param c * the z factor in the plane equation * @param d * the constant in the plane equation * @return true iff the plane intersects this AABB; false otherwise */ public boolean testPlane(double a, double b, double c, double d) { return Intersectiond.testAabPlane(minX, minY, minZ, maxX, maxY, maxZ, a, b, c, d); } /** * Test whether the given plane intersects this AABB. *

* Reference: http://www.lighthouse3d.com ("Geometric Approach - Testing Boxes II") * * @param plane * the plane * @return true iff the plane intersects this AABB; false otherwise */ public boolean testPlane(Planed plane) { return Intersectiond.testAabPlane(this, plane); } /** * Test whether this and other intersect. * * @param other * the other AABB * @return true iff both AABBs intersect; false otherwise */ public boolean testAABB(AABBd other) { return this.maxX >= other.minX && this.maxY >= other.minY && this.maxZ >= other.minZ && this.minX <= other.maxX && this.minY <= other.maxY && this.minZ <= other.maxZ; } /** * Test whether this AABB intersects the given sphere with equation * (x - centerX)^2 + (y - centerY)^2 + (z - centerZ)^2 - radiusSquared = 0. *

* Reference: http://stackoverflow.com * * @param centerX * the x coordinate of the center of the sphere * @param centerY * the y coordinate of the center of the sphere * @param centerZ * the z coordinate of the center of the sphere * @param radiusSquared * the square radius of the sphere * @return true iff this AABB and the sphere intersect; false otherwise */ public boolean testSphere(double centerX, double centerY, double centerZ, double radiusSquared) { return Intersectiond.testAabSphere(minX, minY, minZ, maxX, maxY, maxZ, centerX, centerY, centerZ, radiusSquared); } /** * Test whether this AABB intersects the given sphere. *

* Reference: http://stackoverflow.com * * @param sphere * the sphere * @return true iff this AABB and the sphere intersect; false otherwise */ public boolean testSphere(Spheref sphere) { return Intersectiond.testAabSphere(this, sphere); } /** * Test whether the given ray with the origin (originX, originY, originZ) and direction (dirX, dirY, dirZ) * intersects this AABB. *

* This method returns true for a ray whose origin lies inside this AABB. *

* Reference: An Efficient and Robust Ray–Box Intersection * * @param originX * the x coordinate of the ray's origin * @param originY * the y coordinate of the ray's origin * @param originZ * the z coordinate of the ray's origin * @param dirX * the x coordinate of the ray's direction * @param dirY * the y coordinate of the ray's direction * @param dirZ * the z coordinate of the ray's direction * @return true if this AABB and the ray intersect; false otherwise */ public boolean testRay(double originX, double originY, double originZ, double dirX, double dirY, double dirZ) { return Intersectiond.testRayAab(originX, originY, originZ, dirX, dirY, dirZ, minX, minY, minZ, maxX, maxY, maxZ); } /** * Test whether the given ray intersects this AABB. *

* This method returns true for a ray whose origin lies inside this AABB. *

* Reference: An Efficient and Robust Ray–Box Intersection * * @param ray * the ray * @return true if this AABB and the ray intersect; false otherwise */ public boolean testRay(Rayd ray) { return Intersectiond.testRayAab(ray, this); } /** * Determine whether the given ray with the origin (originX, originY, originZ) and direction (dirX, dirY, dirZ) * intersects this AABB, and return the values of the parameter t in the ray equation * p(t) = origin + t * dir of the near and far point of intersection. *

* This method returns true for a ray whose origin lies inside this AABB. *

* Reference: An Efficient and Robust Ray–Box Intersection * * @param originX * the x coordinate of the ray's origin * @param originY * the y coordinate of the ray's origin * @param originZ * the z coordinate of the ray's origin * @param dirX * the x coordinate of the ray's direction * @param dirY * the y coordinate of the ray's direction * @param dirZ * the z coordinate of the ray's direction * @param result * a vector which will hold the resulting values of the parameter * t in the ray equation p(t) = origin + t * dir of the near and far point of intersection * iff the ray intersects this AABB * @return true if the given ray intersects this AABB; false otherwise */ public boolean intersectRay(double originX, double originY, double originZ, double dirX, double dirY, double dirZ, Vector2d result) { return Intersectiond.intersectRayAab(originX, originY, originZ, dirX, dirY, dirZ, minX, minY, minZ, maxX, maxY, maxZ, result); } /** * Determine whether the given ray intersects this AABB, and return the values of the parameter t in the ray equation * p(t) = origin + t * dir of the near and far point of intersection. *

* This method returns true for a ray whose origin lies inside this AABB. *

* Reference: An Efficient and Robust Ray–Box Intersection * * @param ray * the ray * @param result * a vector which will hold the resulting values of the parameter * t in the ray equation p(t) = origin + t * dir of the near and far point of intersection * iff the ray intersects this AABB * @return true if the given ray intersects this AABB; false otherwise */ public boolean intersectRay(Rayd ray, Vector2d result) { return Intersectiond.intersectRayAab(ray, this, result); } /** * Determine whether the undirected line segment with the end points (p0X, p0Y, p0Z) and (p1X, p1Y, p1Z) * intersects this AABB, and return the values of the parameter t in the ray equation * p(t) = origin + p0 * (p1 - p0) of the near and far point of intersection. *

* This method returns true for a line segment whose either end point lies inside this AABB. *

* Reference: An Efficient and Robust Ray–Box Intersection * * @param p0X * the x coordinate of the line segment's first end point * @param p0Y * the y coordinate of the line segment's first end point * @param p0Z * the z coordinate of the line segment's first end point * @param p1X * the x coordinate of the line segment's second end point * @param p1Y * the y coordinate of the line segment's second end point * @param p1Z * the z coordinate of the line segment's second end point * @param result * a vector which will hold the resulting values of the parameter * t in the ray equation p(t) = p0 + t * (p1 - p0) of the near and far point of intersection * iff the line segment intersects this AABB * @return {@link Intersectiond#INSIDE} if the line segment lies completely inside of this AABB; or * {@link Intersectiond#OUTSIDE} if the line segment lies completely outside of this AABB; or * {@link Intersectiond#ONE_INTERSECTION} if one of the end points of the line segment lies inside of this AABB; or * {@link Intersectiond#TWO_INTERSECTION} if the line segment intersects two sides of this AABB or lies on an edge or a side of this AABB */ public int intersectLineSegment(double p0X, double p0Y, double p0Z, double p1X, double p1Y, double p1Z, Vector2d result) { return Intersectiond.intersectLineSegmentAab(p0X, p0Y, p0Z, p1X, p1Y, p1Z, minX, minY, minZ, maxX, maxY, maxZ, result); } /** * Determine whether the given undirected line segment intersects this AABB, and return the values of the parameter t in the ray equation * p(t) = origin + p0 * (p1 - p0) of the near and far point of intersection. *

* This method returns true for a line segment whose either end point lies inside this AABB. *

* Reference: An Efficient and Robust Ray–Box Intersection * * @param lineSegment * the line segment * @param result * a vector which will hold the resulting values of the parameter * t in the ray equation p(t) = p0 + t * (p1 - p0) of the near and far point of intersection * iff the line segment intersects this AABB * @return {@link Intersectiond#INSIDE} if the line segment lies completely inside of this AABB; or * {@link Intersectiond#OUTSIDE} if the line segment lies completely outside of this AABB; or * {@link Intersectiond#ONE_INTERSECTION} if one of the end points of the line segment lies inside of this AABB; or * {@link Intersectiond#TWO_INTERSECTION} if the line segment intersects two sides of this AABB or lies on an edge or a side of this AABB */ public int intersectLineSegment(LineSegmentf lineSegment, Vector2d result) { return Intersectiond.intersectLineSegmentAab(lineSegment, this, result); } /** * Apply the given {@link Matrix4dc#isAffine() affine} transformation to this {@link AABBd}. *

* The matrix in m must be {@link Matrix4dc#isAffine() affine}. * * @param m * the affine transformation matrix * @return this */ public AABBd transform(Matrix4dc m) { return transform(m, this); } /** * Apply the given {@link Matrix4dc#isAffine() affine} transformation to this {@link AABBd} * and store the resulting AABB into dest. *

* The matrix in m must be {@link Matrix4dc#isAffine() affine}. * * @param m * the affine transformation matrix * @param dest * will hold the result * @return dest */ public AABBd transform(Matrix4dc m, AABBd dest) { double dx = maxX - minX, dy = maxY - minY, dz = maxZ - minZ; double minx = Double.POSITIVE_INFINITY, miny = Double.POSITIVE_INFINITY, minz = Double.POSITIVE_INFINITY; double maxx = Double.NEGATIVE_INFINITY, maxy = Double.NEGATIVE_INFINITY, maxz = Double.NEGATIVE_INFINITY; for (int i = 0; i < 8; i++) { double x = minX + (i & 1) * dx, y = minY + (i >> 1 & 1) * dy, z = minZ + (i >> 2 & 1) * dz; double tx = m.m00() * x + m.m10() * y + m.m20() * z + m.m30(); double ty = m.m01() * x + m.m11() * y + m.m21() * z + m.m31(); double tz = m.m02() * x + m.m12() * y + m.m22() * z + m.m32(); minx = Math.min(tx, minx); miny = Math.min(ty, miny); minz = Math.min(tz, minz); maxx = Math.max(tx, maxx); maxy = Math.max(ty, maxy); maxz = Math.max(tz, maxz); } dest.minX = minx; dest.minY = miny; dest.minZ = minz; dest.maxX = maxx; dest.maxY = maxy; dest.maxZ = maxz; return dest; } public int hashCode() { final int prime = 31; int result = 1; long temp; temp = Double.doubleToLongBits(maxX); result = prime * result + (int) (temp ^ (temp >>> 32)); temp = Double.doubleToLongBits(maxY); result = prime * result + (int) (temp ^ (temp >>> 32)); temp = Double.doubleToLongBits(maxZ); result = prime * result + (int) (temp ^ (temp >>> 32)); temp = Double.doubleToLongBits(minX); result = prime * result + (int) (temp ^ (temp >>> 32)); temp = Double.doubleToLongBits(minY); result = prime * result + (int) (temp ^ (temp >>> 32)); temp = Double.doubleToLongBits(minZ); result = prime * result + (int) (temp ^ (temp >>> 32)); return result; } public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (getClass() != obj.getClass()) return false; AABBd other = (AABBd) obj; if (Double.doubleToLongBits(maxX) != Double.doubleToLongBits(other.maxX)) return false; if (Double.doubleToLongBits(maxY) != Double.doubleToLongBits(other.maxY)) return false; if (Double.doubleToLongBits(maxZ) != Double.doubleToLongBits(other.maxZ)) return false; if (Double.doubleToLongBits(minX) != Double.doubleToLongBits(other.minX)) return false; if (Double.doubleToLongBits(minY) != Double.doubleToLongBits(other.minY)) return false; if (Double.doubleToLongBits(minZ) != Double.doubleToLongBits(other.minZ)) return false; return true; } /** * Return a string representation of this AABB. *

* This method creates a new {@link DecimalFormat} on every invocation with the format string "0.000E0;-". * * @return the string representation */ public String toString() { return Runtime.formatNumbers(toString(Options.NUMBER_FORMAT)); } /** * Return a string representation of this AABB by formatting the vector components with the given {@link NumberFormat}. * * @param formatter * the {@link NumberFormat} used to format the vector components with * @return the string representation */ public String toString(NumberFormat formatter) { return "(" + formatter.format(minX) + " " + formatter.format(minY) + " " + formatter.format(minZ) + ") < " + "(" + formatter.format(maxX) + " " + formatter.format(maxY) + " " + formatter.format(maxZ) + ")"; } public void writeExternal(ObjectOutput out) throws IOException { out.writeDouble(minX); out.writeDouble(minY); out.writeDouble(minZ); out.writeDouble(maxX); out.writeDouble(maxY); out.writeDouble(maxZ); } public void readExternal(ObjectInput in) throws IOException, ClassNotFoundException { minX = in.readDouble(); minY = in.readDouble(); minZ = in.readDouble(); maxX = in.readDouble(); maxY = in.readDouble(); maxZ = in.readDouble(); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy