All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.jeometry.simple.math.decomposition.SimpleEigenDecomposition Maven / Gradle / Ivy

The newest version!
package org.jeometry.simple.math.decomposition;

import java.util.ArrayList;
import java.util.List;

import org.jeometry.Jeometry;
import org.jeometry.factory.JeometryFactory;
import org.jeometry.math.Matrix;
import org.jeometry.math.decomposition.EigenDecomposition;

/**
 * A simple implementation of {@link EigenDecomposition Eigen decomposition}.

* This implantation is inspired by Jama Eigen Decomposition. * @author Julien Seinturier - COMEX S.A. - [email protected] - https://github.com/jorigin/jeometry * @version {@value Jeometry#version} b{@value Jeometry#BUILD} * @since 1.0.0 */ public class SimpleEigenDecomposition implements EigenDecomposition { /** Row and column dimension (square matrix). * @serial matrix dimension. */ private int n; /** Symmetry flag. * @serial internal symmetry flag. */ private boolean issymmetric; /** * Arrays for internal storage of eigenvalues. */ private double[] d; /** * Arrays for internal storage of eigenvalues. */ private double[] e; /** * Array for internal storage of eigenvectors. */ private Matrix V = null; /** * Array for internal storage of eigenvectors. */ private Matrix D = null; /** * Array for internal storage of nonsymmetric Hessenberg form. * @serial internal storage of nonsymmetric Hessenberg form. */ private Matrix H; /** * Working storage for nonsymmetric algorithm. * @serial working storage for nonsymmetric algorithm. */ private double[] ort; /** * Temporary variable. */ private transient double cdivr; /** * Temporary variable. */ private transient double cdivi; /** * Construct a new {@link EigenDecomposition Eigen decomposition} from the given {@link Matrix matrix} * @param matrix the matrix to decompose */ public SimpleEigenDecomposition(Matrix matrix){ double[][] A = matrix.getDataArray2D(); n = matrix.getColumnsCount(); V = JeometryFactory.createMatrix(n, n); d = new double[n]; e = new double[n]; issymmetric = true; for (int j = 0; (j < n) & issymmetric; j++) { for (int i = 0; (i < n) & issymmetric; i++) { issymmetric = (A[i][j] == A[j][i]); } } if (issymmetric) { for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { V.setValue(i, j, A[i][j]); } } // Tridiagonalize. tred2(); // Diagonalize. tql2(); } else { H = JeometryFactory.createMatrix(n, n); ort = new double[n]; for (int j = 0; j < n; j++) { for (int i = 0; i < n; i++) { H.setValue(i, j, A[i][j]); } } // Reduce to Hessenberg form. orthes(); // Reduce Hessenberg to real Schur form. hqr2(); } // Compute D matrix D = JeometryFactory.createMatrix(n, n); for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { D.setValue(i, j, 0.0); } D.setValue(i, i, d[i]); if (e[i] > 0) { D.setValue(i, i+1, e[i]); } else if (e[i] < 0) { D.setValue(i, i-1, e[i]); } } } @Override public Matrix getD() { return D; } @Override public Matrix getV() { return V; } @Override public List getComponents() { List matrices = new ArrayList(2); matrices.add(V); matrices.add(D); return matrices; } /** Compute sqrt(a^2 + b^2) without under/overflow. * @param a the first * @param b the second * @return the result **/ private double hypot(double a, double b) { double r; if (Math.abs(a) > Math.abs(b)) { r = b/a; r = Math.abs(a)*Math.sqrt(1+r*r); } else if (b != 0) { r = a/b; r = Math.abs(b)*Math.sqrt(1+r*r); } else { r = 0.0; } return r; } /** * Compute the complex scalar divisio x/y. * @param xr real part of x * @param xi imaginary part of x * @param yr real part of y * @param yi imaginary part of y */ private void cdiv(double xr, double xi, double yr, double yi) { double r,d; if (Math.abs(yr) > Math.abs(yi)) { r = yi/yr; d = yr + r*yi; cdivr = (xr + r*xi)/d; cdivi = (xi - r*xr)/d; } else { r = yr/yi; d = yi + r*yr; cdivr = (r*xr + xi)/d; cdivi = (r*xi - xr)/d; } } /** * This is derived from the Algol procedures tred2 by * Bowdler, Martin, Reinsch, and Wilkinson, Handbook for * Auto. Comp., Vol.ii-Linear Algebra, and the corresponding * Fortran subroutine in EISPACK. */ private void tred2 () { for (int j = 0; j < n; j++) { d[j] = V.getValue(n-1, j); } // Householder reduction to tridiagonal form. for (int i = n-1; i > 0; i--) { // Scale to avoid under/overflow. double scale = 0.0; double h = 0.0; for (int k = 0; k < i; k++) { scale = scale + Math.abs(d[k]); } if (scale == 0.0) { e[i] = d[i-1]; for (int j = 0; j < i; j++) { d[j] = V.getValue(i-1, j); V.setValue(i, j, 0.0); V.setValue(j, i, 0.0); } } else { // Generate Householder vector. for (int k = 0; k < i; k++) { d[k] /= scale; h += d[k] * d[k]; } double f = d[i-1]; double g = Math.sqrt(h); if (f > 0) { g = -g; } e[i] = scale * g; h = h - f * g; d[i-1] = f - g; for (int j = 0; j < i; j++) { e[j] = 0.0; } // Apply similarity transformation to remaining columns. for (int j = 0; j < i; j++) { f = d[j]; V.setValue(j, i, f); g = e[j] + V.getValue(j, j) * f; for (int k = j+1; k <= i-1; k++) { g += V.getValue(k, j) * d[k]; e[k] += V.getValue(k, j) * f; } e[j] = g; } f = 0.0; for (int j = 0; j < i; j++) { e[j] /= h; f += e[j] * d[j]; } double hh = f / (h + h); for (int j = 0; j < i; j++) { e[j] -= hh * d[j]; } for (int j = 0; j < i; j++) { f = d[j]; g = e[j]; for (int k = j; k <= i-1; k++) { V.setValue(k, j, V.getValue(k, j) - (f * e[k] + g * d[k])); } d[j] = V.getValue(i-1, j); V.setValue(i, j, 0.0); } } d[i] = h; } // Accumulate transformations. for (int i = 0; i < n-1; i++) { V.setValue(n-1, i, V.getValue(i, i)); V.setValue(i, i, 1.0); double h = d[i+1]; if (h != 0.0) { for (int k = 0; k <= i; k++) { d[k] = V.getValue(k, i+1) / h; } for (int j = 0; j <= i; j++) { double g = 0.0; for (int k = 0; k <= i; k++) { g += V.getValue(k, i+1) * V.getValue(k, j); } for (int k = 0; k <= i; k++) { V.setValue(k, j, V.getValue(k, j) - g * d[k]); } } } for (int k = 0; k <= i; k++) { V.setValue(k, i+1, 0.0); } } for (int j = 0; j < n; j++) { d[j] = V.getValue(n-1, j); V.setValue(n-1, j, 0.0); } V.setValue(n-1, n-1, 1.0); e[0] = 0.0; } /** * Symmetric tridiagonal QL algorithm. */ private void tql2 () { // This is derived from the Algol procedures tql2, by // Bowdler, Martin, Reinsch, and Wilkinson, Handbook for // Auto. Comp., Vol.ii-Linear Algebra, and the corresponding // Fortran subroutine in EISPACK. for (int i = 1; i < n; i++) { e[i-1] = e[i]; } e[n-1] = 0.0; double f = 0.0; double tst1 = 0.0; double eps = Math.pow(2.0,-52.0); for (int l = 0; l < n; l++) { // Find small subdiagonal element tst1 = Math.max(tst1,Math.abs(d[l]) + Math.abs(e[l])); int m = l; while (m < n) { if (Math.abs(e[m]) <= eps*tst1) { break; } m++; } // If m == l, d[l] is an eigenvalue, // otherwise, iterate. if (m > l) { int iter = 0; do { iter = iter + 1; // (Could check iteration count here.) // Compute implicit shift double g = d[l]; double p = (d[l+1] - g) / (2.0 * e[l]); double r = hypot(p,1.0); if (p < 0) { r = -r; } d[l] = e[l] / (p + r); d[l+1] = e[l] * (p + r); double dl1 = d[l+1]; double h = g - d[l]; for (int i = l+2; i < n; i++) { d[i] -= h; } f = f + h; // Implicit QL transformation. p = d[m]; double c = 1.0; double c2 = c; double c3 = c; double el1 = e[l+1]; double s = 0.0; double s2 = 0.0; for (int i = m-1; i >= l; i--) { c3 = c2; c2 = c; s2 = s; g = c * e[i]; h = c * p; r = hypot(p,e[i]); e[i+1] = s * r; s = e[i] / r; c = p / r; p = c * d[i] - s * g; d[i+1] = h + s * (c * g + s * d[i]); // Accumulate transformation. for (int k = 0; k < n; k++) { h = V.getValue(k, i+1); V.setValue(k, i+1, s * V.getValue(k, i) + c * h); V.setValue(k, i, c * V.getValue(k, i) - s * h); } } p = -s * s2 * c3 * el1 * e[l] / dl1; e[l] = s * p; d[l] = c * p; // Check for convergence. } while (Math.abs(e[l]) > eps*tst1); } d[l] = d[l] + f; e[l] = 0.0; } // Sort eigenvalues and corresponding vectors. for (int i = 0; i < n-1; i++) { int k = i; double p = d[i]; for (int j = i+1; j < n; j++) { if (d[j] < p) { k = j; p = d[j]; } } if (k != i) { d[k] = d[i]; d[i] = p; for (int j = 0; j < n; j++) { p = V.getValue(j, i); V.setValue(j, i, V.getValue(j, k)); V.setValue(j, k, p); } } } } /** * Nonsymmetric reduction to Hessenberg form. */ private void orthes () { // This is derived from the Algol procedures orthes and ortran, // by Martin and Wilkinson, Handbook for Auto. Comp., // Vol.ii-Linear Algebra, and the corresponding // Fortran subroutines in EISPACK. int low = 0; int high = n-1; for (int m = low+1; m <= high-1; m++) { // Scale column. double scale = 0.0; for (int i = m; i <= high; i++) { scale = scale + Math.abs(H.getValue(i, m-1)); } if (scale != 0.0) { // Compute Householder transformation. double h = 0.0; for (int i = high; i >= m; i--) { ort[i] = H.getValue(i, m-1)/scale; h += ort[i] * ort[i]; } double g = Math.sqrt(h); if (ort[m] > 0) { g = -g; } h = h - ort[m] * g; ort[m] = ort[m] - g; // Apply Householder similarity transformation // H = (I-u*u'/h)*H*(I-u*u')/h) for (int j = m; j < n; j++) { double f = 0.0; for (int i = high; i >= m; i--) { f += ort[i]*H.getValue(i, j); } f = f/h; for (int i = m; i <= high; i++) { H.setValue(i, j, H.getValue(i, j) - f*ort[i]); } } for (int i = 0; i <= high; i++) { double f = 0.0; for (int j = high; j >= m; j--) { f += ort[j]*H.getValue(i, j); } f = f/h; for (int j = m; j <= high; j++) { H.setValue(i, j, H.getValue(i, j) - f*ort[j]); } } ort[m] = scale*ort[m]; H.setValue(m, m-1, scale*g); } } // Accumulate transformations (Algol's ortran). for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { V.setValue(i, j, (i == j ? 1.0 : 0.0)); } } for (int m = high-1; m >= low+1; m--) { if (H.getValue(m, m-1) != 0.0) { for (int i = m+1; i <= high; i++) { ort[i] = H.getValue(i, m-1); } for (int j = m; j <= high; j++) { double g = 0.0; for (int i = m; i <= high; i++) { g += ort[i] * V.getValue(i, j); } // Double division avoids possible underflow g = (g / ort[m]) / H.getValue(m, m-1); for (int i = m; i <= high; i++) { V.setValue(i, j, V.getValue(i, j) + g * ort[i]); } } } } } /** * Nonsymmetric reduction from Hessenberg to real Schur form. */ private void hqr2 () { // This is derived from the Algol procedure hqr2, // by Martin and Wilkinson, Handbook for Auto. Comp., // Vol.ii-Linear Algebra, and the corresponding // Fortran subroutine in EISPACK. // Initialize int nn = this.n; int n = nn-1; int low = 0; int high = nn-1; double eps = Math.pow(2.0,-52.0); double exshift = 0.0; double p=0,q=0,r=0,s=0,z=0,t,w,x,y; // Store roots isolated by balanc and compute matrix norm double norm = 0.0; for (int i = 0; i < nn; i++) { if (i < low | i > high) { d[i] = H.getValue(i, i); e[i] = 0.0; } for (int j = Math.max(i-1,0); j < nn; j++) { norm = norm + Math.abs(H.getValue(i, j)); } } // Outer loop over eigenvalue index int iter = 0; while (n >= low) { // Look for single small sub-diagonal element int l = n; while (l > low) { s = Math.abs(H.getValue(l-1, l-1)) + Math.abs(H.getValue(l, l)); if (s == 0.0) { s = norm; } if (Math.abs(H.getValue(l, l-1)) < eps * s) { break; } l--; } // Check for convergence // One root found if (l == n) { H.setValue(n, n, H.getValue(n, n) + exshift); d[n] = H.getValue(n, n); e[n] = 0.0; n--; iter = 0; // Two roots found } else if (l == n-1) { w = H.getValue(n, n-1) * H.getValue(n-1, n); p = (H.getValue(n-1, n-1) - H.getValue(n, n)) / 2.0; q = p * p + w; z = Math.sqrt(Math.abs(q)); H.setValue(n, n, H.getValue(n, n) + exshift); H.setValue(n-1, n-1, H.getValue(n-1, n-1) + exshift); x = H.getValue(n, n); // Real pair if (q >= 0) { if (p >= 0) { z = p + z; } else { z = p - z; } d[n-1] = x + z; d[n] = d[n-1]; if (z != 0.0) { d[n] = x - w / z; } e[n-1] = 0.0; e[n] = 0.0; x = H.getValue(n, n-1); s = Math.abs(x) + Math.abs(z); p = x / s; q = z / s; r = Math.sqrt(p * p+q * q); p = p / r; q = q / r; // Row modification for (int j = n-1; j < nn; j++) { z = H.getValue(n-1, j); H.setValue(n-1, j, q * z + p * H.getValue(n, j)); H.setValue(n, j, q * H.getValue(n, j) - p * z); } // Column modification for (int i = 0; i <= n; i++) { z = H.getValue(i, n-1); H.setValue(i, n-1, q * z + p * H.getValue(i, n)); H.setValue(i, n, q * H.getValue(i, n) - p * z); } // Accumulate transformations for (int i = low; i <= high; i++) { z = V.getValue(i, n-1); V.setValue(i, n-1, q * z + p * V.getValue(i, n)); V.setValue(i, n, q * V.getValue(i, n) - p * z); } // Complex pair } else { d[n-1] = x + p; d[n] = x + p; e[n-1] = z; e[n] = -z; } n = n - 2; iter = 0; // No convergence yet } else { // Form shift x = H.getValue(n, n); y = 0.0; w = 0.0; if (l < n) { y = H.getValue(n-1, n-1); w = H.getValue(n, n-1) * H.getValue(n-1, n); } // Wilkinson's original ad hoc shift if (iter == 10) { exshift += x; for (int i = low; i <= n; i++) { H.setValue(i, i, H.getValue(i, i)- x); } s = Math.abs(H.getValue(n, n-1)) + Math.abs(H.getValue(n-1, n-2)); x = y = 0.75 * s; w = -0.4375 * s * s; } // MATLAB's new ad hoc shift if (iter == 30) { s = (y - x) / 2.0; s = s * s + w; if (s > 0) { s = Math.sqrt(s); if (y < x) { s = -s; } s = x - w / ((y - x) / 2.0 + s); for (int i = low; i <= n; i++) { H.setValue(i, i, H.getValue(i, i) - s); } exshift += s; x = y = w = 0.964; } } iter = iter + 1; // (Could check iteration count here.) // Look for two consecutive small sub-diagonal elements int m = n-2; while (m >= l) { z = H.getValue(m, m); r = x - z; s = y - z; p = (r * s - w) / H.getValue(m+1, m) + H.getValue(m, m+1); q = H.getValue(m+1, m+1) - z - r - s; r = H.getValue(m+2, m+1); s = Math.abs(p) + Math.abs(q) + Math.abs(r); p = p / s; q = q / s; r = r / s; if (m == l) { break; } if (Math.abs(H.getValue(m, m-1)) * (Math.abs(q) + Math.abs(r)) < eps * (Math.abs(p) * (Math.abs(H.getValue(m-1, m-1)) + Math.abs(z) + Math.abs(H.getValue(m+1, m+1))))) { break; } m--; } for (int i = m+2; i <= n; i++) { H.setValue(i, i-2, 0.0); if (i > m+2) { H.setValue(i, i-3, 0.0); } } // Double QR step involving rows l:n and columns m:n for (int k = m; k <= n-1; k++) { boolean notlast = (k != n-1); if (k != m) { p = H.getValue(k, k-1); q = H.getValue(k+1, k-1); r = (notlast ? H.getValue(k+2, k-1) : 0.0); x = Math.abs(p) + Math.abs(q) + Math.abs(r); if (x == 0.0) { continue; } p = p / x; q = q / x; r = r / x; } s = Math.sqrt(p * p + q * q + r * r); if (p < 0) { s = -s; } if (s != 0) { if (k != m) { H.setValue(k, k-1, -s * x); } else if (l != m) { H.setValue(k, k-1, -H.getValue(k, k-1)); } p = p + s; x = p / s; y = q / s; z = r / s; q = q / p; r = r / p; // Row modification for (int j = k; j < nn; j++) { p = H.getValue(k, j) + q * H.getValue(k+1, j); if (notlast) { p = p + r * H.getValue(k+2, j); H.setValue(k+2, j, H.getValue(k+2, j) - p * z); } H.setValue(k, j, H.getValue(k, j) - p * x); H.setValue(k+1,j, H.getValue(k+1, j) - p * y); } // Column modification for (int i = 0; i <= Math.min(n,k+3); i++) { p = x * H.getValue(i, k) + y * H.getValue(i, k+1); if (notlast) { p = p + z * H.getValue(i, k+2); H.setValue(i, k+2, H.getValue(i, k+2) - p * r); } H.setValue(i, k, H.getValue(i, k) - p); H.setValue(i, k+1, H.getValue(i, k+1) - p * q); } // Accumulate transformations for (int i = low; i <= high; i++) { p = x * V.getValue(i, k) + y * V.getValue(i, k+1); if (notlast) { p = p + z * V.getValue(i, k+2); V.setValue(i, k+2, V.getValue(i, k+2) - p * r); } V.setValue(i, k, V.getValue(i, k) - p); V.setValue(i, k+1, V.getValue(i, k+1) - p * q); } } // (s != 0) } // k loop } // check convergence } // while (n >= low) // Backsubstitute to find vectors of upper triangular form if (norm == 0.0) { return; } for (n = nn-1; n >= 0; n--) { p = d[n]; q = e[n]; // Real vector if (q == 0) { int l = n; H.setValue(n, n, 1.0); for (int i = n-1; i >= 0; i--) { w = H.getValue(i, i) - p; r = 0.0; for (int j = l; j <= n; j++) { r = r + H.getValue(i, j) * H.getValue(j, n); } if (e[i] < 0.0) { z = w; s = r; } else { l = i; if (e[i] == 0.0) { if (w != 0.0) { H.setValue(i, n, -r / w); } else { H.setValue(i, n, -r / (eps * norm)); } // Solve real equations } else { x = H.getValue(i, i+1); y = H.getValue(i+1, i); q = (d[i] - p) * (d[i] - p) + e[i] * e[i]; t = (x * s - z * r) / q; H.setValue(i, n, t); if (Math.abs(x) > Math.abs(z)) { H.setValue(i+1, n, (-r - w * t) / x); } else { H.setValue(i+1, n, (-s - y * t) / z); } } // Overflow control t = Math.abs(H.getValue(i, n)); if ((eps * t) * t > 1) { for (int j = i; j <= n; j++) { H.setValue(j, n, H.getValue(j, n) / t); } } } } // Complex vector } else if (q < 0) { int l = n-1; // Last vector component imaginary so matrix is triangular if (Math.abs(H.getValue(n, n-1)) > Math.abs(H.getValue(n-1, n))) { H.setValue(n-1, n-1, q / H.getValue(n, n-1)); H.setValue(n-1, n, -(H.getValue(n, n) - p) / H.getValue(n, n-1)); } else { cdiv(0.0,-H.getValue(n-1, n),H.getValue(n-1, n-1)-p,q); H.setValue(n-1, n-1, cdivr); H.setValue(n-1, n, cdivi); } H.setValue(n, n-1, 0.0); H.setValue(n, n, 1.0); for (int i = n-2; i >= 0; i--) { double ra,sa,vr,vi; ra = 0.0; sa = 0.0; for (int j = l; j <= n; j++) { ra = ra + H.getValue(i, j) * H.getValue(j, n-1); sa = sa + H.getValue(i, j)* H.getValue(j, n); } w = H.getValue(i, i) - p; if (e[i] < 0.0) { z = w; r = ra; s = sa; } else { l = i; if (e[i] == 0) { cdiv(-ra,-sa,w,q); H.setValue(i, n-1, cdivr); H.setValue(i, n, cdivi); } else { // Solve complex equations x = H.getValue(i, i+1); y = H.getValue(i+1, i); vr = (d[i] - p) * (d[i] - p) + e[i] * e[i] - q * q; vi = (d[i] - p) * 2.0 * q; if (vr == 0.0 & vi == 0.0) { vr = eps * norm * (Math.abs(w) + Math.abs(q) + Math.abs(x) + Math.abs(y) + Math.abs(z)); } cdiv(x*r-z*ra+q*sa,x*s-z*sa-q*ra,vr,vi); H.setValue(i, n-1, cdivr); H.setValue(i, n, cdivi); if (Math.abs(x) > (Math.abs(z) + Math.abs(q))) { H.setValue(i+1, n-1, (-ra - w * H.getValue(i, n-1) + q * H.getValue(i, n)) / x); H.setValue(i+1, n, (-sa - w * H.getValue(i, n) - q * H.getValue(i, n-1)) / x); } else { cdiv(-r-y*H.getValue(i, n-1),-s-y*H.getValue(i, n),z,q); H.setValue(i+1, n-1, cdivr); H.setValue(i+1, n, cdivi); } } // Overflow control t = Math.max(Math.abs(H.getValue(i, n-1)),Math.abs(H.getValue(i, n))); if ((eps * t) * t > 1) { for (int j = i; j <= n; j++) { H.setValue(j, n-1, H.getValue(j, n-1) / t); H.setValue(j, n, H.getValue(j, n) / t); } } } } } } // Vectors of isolated roots for (int i = 0; i < nn; i++) { if (i < low | i > high) { for (int j = i; j < nn; j++) { V.setValue(i, j, H.getValue(i, j)); } } } // Back transformation to get eigenvectors of original matrix for (int j = nn-1; j >= low; j--) { for (int i = low; i <= high; i++) { z = 0.0; for (int k = low; k <= Math.min(j,high); k++) { z = z + V.getValue(i, k) * H.getValue(k, j); } V.setValue(i, j, z); } } } /** Return the real parts of the eigenvalues. * @return the real parts of the eigenvalues */ public double[] getRealEigenvalues () { return d; } /** Return the imaginary parts of the eigenvalues. * @return the imaginary parts of the eigenvalues */ public double[] getImagEigenvalues () { return e; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy