All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.jeometry.simple.math.decomposition.SimpleSVDDecomposition Maven / Gradle / Ivy

The newest version!
package org.jeometry.simple.math.decomposition;

import java.util.ArrayList;
import java.util.List;

import org.jeometry.Jeometry;
import org.jeometry.factory.JeometryFactory;
import org.jeometry.math.Matrix;
import org.jeometry.math.decomposition.SVDDecomposition;

/**
 * A simple implementation of {@link SVDDecomposition SVDDecomposition}.

* This implantation is inspired by Jama LU Decomposition. * @author Julien Seinturier - COMEX S.A. - [email protected] - https://github.com/jorigin/jeometry * @version {@value Jeometry#version} b{@value Jeometry#BUILD} * @since 1.0.0 */ public class SimpleSVDDecomposition implements SVDDecomposition { /** * The U matrix; */ private Matrix U; /** * The D matrix. */ private Matrix S; /** * The V matrix. */ private Matrix V; /** * Array for internal storage of singular values. */ private double[] s; /** * The row dimension. */ private int inputRows; /** * The column dimension. */ private int inputColumns; /** * Construct the singular value decomposition Structure to access U, S and V. * @param matrix the matrix to decompose */ public SimpleSVDDecomposition (Matrix matrix) { // Derived from LINPACK code. // Initialize. double[][] A = matrix.getDataArray2D(); inputRows = matrix.getRowsCount(); inputColumns = matrix.getColumnsCount(); int nu = Math.min(inputRows,inputColumns); s = new double [Math.min(inputRows+1,inputColumns)]; U = JeometryFactory.createMatrix(inputRows, nu); V = JeometryFactory.createMatrix(inputColumns, inputColumns); double[] e = new double [inputColumns]; double[] work = new double [inputRows]; boolean wantu = true; boolean wantv = true; // Reduce A to bidiagonal form, storing the diagonal elements // in s and the super-diagonal elements in e. int nct = Math.min(inputRows-1,inputColumns); int nrt = Math.max(0,Math.min(inputColumns-2,inputRows)); for (int k = 0; k < Math.max(nct,nrt); k++) { if (k < nct) { // Compute the transformation for the k-th column and // place the k-th diagonal in s[k]. // Compute 2-norm of k-th column without under/overflow. s[k] = 0; for (int i = k; i < inputRows; i++) { s[k] = hypot(s[k],A[i][k]); } if (s[k] != 0.0) { if (A[k][k] < 0.0) { s[k] = -s[k]; } for (int i = k; i < inputRows; i++) { A[i][k] /= s[k]; } A[k][k] += 1.0; } s[k] = -s[k]; } for (int j = k+1; j < inputColumns; j++) { if ((k < nct) & (s[k] != 0.0)) { // Apply the transformation. double t = 0; for (int i = k; i < inputRows; i++) { t += A[i][k]*A[i][j]; } t = -t/A[k][k]; for (int i = k; i < inputRows; i++) { A[i][j] += t*A[i][k]; } } // Place the k-th row of A into e for the // subsequent calculation of the row transformation. e[j] = A[k][j]; } if (wantu & (k < nct)) { // Place the transformation in U for subsequent back // multiplication. for (int i = k; i < inputRows; i++) { U.setValue(i, k, A[i][k]); } } if (k < nrt) { // Compute the k-th row transformation and place the // k-th super-diagonal in e[k]. // Compute 2-norm without under/overflow. e[k] = 0; for (int i = k+1; i < inputColumns; i++) { e[k] = hypot(e[k],e[i]); } if (e[k] != 0.0) { if (e[k+1] < 0.0) { e[k] = -e[k]; } for (int i = k+1; i < inputColumns; i++) { e[i] /= e[k]; } e[k+1] += 1.0; } e[k] = -e[k]; if ((k+1 < inputRows) & (e[k] != 0.0)) { // Apply the transformation. for (int i = k+1; i < inputRows; i++) { work[i] = 0.0; } for (int j = k+1; j < inputColumns; j++) { for (int i = k+1; i < inputRows; i++) { work[i] += e[j]*A[i][j]; } } for (int j = k+1; j < inputColumns; j++) { double t = -e[j]/e[k+1]; for (int i = k+1; i < inputRows; i++) { A[i][j] += t*work[i]; } } } if (wantv) { // Place the transformation in V for subsequent // back multiplication. for (int i = k+1; i < inputColumns; i++) { V.setValue(i, k, e[i]); } } } } // Set up the final bidiagonal matrix or order p. int p = Math.min(inputColumns,inputRows+1); if (nct < inputColumns) { s[nct] = A[nct][nct]; } if (inputRows < p) { s[p-1] = 0.0; } if (nrt+1 < p) { e[nrt] = A[nrt][p-1]; } e[p-1] = 0.0; // If required, generate U. if (wantu) { for (int j = nct; j < nu; j++) { for (int i = 0; i < inputRows; i++) { U.setValue(i, j, 0.0); } U.setValue(j, j, 1.0); } for (int k = nct-1; k >= 0; k--) { if (s[k] != 0.0) { for (int j = k+1; j < nu; j++) { double t = 0; for (int i = k; i < inputRows; i++) { t += U.getValue(i, k)*U.getValue(i, j); } t = -t/U.getValue(k, k); for (int i = k; i < inputRows; i++) { U.setValue(i, j, U.getValue(i, j) + t*U.getValue(i, k)); } } for (int i = k; i < inputRows; i++ ) { U.setValue(i, k, -U.getValue(i, k)); } U.setValue(k, k, 1.0 + U.getValue(k, k)); for (int i = 0; i < k-1; i++) { U.setValue(i, k, 0.0); } } else { for (int i = 0; i < inputRows; i++) { U.setValue(i, k, 0.0); } U.setValue(k, k, 1.0); } } } // If required, generate V. if (wantv) { for (int k = inputColumns-1; k >= 0; k--) { if ((k < nrt) & (e[k] != 0.0)) { for (int j = k+1; j < nu; j++) { double t = 0; for (int i = k+1; i < inputColumns; i++) { t += V.getValue(i, k)*V.getValue(i, j); } t = -t/V.getValue(k+1, k); for (int i = k+1; i < inputColumns; i++) { V.setValue(i, j, V.getValue(i, j) + t*V.getValue(i, k)); } } } for (int i = 0; i < inputColumns; i++) { V.setValue(i, k, 0.0); } V.setValue(k, k, 1.0); } } // Main iteration loop for the singular values. int pp = p-1; int iter = 0; double eps = Math.pow(2.0,-52.0); double tiny = Math.pow(2.0,-966.0); while (p > 0) { int k,kase; // Here is where a test for too many iterations would go. // This section of the program inspects for // negligible elements in the s and e arrays. On // completion the variables kase and k are set as follows. // kase = 1 if s(p) and e[k-1] are negligible and k

= -1; k--) { if (k == -1) { break; } if (Math.abs(e[k]) <= tiny + eps*(Math.abs(s[k]) + Math.abs(s[k+1]))) { e[k] = 0.0; break; } } if (k == p-2) { kase = 4; } else { int ks; for (ks = p-1; ks >= k; ks--) { if (ks == k) { break; } double t = (ks != p ? Math.abs(e[ks]) : 0.) + (ks != k+1 ? Math.abs(e[ks-1]) : 0.); if (Math.abs(s[ks]) <= tiny + eps*t) { s[ks] = 0.0; break; } } if (ks == k) { kase = 3; } else if (ks == p-1) { kase = 1; } else { kase = 2; k = ks; } } k++; // Perform the task indicated by kase. switch (kase) { // Deflate negligible s(p). case 1: { double f = e[p-2]; e[p-2] = 0.0; for (int j = p-2; j >= k; j--) { double t = hypot(s[j],f); double cs = s[j]/t; double sn = f/t; s[j] = t; if (j != k) { f = -sn*e[j-1]; e[j-1] = cs*e[j-1]; } if (wantv) { for (int i = 0; i < inputColumns; i++) { t = cs*V.getValue(i, j) + sn*V.getValue(i, p-1); V.setValue(i, p-1, -sn*V.getValue(i, j) + cs*V.getValue(i, p-1)); V.setValue(i, j, t); } } } } break; // Split at negligible s(k). case 2: { double f = e[k-1]; e[k-1] = 0.0; for (int j = k; j < p; j++) { double t = hypot(s[j],f); double cs = s[j]/t; double sn = f/t; s[j] = t; f = -sn*e[j]; e[j] = cs*e[j]; if (wantu) { for (int i = 0; i < inputRows; i++) { t = cs*U.getValue(i, j) + sn*U.getValue(i, k-1); U.setValue(i, k-1, -sn*U.getValue(i, j) + cs*U.getValue(i, k-1)); U.setValue(i, j, t); } } } } break; // Perform one qr step. case 3: { // Calculate the shift. double scale = Math.max(Math.max(Math.max(Math.max( Math.abs(s[p-1]),Math.abs(s[p-2])),Math.abs(e[p-2])), Math.abs(s[k])),Math.abs(e[k])); double sp = s[p-1]/scale; double spm1 = s[p-2]/scale; double epm1 = e[p-2]/scale; double sk = s[k]/scale; double ek = e[k]/scale; double b = ((spm1 + sp)*(spm1 - sp) + epm1*epm1)/2.0; double c = (sp*epm1)*(sp*epm1); double shift = 0.0; if ((b != 0.0) | (c != 0.0)) { shift = Math.sqrt(b*b + c); if (b < 0.0) { shift = -shift; } shift = c/(b + shift); } double f = (sk + sp)*(sk - sp) + shift; double g = sk*ek; // Chase zeros. for (int j = k; j < p-1; j++) { double t = hypot(f,g); double cs = f/t; double sn = g/t; if (j != k) { e[j-1] = t; } f = cs*s[j] + sn*e[j]; e[j] = cs*e[j] - sn*s[j]; g = sn*s[j+1]; s[j+1] = cs*s[j+1]; if (wantv) { for (int i = 0; i < inputColumns; i++) { t = cs*V.getValue(i, j) + sn*V.getValue(i, j+1); V.setValue(i, j+1, -sn*V.getValue(i, j) + cs*V.getValue(i, j+1)); V.setValue(i, j, t); } } t = hypot(f,g); cs = f/t; sn = g/t; s[j] = t; f = cs*e[j] + sn*s[j+1]; s[j+1] = -sn*e[j] + cs*s[j+1]; g = sn*e[j+1]; e[j+1] = cs*e[j+1]; if (wantu && (j < inputRows-1)) { for (int i = 0; i < inputRows; i++) { t = cs*U.getValue(i, j) + sn*U.getValue(i, j+1); U.setValue(i, j+1, -sn*U.getValue(i, j) + cs*U.getValue(i, j+1)); U.setValue(i, j, t); } } } e[p-2] = f; iter = iter + 1; } break; // Convergence. case 4: { // Make the singular values positive. if (s[k] <= 0.0) { s[k] = (s[k] < 0.0 ? -s[k] : 0.0); if (wantv) { for (int i = 0; i <= pp; i++) { V.setValue(i, k, -V.getValue(i, k)); } } } // Order the singular values. while (k < pp) { if (s[k] >= s[k+1]) { break; } double t = s[k]; s[k] = s[k+1]; s[k+1] = t; if (wantv && (k < inputColumns-1)) { for (int i = 0; i < inputColumns; i++) { t = V.getValue(i, k+1); V.setValue(i, k+1, V.getValue(i, k)); V.setValue(i, k, t); } } if (wantu && (k < inputRows-1)) { for (int i = 0; i < inputRows; i++) { t = U.getValue(i, k+1); U.setValue(i, k+1, U.getValue(i, k)); U.setValue(i, k, t); } } k++; } iter = 0; p--; } break; } } S = JeometryFactory.createMatrix(inputColumns,inputColumns); for (int i = 0; i < inputColumns; i++) { for (int j = 0; j < inputColumns; j++) { S.setValue(i, j, 0.0); } S.setValue(i, i, s[i]); } } /** Two norm * @return max(S) */ public double norm2 () { return s[0]; } /** Two norm condition number * @return max(S)/min(S) */ public double cond() { return s[0]/s[Math.min(inputRows,inputColumns)-1]; } /** Effective numerical matrix rank * @return The number of non eligible singular values */ public int rank () { double eps = Math.pow(2.0,-52.0); double tol = Math.max(inputRows,inputColumns)*s[0]*eps; int r = 0; for (int i = 0; i < s.length; i++) { if (s[i] > tol) { r++; } } return r; } @Override public List getComponents() { List components = new ArrayList(3); components.add(U); components.add(S); components.add(V); return components; } @Override public Matrix getU() { return U; } @Override public Matrix getS() { return S; } @Override public Matrix getV() { return V; } /** Compute sqrt(a^2 + b^2) without under/overflow. * @param a the first * @param b the second * @return the result **/ private double hypot(double a, double b) { double r; if (Math.abs(a) > Math.abs(b)) { r = b/a; r = Math.abs(a)*Math.sqrt(1+r*r); } else if (b != 0) { r = a/b; r = Math.abs(b)*Math.sqrt(1+r*r); } else { r = 0.0; } return r; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy