All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.jpedal.fonts.tt.hinting.TTVM Maven / Gradle / Ivy

There is a newer version: 20151002
Show newest version
/*
 * ===========================================
 * Java Pdf Extraction Decoding Access Library
 * ===========================================
 *
 * Project Info:  http://www.idrsolutions.com
 * Help section for developers at http://www.idrsolutions.com/support/
 *
 * (C) Copyright 1997-2015 IDRsolutions and Contributors.
 *
 * This file is part of JPedal/JPDF2HTML5
 *
     This library is free software; you can redistribute it and/or
    modify it under the terms of the GNU Lesser General Public
    License as published by the Free Software Foundation; either
    version 2.1 of the License, or (at your option) any later version.

    This library is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
    Lesser General Public License for more details.

    You should have received a copy of the GNU Lesser General Public
    License along with this library; if not, write to the Free Software
    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA


 *
 * ---------------
 * TTVM.java
 * ---------------
 */
package org.jpedal.fonts.tt.hinting;

import org.jpedal.fonts.tt.BaseTTGlyph;
import org.jpedal.fonts.tt.FontFile2;
import org.jpedal.fonts.tt.Maxp;
import org.jpedal.utils.LogWriter;

import javax.swing.*;
import java.awt.*;
import java.io.Serializable;
import java.util.HashMap;

//


public class TTVM implements Serializable {
    protected static final int TWILIGHT_ZONE = 0;
    protected static final int GLYPH_ZONE = 1;
    protected static final int ORIGINAL = 2;                //Use as modifier (GLYPH_ZONE + ORIGINAL)

    //

    /**
     * Prints the name and a brief description of an instruction when it is executed.
     */
    private boolean printOut;



    //Font-wide programs
    private final int[] preProgram;
    private final int[] fontProgram;
    private boolean fontProgramRun;
    private boolean scalerRun;

    //Scaling values
    private double ptSize;
    private double ppem;
    private double scaler;

    //These will currently always be false since we generate once irrespective of the transform
//    private final boolean isRotated=false;
//    private final boolean isStretched=false;

    //Arrays for holding the data of the current glyph
    private final int[][] x, y;
    private final boolean[][] curve, contour;
    private boolean[][][] touched;

    //Information about the maximum profile of various structures
    final Maxp maxp;

    //Flag for instrctrl telling a glyph to use the default graphics state
    private boolean useDefaultGS;

    /**
     * Data structures
     */
    //Stack containing each programs working data structures
    private Stack stack;

    //Control value table - contains values which are scaled with the font and used for aligning points
    private final Cvt cvt;

    //Font-wide copy of the graphics state, which may be copied and changed before being used by a glyph!
    private final TTGraphicsState graphicsState;

    //Area for storing generic values
    private final int[] storage;

    //A map of user defined int[] functions with a number as a key
    private final HashMap functions;

    //A map of user defined int[] functions with an opcode value as a key
    private final HashMap instructions;


    /**
     * Instruction Opcodes
     */
    private static final int SVTCAy = 0x00;
    private static final int SVTCAx = 0x01;
    private static final int SPVTCAy = 0x02;
    private static final int SPVTCAx = 0x03;
    private static final int SFVTCAy = 0x04;
    private static final int SFVTCAx = 0x05;
    private static final int SPVTL0 = 0x06;
    private static final int SPVTL1 = 0x07;
    private static final int SFVTL0 = 0x08;
    private static final int SFVTL1 = 0x09;
    private static final int SPVFS = 0x0A;
    private static final int SFVFS = 0x0B;
    private static final int GPV = 0x0C;
    private static final int GFV = 0x0D;
    private static final int SFVTPV = 0x0E;
    private static final int ISECT = 0x0F;

    private static final int SRP0 = 0x10;
    private static final int SRP1 = 0x11;
    private static final int SRP2 = 0x12;
    private static final int SZP0 = 0x13;
    private static final int SZP1 = 0x14;
    private static final int SZP2 = 0x15;
    private static final int SZPS = 0x16;
    private static final int SLOOP = 0x17;
    private static final int RTG = 0x18;
    private static final int RTHG = 0x19;
    private static final int SMD = 0x1A;
    private static final int ELSE = 0x1B;
    private static final int JMPR = 0x1C;
    private static final int SCVTCI = 0x1D;
    private static final int SSWCI = 0x1E;
    private static final int SSW = 0x1F;

    private static final int DUP = 0x20;
    private static final int POP = 0x21;
    private static final int CLEAR = 0x22;
    private static final int SWAP = 0x23;
    private static final int DEPTH = 0x24;
    private static final int CINDEX = 0x25;
    private static final int MINDEX = 0x26;
    private static final int ALIGNPTS = 0x27;
    private static final int UTP = 0x29;
    private static final int LOOPCALL = 0x2A;
    private static final int CALL = 0x2B;
    private static final int FDEF = 0x2C;
    private static final int ENDF = 0x2D;
    private static final int MDAP0 = 0x2E;
    private static final int MDAP1 = 0x2F;

    private static final int IUPy = 0x30;
    private static final int IUPx = 0x31;
    private static final int SHP0 = 0x32;
    private static final int SHP1 = 0x33;
    private static final int SHC0 = 0x34;
    private static final int SHC1 = 0x35;
    private static final int SHZ0 = 0x36;
    private static final int SHZ1 = 0x37;
    private static final int SHPIX = 0x38;
    private static final int IP = 0x39;
    private static final int MSIRP0 = 0x3A;
    private static final int MSIRP1 = 0x3B;
    private static final int ALIGNRP = 0x3C;
    private static final int RTDG = 0x3D;
    private static final int MIAP0 = 0x3E;
    private static final int MIAP1 = 0x3F;

    private static final int NPUSHB = 0x40;
    private static final int NPUSHW = 0x41;
    private static final int WS = 0x42;
    private static final int RS = 0x43;
    private static final int WCVTP = 0x44;
    private static final int RCVT = 0x45;
    private static final int GC0 = 0x46;
    private static final int GC1 = 0x47;
    private static final int SCFS = 0x48;
    private static final int MD0 = 0x49;
    private static final int MD1 = 0x4A;
    private static final int MPPEM = 0x4B;
    private static final int MPS = 0x4C;
    private static final int FLIPON = 0x4D;
    private static final int FLIPOFF = 0x4E;
    private static final int DEBUG = 0x4F;

    private static final int LT = 0x50;
    private static final int LTEQ = 0x51;
    private static final int GT = 0x52;
    private static final int GTEQ = 0x53;
    private static final int EQ = 0x54;
    private static final int NEQ = 0x55;
    private static final int ODD = 0x56;
    private static final int EVEN = 0x57;
    private static final int IF = 0x58;
    private static final int EIF = 0x59;
    private static final int AND = 0x5A;
    private static final int OR = 0x5B;
    private static final int NOT = 0x5C;
    private static final int DELTAP1 = 0x5D;
    private static final int SDB = 0x5E;
    private static final int SDS = 0x5F;

    private static final int ADD = 0x60;
    private static final int SUB = 0x61;
    private static final int DIV = 0x62;
    private static final int MUL = 0x63;
    private static final int ABS = 0x64;
    private static final int NEG = 0x65;
    private static final int FLOOR = 0x66;
    private static final int CEILING = 0x67;
    private static final int ROUND00 = 0x68;
    private static final int ROUND01 = 0x69;
    private static final int ROUND10 = 0x6A;
    private static final int ROUND11 = 0x6B;
    private static final int NROUND00 = 0x6C;
    private static final int NROUND01 = 0x6D;
    private static final int NROUND10 = 0x6E;
    private static final int NROUND11 = 0x6F;

    private static final int WCVTF = 0x70;
    private static final int DELTAP2 = 0x71;
    private static final int DELTAP3 = 0x72;
    private static final int DELTAC1 = 0x73;
    private static final int DELTAC2 = 0x74;
    private static final int DELTAC3 = 0x75;
    private static final int SROUND = 0x76;
    private static final int S45ROUND = 0x77;
    private static final int JROT = 0x78;
    private static final int JROF = 0x79;
    private static final int ROFF = 0x7A;
    private static final int RUTG = 0x7C;
    private static final int RDTG = 0x7D;
    private static final int SANGW = 0x7E;
    private static final int AA = 0x7F;

    private static final int FLIPPT = 0x80;
    private static final int FLIPRGON = 0x81;
    private static final int FLIPRGOFF = 0x82;
    private static final int SCANCTRL = 0x85;
    private static final int SDPVTL0 = 0x86;
    private static final int SDPVTL1 = 0x87;
    private static final int GETINFO = 0x88;
    private static final int IDEF = 0x89;
    private static final int ROLL = 0x8A;
    private static final int MAX = 0x8B;
    private static final int MIN = 0x8C;
    private static final int SCANTYPE = 0x8D;
    private static final int INSTCTRL = 0x8E;

    private static final int PUSHB = 0xB0;
    private static final int PUSHW = 0xB8;

    private static final int MDRP = 0xC0;
    private static final int MIRP = 0xE0;

    //

    //parameters for MDRP/MIRP
    private static final int paramRESETRP0 = 16;
    private static final int paramUSEMINDIST = 8;
    private static final int paramROUND = 4;

    public TTVM(final FontFile2 currentFontFile, final Maxp maxp) {
        stack = new Stack();
        cvt = new Cvt(currentFontFile);
        graphicsState = new TTGraphicsState();

        preProgram = readProgramTable(currentFontFile, FontFile2.PREP);
        fontProgram= readProgramTable(currentFontFile, FontFile2.FPGM);

        storage = new int[maxp.getMaxStorage()];
        functions = new HashMap();
        instructions = new HashMap();

        this.maxp = maxp;

        //For some reason some prePrograms use points, even though this shouldn't theoretically be possible... set up
        //empty arrays just in case
        final int len = maxp.getMaxPoints();
        x = new int[4][len];
        y = new int[4][len];
        curve = new boolean[2][len];
        contour = new boolean[2][len];
        touched = new boolean[4][len][2];
        x[TWILIGHT_ZONE] = new int[maxp.getMaxTwilightPoints()];
        y[TWILIGHT_ZONE] = new int[maxp.getMaxTwilightPoints()];

    }


    /**
     * Sets the scale variables for a font - if it's changed, the CVT needs to be rescaled, and the PreProgram
     * (sometimes called CVT program) must be run again. As it's always called before a glyph is processed, it's also
     * the ideal place to ensure that the font program has been run before anything else.
     * @param scaler The value to multiply any unscaled values by
     * @param ppem The number of pixels per em square
     * @param ptSize The point size of the text
     */
    public void setScaleVars(final double scaler, final double ppem, final double ptSize) {

        scalerRun = false;
        this.ppem = (int)(ppem+0.5);
        this.ptSize = ptSize;

        if (!fontProgramRun) {
            execute(fontProgram, graphicsState);   //Defines functions
            fontProgramRun=true;
        }

        if (scaler != this.scaler) {
            this.scaler = scaler;
            cvt.scale(scaler);
            execute(preProgram, graphicsState);   //Sets up scan conversion (or would if we did it), CVT and store
            scalerRun = true;
        }
    }


    /**
     * Takes the information about a glyph specified and modifies it according to the instructions provided.
     * @param instructions The instructions to execute
     * @param glyfX A list of scaled X coordinates for the points
     * @param glyfY A list of scaled Y coordinates for the points
     * @param curves Whether each point is on the curve or not
     * @param contours Whether each point is the last in a contour
     */
    public void processGlyph(final int[] instructions, final int[] glyfX, final int[] glyfY, final boolean[] curves, final boolean[] contours) {
        //

        x[GLYPH_ZONE] = glyfX;
        x[ORIGINAL+GLYPH_ZONE] = new int[glyfX.length];
        System.arraycopy(x[GLYPH_ZONE],0,x[ORIGINAL+GLYPH_ZONE],0,x[GLYPH_ZONE].length);

        y[GLYPH_ZONE] = glyfY;
        y[ORIGINAL+GLYPH_ZONE] = new int[glyfY.length];
        System.arraycopy(y[GLYPH_ZONE],0,y[ORIGINAL+GLYPH_ZONE],0,y[GLYPH_ZONE].length);

        curve[GLYPH_ZONE] = curves;
        contour[GLYPH_ZONE] = contours;

        int max = maxp.getMaxTwilightPoints();
        if (glyfX.length > max) {
            max = glyfX.length;
        }

        touched = new boolean[4][max][2];

        //

        stack = new Stack();

        //Sort out graphicsState
        TTGraphicsState gs;
        if (useDefaultGS) {
            //If INSTCTRL flag 2 set use default values for glyph instructions
            gs = new TTGraphicsState();
        } else {
            //If glyph create a copy so any changes are only for this glyph
            try {
                gs = (TTGraphicsState)graphicsState.clone();
                gs.resetForGlyph();
            } catch(final CloneNotSupportedException e) {
                //tell user and log
                if(LogWriter.isOutput()) {
                    LogWriter.writeLog("Exception: " + e.getMessage());
                }
                e.printStackTrace(System.out);

                gs = new TTGraphicsState();
            }
        }

        //Disable glyph instructions if previously set by INSTCTRL
        if (gs.instructControl != 0) {
            return;
        }

        //

        execute(instructions, gs);

        //
    }


    /**
     * Execute a section of code
     * @param program The code to execute
     * @param gs The graphics state to use
     */
    private void execute(final int[] program, final TTGraphicsState gs) {
        if (program==null) {
            return;
        }

        //

        for (int currentPointer = 0; currentPointer < program.length; currentPointer++) {
            if (printOut) {
                System.out.print(currentPointer + "\t");
            }
            currentPointer = process(program[currentPointer], currentPointer, program, gs);

            //

            //Check if errors have been encountered and cease execution if they have
            if (BaseTTGlyph.redecodePage) {
                return;
            }
        }

    }


    /**
     * Process a command
     * @param code The command to process
     * @param currentPointer The location in the program (passed in so can be modified and passed out)
     * @param program The program
     * @param gs The graphics state to use
     * @return The (possibly modified) location in the program
     */
    @SuppressWarnings("OverlyLongMethod")
    private int process(int code, int currentPointer, final int[] program, final TTGraphicsState gs) {

        //

        //If it's reading data find how much to read & redirect to first command
        int bytesToRead=0;
        if (code >= 0xB0 && code <= 0xBF) {
            bytesToRead = code %8;
            code -= bytesToRead;
            bytesToRead++;
        }

        //

        try {

            switch(code) {
                case SVTCAy:
                    gs.freedomVector = TTGraphicsState.y_axis;
                    gs.projectionVector = TTGraphicsState.y_axis;
                    gs.dualProjectionVector = TTGraphicsState.y_axis;
                    break;

                case SVTCAx:
                    gs.freedomVector = TTGraphicsState.x_axis;
                    gs.projectionVector = TTGraphicsState.x_axis;
                    gs.dualProjectionVector = TTGraphicsState.x_axis;
                    break;

                case SPVTCAy:
                    gs.projectionVector = TTGraphicsState.y_axis;
                    gs.dualProjectionVector = TTGraphicsState.y_axis;
                    break;

                case SPVTCAx:
                    gs.projectionVector = TTGraphicsState.x_axis;
                    gs.dualProjectionVector = TTGraphicsState.x_axis;
                    break;

                case SFVTCAy:
                    gs.freedomVector = TTGraphicsState.y_axis;
                    break;

                case SFVTCAx:
                    gs.freedomVector = TTGraphicsState.x_axis;
                    break;

                case SPVTL0: {
                    final int p1 = stack.pop();
                    final int p2 = stack.pop();

                    //Note: The MS and Apple documentation disagree on which zone pointers to use - Apple
                    //matches Freetype so we're using that for now.

                    double xdiff = getDoubleFromF26Dot6(x[gs.zp2][p2] - x[gs.zp1][p1]);
                    double ydiff = getDoubleFromF26Dot6(y[gs.zp2][p2] - y[gs.zp1][p1]);
                    final double factor = Math.sqrt((xdiff * xdiff) + (ydiff * ydiff));
                    xdiff /= factor;
                    ydiff /= factor;
                    gs.projectionVector = TTGraphicsState.createVector(storeDoubleAsF2Dot14(xdiff), storeDoubleAsF2Dot14(ydiff));
                    gs.dualProjectionVector = gs.projectionVector;
                    break;
                }
                case SPVTL1: {
                    final int p1 = stack.pop();
                    final int p2 = stack.pop();

                    //Note: The MS and Apple documentation disagree on which zone pointers to use - Apple
                    //matches Freetype so we're using that for now.

                    double xdiff = getDoubleFromF26Dot6(x[gs.zp2][p2] - x[gs.zp1][p1]);
                    double ydiff = getDoubleFromF26Dot6(y[gs.zp2][p2] - y[gs.zp1][p1]);
                    final double factor = Math.sqrt((xdiff * xdiff) + (ydiff * ydiff));
                    xdiff /= factor;
                    ydiff /= factor;
                    gs.projectionVector = TTGraphicsState.createVector(storeDoubleAsF2Dot14(-ydiff), storeDoubleAsF2Dot14(xdiff));
                    gs.dualProjectionVector = gs.projectionVector;
                    break;
                }
                case SFVTL0: {
                    final int p1 = stack.pop();
                    final int p2 = stack.pop();
                    double xdiff = getDoubleFromF26Dot6(x[gs.zp1][p2] - x[gs.zp2][p1]);
                    double ydiff = getDoubleFromF26Dot6(y[gs.zp1][p2] - y[gs.zp2][p1]);
                    final double factor = Math.sqrt((xdiff * xdiff) + (ydiff * ydiff));
                    xdiff /= factor;
                    ydiff /= factor;
                    gs.freedomVector = TTGraphicsState.createVector(storeDoubleAsF2Dot14(xdiff), storeDoubleAsF2Dot14(ydiff));
                    break;
                }
                case SFVTL1: {
                    final int p1 = stack.pop();
                    final int p2 = stack.pop();
                    double xdiff = getDoubleFromF26Dot6(x[gs.zp1][p2] - x[gs.zp2][p1]);
                    double ydiff = getDoubleFromF26Dot6(y[gs.zp1][p2] - y[gs.zp2][p1]);
                    final double factor = Math.sqrt((xdiff * xdiff) + (ydiff * ydiff));
                    xdiff /= factor;
                    ydiff /= factor;
                    gs.freedomVector = TTGraphicsState.createVector(storeDoubleAsF2Dot14(-ydiff), storeDoubleAsF2Dot14(xdiff));
                    break;
                }
                case SPVFS: {
                    final int y = stack.pop();
                    final int x = stack.pop();
                    gs.projectionVector = TTGraphicsState.createVector(x, y);
                    gs.dualProjectionVector = gs.projectionVector;
                    break;
                }
                case SFVFS: {
                    final int y = stack.pop();
                    final int x = stack.pop();
                    gs.freedomVector = TTGraphicsState.createVector(x, y);
                    break;
                }
                case GPV: {
                    final int[] pv = TTGraphicsState.getVectorComponents(gs.projectionVector);
                    stack.push(pv[0]);
                    stack.push(pv[1]);
                    break;
                }
                case GFV: {
                    final int[] fv = TTGraphicsState.getVectorComponents(gs.freedomVector);
                    stack.push(fv[0]);
                    stack.push(fv[1]);
                    break;
                }
                case SFVTPV:
                    gs.freedomVector = gs.projectionVector;
                    break;

                case ISECT: {
                    final int b1 = stack.pop();        //line b end
                    final int b0 = stack.pop();        //line b start
                    final int a1 = stack.pop();        //line a end
                    final int a0 = stack.pop();        //line a start

                    //Note: The Apple and Microsoft specifications differ on which zone pointers to use
                    //for lines A and B. I had a look at Freetype which matched the MS documentation,
                    //so that's what we're using for now.
                    final int ax = x[gs.zp1][a0];
                    final int ay = y[gs.zp1][a0];
                    final int adx = x[gs.zp1][a1] - ax;  //change in x for line a
                    final int ady = y[gs.zp1][a1] - ay;

                    final int bx = x[gs.zp0][b0];
                    final int by = y[gs.zp0][b0];
                    final int bdx = x[gs.zp0][b1] - bx;
                    final int bdy = y[gs.zp0][b1] - by;

                    final int x;
                    final int y;
                    if (adx == 0 && bdx == 0) {       //both lines vertical
                        x = ax + bx / 2;
                        y = (ay + by + (ay + ady) + (by + bdy)) / 4;
                    } else if (adx == 0) {                                 //a vertical - use x & find b's y
                        final double bm = getDoubleFromF26Dot6(bdy) / getDoubleFromF26Dot6(bdx);
                        final double bc = getDoubleFromF26Dot6(by) - (bm * getDoubleFromF26Dot6(bx));
                        x = ax;
                        y = storeDoubleAsF26Dot6((bm * getDoubleFromF26Dot6(ax)) + bc);
                    } else if (bdx == 0) {                                 //b vertical - use x & find a's y
                        final double am = getDoubleFromF26Dot6(ady) / getDoubleFromF26Dot6(adx);
                        final double ac = getDoubleFromF26Dot6(ay) - (am * getDoubleFromF26Dot6(ax));
                        x = bx;
                        y = storeDoubleAsF26Dot6((am * getDoubleFromF26Dot6(bx)) + ac);
                    } else {                                               //neither line vertical - find mx+c form
                        final double am = getDoubleFromF26Dot6(ady) / getDoubleFromF26Dot6(adx);
                        final double ac = getDoubleFromF26Dot6(ay) - (am * getDoubleFromF26Dot6(ax));
                        final double bm = getDoubleFromF26Dot6(bdy) / getDoubleFromF26Dot6(bdx);
                        final double bc = getDoubleFromF26Dot6(by) - (bm * getDoubleFromF26Dot6(bx));
                        if (am == bm) {                                    //lines parallel
                            x = (ax + bx + (ax + adx) + (bx + bdx)) / 4;
                            y = (ay + by + (ay + ady) + (by + bdy)) / 4;
                        } else {                                           //lines intersect
                            final double fx = (bc - ac) / (am - bm);             //use rearranged mx1+c1 = mx2+c2 to find x
                            x = storeDoubleAsF26Dot6(fx);
                            y = storeDoubleAsF26Dot6((am * fx) + ac);       //substitute into y=mx+c to get y
                        }
                    }

                    //set point
                    final int p = stack.pop();
                    this.x[gs.zp2][p] = x;
                    this.y[gs.zp2][p] = y;
                    break;
                }
                case SRP0:
                    gs.rp0 = stack.pop();
                    break;

                case SRP1:
                    gs.rp1 = stack.pop();
                    break;

                case SRP2:
                    gs.rp2 = stack.pop();
                    break;

                case SZP0: {
                    final int value = stack.pop();
                    //
                    gs.zp0 = value;
                    break;
                }
                case SZP1: {
                    final int value = stack.pop();
                    //
                    gs.zp1 = value;
                    break;
                }
                case SZP2: {
                    final int value = stack.pop();
                    //
                    gs.zp2 = value;
                    break;
                }
                case SZPS: {
                    final int value = stack.pop();
                    //
                    gs.zp0 = value;
                    gs.zp1 = value;
                    gs.zp2 = value;
                    break;
                }
                case SLOOP:
                    gs.loop = stack.pop();
                    break;

                case RTG:
                    gs.roundState = TTGraphicsState.g;
                    gs.gridPeriod = 1.0;
                    break;

                case RTHG:
                    gs.roundState = TTGraphicsState.hg;
                    gs.gridPeriod = 1.0;
                    break;

                case SMD:
                    gs.minimumDistance = stack.pop();
                    break;

                case ELSE: {
                    //only processed at all if preceeding IF is true - skip until EIF
                    int curr = 0;
                    int nest = 0;
                    do {
                        //Deal with nested IF's
                        if (curr == EIF && nest != 0) {
                            nest--;
                        }

                        currentPointer++;
                        curr = program[currentPointer];

                        //deal with nested IF's
                        if (curr == IF) {
                            nest++;
                        }

                        //skip over any data in stream
                        if (curr == NPUSHB) {
                            currentPointer++;
                            currentPointer += program[currentPointer];
                        } else if (curr == NPUSHW) {
                            currentPointer++;
                            currentPointer += program[currentPointer] * 2;
                        } else if (curr >= PUSHB && curr <= PUSHB+7) {
                            currentPointer += (curr + 1) - PUSHB;
                        } else if (curr >= PUSHW && curr <= PUSHW+7) {
                            currentPointer += ((curr + 1) - PUSHW) * 2;
                        }
                    } while (curr != EIF || nest != 0);
                    break;
                }
                case JMPR: {
                    final int value = stack.pop();
                    currentPointer = (currentPointer + value) - 1;
                    if (currentPointer < 0) {
                        throw new RuntimeException("Jumped back further than the start of the instruction.");
                    }
                    break;
                }
                case SCVTCI:
                    gs.controlValueTableCutIn = stack.pop();
                    break;

                case SSWCI:
                    gs.singleWidthCutIn = stack.pop();
                    break;

                case SSW:
                    gs.singleWidthValue = stack.pop();
                    break;

                case DUP: {
                    final int value = stack.pop();
                    stack.push(value);
                    stack.push(value);
                    break;
                }
                case POP:
                    stack.pop();
                    break;

                case CLEAR:
                    stack = new Stack();
                    break;

                case SWAP: {
                    final int top = stack.pop();
                    final int under = stack.pop();
                    stack.push(top);
                    stack.push(under);
                    break;
                }
                case DEPTH: {
                    stack.push(stack.size());
                    break;
                }
                case CINDEX: {
                    final int key = stack.pop();
                    final int value = stack.elementAt(key);
                    stack.push(value);
                    break;
                }
                case MINDEX: {
                    final int key = stack.pop();
                    final int value = stack.remove(key);
                    stack.push(value);
                    break;
                }
                case ALIGNPTS: {
                    final int p1 = stack.pop();
                    final int p2 = stack.pop();
                    final int p1loc = TTGraphicsState.getCoordsOnVector(gs.projectionVector, x[gs.zp1][p1], y[gs.zp1][p1]);
                    final int p2loc = TTGraphicsState.getCoordsOnVector(gs.projectionVector, x[gs.zp0][p2], y[gs.zp0][p2]);
                    final int target = (p1loc + p2loc) / 2;
                    final int[] shift = gs.getFVMoveforPVDistance(target - p1loc);
                    x[gs.zp1][p1] += shift[0];
                    y[gs.zp1][p1] += shift[1];
                    x[gs.zp0][p2] -= shift[0];
                    y[gs.zp0][p2] -= shift[1];

                    final int[] fv = TTGraphicsState.getVectorComponents(gs.freedomVector);
                    if (fv[0] != 0) {
                        touched[gs.zp1][p1][0] = true;
                        touched[gs.zp0][p2][0] = true;
                    }
                    if (fv[1] != 0) {
                        touched[gs.zp1][p1][1] = true;
                        touched[gs.zp0][p2][1] = true;
                    }
                    break;
                }
                case UTP: {
                    final int p = stack.pop();
                    if (gs.freedomVector == TTGraphicsState.x_axis) {
                        touched[gs.zp0][p][0] = false;
                    } else if (gs.freedomVector == TTGraphicsState.y_axis) {
                        touched[gs.zp0][p][1] = false;
                    } else {
                        touched[gs.zp0][p][0] = false;
                        touched[gs.zp0][p][1] = false;
                    }
                    break;
                }
                case LOOPCALL: {
                    final int func = stack.pop();
                    final int count = stack.pop();
                    final int[] function = functions.get(Integer.valueOf(func));

                    //

                    for (int i = 0; i < count; i++) {
                        execute(function, gs);
                    }
                    if (printOut) {
                        System.out.println("LOOPCALL finished");
                    }
                    break;
                }
                case CALL: {
                    final int func = stack.pop();
                    final int[] function = functions.get(Integer.valueOf(func));

                    //

                    execute(function, gs);
                    if (printOut) {
                        System.out.println("CALL finished");
                    }
                    break;
                }
                case FDEF: {
                    final int num = stack.pop();
                    final int start = currentPointer;

                    //work out length
                    int curr;
                    do {
                        currentPointer++;
                        curr = program[currentPointer];

                        //skip over any data in stream
                        if (curr == NPUSHB) {
                            currentPointer++;
                            currentPointer += program[currentPointer];
                        } else if (curr == NPUSHW) {
                            currentPointer++;
                            currentPointer += program[currentPointer] * 2;
                        } else if (curr >= PUSHB && curr <= PUSHB+7) {
                            currentPointer += (curr + 1) - PUSHB;
                        } else if (curr >= PUSHW && curr <= PUSHW+7) {
                            currentPointer += ((curr + 1) - PUSHW) * 2;
                        }
                    } while (curr != ENDF);
                    final int len = (currentPointer - start) - 1;
                    currentPointer = start;

                    //create function
                    final int[] function = new int[len];
                    for (int i = 0; i < len; i++) {
                        currentPointer++;
                        function[i] = program[currentPointer];
                    }
                    functions.put(num, function);

                    //skip past ENDF
                    currentPointer++;
                    break;
                }
                case ENDF:
                    //No definition required
                    break;

                case MDAP0: {
                    final int p = stack.pop();
                    gs.rp0 = p;
                    gs.rp1 = p;
                    if (gs.freedomVector == TTGraphicsState.x_axis) {
                        touched[gs.zp0][p][0] = true;
                    } else if (gs.freedomVector == TTGraphicsState.y_axis) {
                        touched[gs.zp0][p][1] = true;
                    } else {
                        touched[gs.zp0][p][0] = true;
                        touched[gs.zp0][p][1] = true;
                    }
                    break;
                }
                case MDAP1: {
                    final int p = stack.pop();
                    gs.rp0 = p;
                    gs.rp1 = p;

                    int m = TTGraphicsState.getCoordsOnVector(gs.projectionVector, x[gs.zp0][p], y[gs.zp0][p]);
                    m = storeDoubleAsF26Dot6(gs.round(getDoubleFromF26Dot6(m))) - m;
                    final int[] shift = gs.getFVMoveforPVDistance(m);

                    x[gs.zp0][p] += shift[0];
                    y[gs.zp0][p] += shift[1];

                    final int[] fv = TTGraphicsState.getVectorComponents(gs.freedomVector);
                    if (fv[0] != 0) {
                        touched[gs.zp0][p][0] = true;
                    }
                    if (fv[1] != 0) {
                        touched[gs.zp0][p][1] = true;
                    }
                    break;
                }
                case IUPy: {
                    interpolateUntouchedPoints(IUPy);
                    break;
                }
                case IUPx: {
                    interpolateUntouchedPoints(IUPx);
                    break;
                }
                case SHP0: {
                    for (int i = 0; i < gs.loop; i++) {
                        final int p = stack.pop();

                        if (p > x[gs.zp2].length || gs.rp2 > x[gs.zp1].length) {
                            //
                            break;
                        }

                        final int newRP = TTGraphicsState.getCoordsOnVector(gs.projectionVector, x[gs.zp1][gs.rp2], y[gs.zp1][gs.rp2]);
                        final int oldRP = TTGraphicsState.getCoordsOnVector(gs.projectionVector, x[ORIGINAL + gs.zp1][gs.rp2], y[ORIGINAL + gs.zp1][gs.rp2]);
                        final int pMove = newRP - oldRP;
                        final int[] shift = gs.getFVMoveforPVDistance(pMove);
                        x[gs.zp2][p] += shift[0];
                        y[gs.zp2][p] += shift[1];

                        final int[] fv = TTGraphicsState.getVectorComponents(gs.freedomVector);
                        if (fv[0] != 0) {
                            touched[gs.zp2][p][0] = true;
                        }
                        if (fv[1] != 0) {
                            touched[gs.zp2][p][1] = true;
                        }
                    }
                    gs.loop = 1;
                    break;
                }
                case SHP1: {
                    for (int i = 0; i < gs.loop; i++) {
                        final int p = stack.pop();
                        final int newRP = TTGraphicsState.getCoordsOnVector(gs.projectionVector, x[gs.zp0][gs.rp1], y[gs.zp0][gs.rp1]);
                        final int oldRP = TTGraphicsState.getCoordsOnVector(gs.projectionVector, x[ORIGINAL + gs.zp0][gs.rp1], y[ORIGINAL + gs.zp0][gs.rp1]);
                        final int shift = newRP - oldRP;
                        final int[] move = gs.getFVMoveforPVDistance(shift);
                        x[gs.zp2][p] += move[0];
                        y[gs.zp2][p] += move[1];
                        if (move[0] != 0) {
                            touched[gs.zp2][p][0] = true;
                        }
                        if (move[1] != 0) {
                            touched[gs.zp2][p][1] = true;
                        }
                    }
                    gs.loop = 1;
                    break;
                }
                case SHC0: {
                    final int c = stack.pop();

                    //Note: The spec doesn't clearly say how a contour is identified - for now we are finding
                    //all of the contours and using the cth one, but another possibility is that you use the
                    //contour point c is a part of.

                    //get start and length of contours
                    final int[] contourLengths = new int[contour[GLYPH_ZONE].length];
                    final int[] contourStarts = new int[contour[GLYPH_ZONE].length];
                    int contourCount = 0, lastContour = 0;
                    contourStarts[0] = 0;
                    for (int i = 0; i < contour[GLYPH_ZONE].length; i++) {
                        if (contour[GLYPH_ZONE][i]) {
                            contourStarts[contourCount + 1] = i + 1;
                            contourLengths[contourCount] = i + 1 - lastContour;
                            lastContour = i + 1;
                            contourCount++;
                        }
                    }

                    //Get move required
                    final int newRP = TTGraphicsState.getCoordsOnVector(gs.projectionVector, x[gs.zp1][gs.rp2], y[gs.zp1][gs.rp2]);
                    final int oldRP = TTGraphicsState.getCoordsOnVector(gs.projectionVector, x[ORIGINAL + gs.zp1][gs.rp2], y[ORIGINAL + gs.zp1][gs.rp2]);
                    final int shift = newRP - oldRP;
                    final int[] move = gs.getFVMoveforPVDistance(shift);

                    //Move contour
                    for (int i = contourStarts[c]; i < contourStarts[c] + contourLengths[c]; i++) {
                        if (gs.zp1 == gs.zp2 || i != gs.rp2) {
                            x[gs.zp2][i] += move[0];
                            y[gs.zp2][i] += move[1];
                        }
                    }
                    break;
                }
                case SHC1: {
                    final int c = stack.pop();

                    //Note: The spec doesn't clearly say how a contour is identified - for now we are finding
                    //all of the contours and using the cth one, but another possibility is that you use the
                    //contour point c is a part of.

                    //get start and length of contours
                    final int[] contourLengths = new int[contour[GLYPH_ZONE].length];
                    final int[] contourStarts = new int[contour[GLYPH_ZONE].length];
                    int contourCount = 0, lastContour = 0;
                    contourStarts[0] = 0;
                    for (int i = 0; i < contour[GLYPH_ZONE].length; i++) {
                        if (contour[GLYPH_ZONE][i]) {
                            contourStarts[contourCount + 1] = i + 1;
                            contourLengths[contourCount] = i + 1 - lastContour;
                            lastContour = i + 1;
                            contourCount++;
                        }
                    }

                    //Get move required
                    final int newRP = TTGraphicsState.getCoordsOnVector(gs.projectionVector, x[gs.zp0][gs.rp1], y[gs.zp0][gs.rp1]);
                    final int oldRP = TTGraphicsState.getCoordsOnVector(gs.projectionVector, x[ORIGINAL + gs.zp0][gs.rp1], y[ORIGINAL + gs.zp0][gs.rp1]);
                    final int shift = newRP - oldRP;
                    final int[] move = gs.getFVMoveforPVDistance(shift);

                    //Move contour
                    for (int i = contourStarts[c]; i < contourStarts[c] + contourLengths[c]; i++) {
                        if (gs.zp2 != gs.zp0 || i != gs.rp1) {
                            x[gs.zp2][i] += move[0];
                            y[gs.zp2][i] += move[1];
                        }
                    }
                    break;
                }
                case SHZ0: {
                    final int z = stack.pop();

                    //Get move required
                    final int newRP = TTGraphicsState.getCoordsOnVector(gs.projectionVector, x[gs.zp1][gs.rp2], y[gs.zp1][gs.rp2]);
                    final int oldRP = TTGraphicsState.getCoordsOnVector(gs.projectionVector, x[ORIGINAL + gs.zp1][gs.rp2], y[ORIGINAL + gs.zp1][gs.rp2]);
                    final int shift = newRP - oldRP;
                    final int[] move = gs.getFVMoveforPVDistance(shift);

                    //Move zone
                    for (int i = 0; i < x[z].length; i++) {
                        if (z != gs.zp1 || i != gs.rp2) {
                            x[z][i] += move[0];
                            y[z][i] += move[1];
                        }
                    }
                    break;
                }
                case SHZ1: {
                    final int z = stack.pop();

                    //Get move required
                    final int newRP = TTGraphicsState.getCoordsOnVector(gs.projectionVector, x[gs.zp0][gs.rp1], y[gs.zp0][gs.rp1]);
                    final int oldRP = TTGraphicsState.getCoordsOnVector(gs.projectionVector, x[ORIGINAL + gs.zp0][gs.rp1], y[ORIGINAL + gs.zp0][gs.rp1]);
                    final int shift = newRP - oldRP;
                    final int[] move = gs.getFVMoveforPVDistance(shift);

                    //Move zone
                    for (int i = 0; i < x[z].length; i++) {
                        if (z != gs.zp0 || i != gs.rp1) {
                            x[z][i] += move[0];
                            y[z][i] += move[1];
                        }
                    }
                    break;
                }
                case SHPIX: {
                    final int magnitude = stack.pop();
                    final int[] fv = TTGraphicsState.getVectorComponents(gs.freedomVector);
                    for (int i = 0; i < gs.loop; i++) {
                        final int point = stack.pop();
                        x[gs.zp2][point] += (magnitude * getDoubleFromF2Dot14(fv[0])/64);
                        y[gs.zp2][point] += (magnitude * getDoubleFromF2Dot14(fv[1])/64);
                        if (fv[0] != 0) {
                            touched[gs.zp2][point][0] = true;
                        }
                        if (fv[1] != 0) {
                            touched[gs.zp2][point][1] = true;
                        }
                    }
                    gs.loop = 1;
                    break;
                }
                case IP: {
                    for (int i = 0; i < gs.loop; i++) {
                        final int p = stack.pop();

                        if (p < 0 || p > x[gs.zp2].length || gs.rp1 > x[gs.zp0].length || gs.rp2 > x[gs.zp1].length) {
                            //
                            break;
                        }

                        //work out points relationship to reference points
                        final int originalRP1 = TTGraphicsState.getCoordsOnVector(gs.dualProjectionVector, x[ORIGINAL + gs.zp0][gs.rp1], y[ORIGINAL + gs.zp0][gs.rp1]);
                        final int originalRP2 = TTGraphicsState.getCoordsOnVector(gs.dualProjectionVector, x[ORIGINAL + gs.zp1][gs.rp2], y[ORIGINAL + gs.zp1][gs.rp2]);

                        //The instruction is illegal if rp1 and rp2 occupy the same position on the projection vector
                        if (originalRP1 != originalRP2) {

                            final int originalP = TTGraphicsState.getCoordsOnVector(gs.dualProjectionVector, x[ORIGINAL + gs.zp2][p], y[ORIGINAL + gs.zp2][p]);
                            final double pos = (double) (originalP - originalRP1) / (originalRP2 - originalRP1);

                            //find move along PV required
                            final int newRP1 = TTGraphicsState.getCoordsOnVector(gs.projectionVector, x[gs.zp0][gs.rp1], y[gs.zp0][gs.rp1]);
                            final int newRP2 = TTGraphicsState.getCoordsOnVector(gs.projectionVector, x[gs.zp1][gs.rp2], y[gs.zp1][gs.rp2]);
                            final int pMove = (int) (((pos * (newRP2 - newRP1)) + newRP1) + 0.5) - originalP;

                            //calculate and apply shift
                            final int[] shift = gs.getFVMoveforPVDistance(pMove);
                            x[gs.zp2][p] += shift[0];
                            y[gs.zp2][p] += shift[1];

                            final int[] fv = TTGraphicsState.getVectorComponents(gs.freedomVector);
                            if (fv[0] != 0) {
                                touched[gs.zp2][p][0] = true;
                            }
                            if (fv[1] != 0) {
                                touched[gs.zp2][p][1] = true;
                            }
                        }
                    }
                    gs.loop = 1;
                    break;
                }
                case MSIRP0: {
                    final int d = stack.pop();
                    final int p = stack.pop();


                    //move to rp0 + d
                    final int[] shift = gs.getFVMoveforPVDistance(d -
                            (TTGraphicsState.getCoordsOnVector(gs.projectionVector,x[gs.zp1][p],y[gs.zp1][p])-TTGraphicsState.getCoordsOnVector(gs.projectionVector,x[gs.zp0][gs.rp0],y[gs.zp0][gs.rp0])));
                    x[gs.zp1][p] += shift[0];
                    y[gs.zp1][p] += shift[1];

                    //Mark as touched
                    final int[] fv = TTGraphicsState.getVectorComponents(gs.freedomVector);
                    if (fv[0] != 0) {
                        touched[gs.zp1][p][0] = true;
                    }
                    if (fv[1] != 0) {
                        touched[gs.zp1][p][1] = true;
                    }

                    //inexplicable value settings as described in the guide..
                    gs.rp1 = gs.rp0;
                    gs.rp2 = p;
                    break;
                }
                case MSIRP1: {
                    final int d = stack.pop();
                    final int p = stack.pop();

                    //move to rp0 + d
                    final int[] shift = gs.getFVMoveforPVDistance(d -
                            (TTGraphicsState.getCoordsOnVector(gs.projectionVector,x[gs.zp1][p],y[gs.zp1][p])-TTGraphicsState.getCoordsOnVector(gs.projectionVector,x[gs.zp0][gs.rp0],y[gs.zp0][gs.rp0])));
                    x[gs.zp1][p] += shift[0];
                    y[gs.zp1][p] += shift[1];

                    //Mark as touched
                    final int[] fv = TTGraphicsState.getVectorComponents(gs.freedomVector);
                    if (fv[0] != 0) {
                        touched[gs.zp1][p][0] = true;
                    }
                    if (fv[1] != 0) {
                        touched[gs.zp1][p][1] = true;
                    }

                    //inexplicable value settings as described in the guide..
                    gs.rp1 = gs.rp0;
                    gs.rp2 = p;
                    gs.rp0 = p;
                    break;
                }
                case ALIGNRP:
                    for (int i = 0; i < gs.loop; i++) {
                        final int p = stack.pop();
                        final int target = TTGraphicsState.getCoordsOnVector(gs.projectionVector, x[gs.zp0][gs.rp0], y[gs.zp0][gs.rp0]);
                        final int pMove = target - TTGraphicsState.getCoordsOnVector(gs.projectionVector, x[gs.zp1][p], y[gs.zp1][p]);
                        final int[] shift = gs.getFVMoveforPVDistance(pMove);
                        x[gs.zp1][p] += shift[0];
                        y[gs.zp1][p] += shift[1];

                        final int[] fv = TTGraphicsState.getVectorComponents(gs.freedomVector);
                        if (fv[0] != 0) {
                            touched[gs.zp1][p][0] = true;
                        }
                        if (fv[1] != 0) {
                            touched[gs.zp1][p][1] = true;
                        }
                    }
                    gs.loop = 1;
                    break;

                case RTDG:
                    gs.roundState = TTGraphicsState.dg;
                    gs.gridPeriod = 1.0;
                    break;

                case MIAP0: {
                    final int cvtEntry = stack.pop();
                    final int p = stack.pop();
                    final int target = cvt.get(cvtEntry);
                    final int current = TTGraphicsState.getCoordsOnVector(gs.projectionVector, x[gs.zp0][p], y[gs.zp0][p]);
                    final int pMove = target - current;
                    final int[] shift = gs.getFVMoveforPVDistance(pMove);
                    x[gs.zp0][p] += shift[0];
                    y[gs.zp0][p] += shift[1];

                    final int[] fv = TTGraphicsState.getVectorComponents(gs.freedomVector);
                    if (fv[0] != 0) {
                        touched[gs.zp0][p][0] = true;
                    }
                    if (fv[1] != 0) {
                        touched[gs.zp0][p][1] = true;
                    }

                    gs.rp0 = gs.rp1 = p;
                    break;
                }
                case MIAP1: {
                    final int cvtEntry = stack.pop();
                    final int p = stack.pop();
                    int target = cvt.get(cvtEntry);
                    final int current = TTGraphicsState.getCoordsOnVector(gs.projectionVector, x[gs.zp0][p], y[gs.zp0][p]);

                    //Test if close enough to use cut in value
                    int pMove = target - current;
                    if (Math.abs(pMove) > gs.controlValueTableCutIn) {
                        target = current;
                    }

                    //round
                    target = storeDoubleAsF26Dot6(gs.round(getDoubleFromF26Dot6(target)));

                    //Get and use shift
                    pMove = target - current;
                    final int[] shift = gs.getFVMoveforPVDistance(pMove);
                    x[gs.zp0][p] += shift[0];
                    y[gs.zp0][p] += shift[1];

                    final int[] fv = TTGraphicsState.getVectorComponents(gs.freedomVector);
                    if (fv[0] != 0) {
                        touched[gs.zp0][p][0] = true;
                    }
                    if (fv[1] != 0) {
                        touched[gs.zp0][p][1] = true;
                    }

                    gs.rp0 = gs.rp1 = p;
                    break;
                }
                case NPUSHB:
                    currentPointer++;
                    currentPointer = readFromIS(program[currentPointer], false, currentPointer, program);
                    break;

                case NPUSHW:
                    currentPointer++;
                    currentPointer = readFromIS(program[currentPointer], true, currentPointer, program);
                    break;

                case WS: {
                    final int value = stack.pop();
                    final int key = stack.pop();
                    storage[key] = value;
                    break;
                }
                case RS: {
                    final int key = stack.pop();
                    stack.push(storage[key]);
                    break;
                }
                case WCVTP: {
                    final int value = stack.pop();
                    final int key = stack.pop();
                    cvt.putInPixels(key, value);
                    break;
                }
                case RCVT: {
                    final int key = stack.pop();
                    stack.push(cvt.get(key));
                    break;
                }
                case GC0: {
                    final int p = stack.pop();
                    stack.push(TTGraphicsState.getCoordsOnVector(gs.projectionVector, x[gs.zp2][p], y[gs.zp2][p]));
                    break;
                }
                case GC1: {
                    final int p = stack.pop();
                    stack.push(TTGraphicsState.getCoordsOnVector(gs.dualProjectionVector, x[ORIGINAL + gs.zp2][p], y[ORIGINAL + gs.zp2][p]));
                    break;
                }
                case SCFS: {
                    final int value = stack.pop();
                    final int p = stack.pop();
                    final int current = TTGraphicsState.getCoordsOnVector(gs.projectionVector, x[gs.zp2][p], y[gs.zp2][p]);
                    final int pMove = value - current;
                    final int[] shift = gs.getFVMoveforPVDistance(pMove);
                    x[gs.zp2][p] += shift[0];
                    y[gs.zp2][p] += shift[1];

                    final int[] fv = TTGraphicsState.getVectorComponents(gs.freedomVector);
                    if (fv[0] != 0) {
                        touched[gs.zp2][p][0] = true;
                    }
                    if (fv[1] != 0) {
                        touched[gs.zp2][p][1] = true;
                    }
                    break;
                }
                case MD0: {
                    final int p1 = stack.pop();
                    final int p2 = stack.pop();
                    final int distance = TTGraphicsState.getCoordsOnVector(gs.projectionVector, x[gs.zp1][p2], y[gs.zp1][p2]) -
                            TTGraphicsState.getCoordsOnVector(gs.projectionVector, x[gs.zp0][p1], y[gs.zp0][p1]);
                    stack.push(distance);
                    break;
                }
                case MD1: {
                    final int p1 = stack.pop();
                    final int p2 = stack.pop();
                    final int distance = TTGraphicsState.getCoordsOnVector(gs.dualProjectionVector, x[ORIGINAL + gs.zp1][p2], y[ORIGINAL + gs.zp1][p2]) -
                            TTGraphicsState.getCoordsOnVector(gs.dualProjectionVector, x[ORIGINAL + gs.zp0][p1], y[ORIGINAL + gs.zp0][p1]);
                    stack.push(distance);
                    break;
                }
                case MPPEM: {
                    int pvppem = TTGraphicsState.getCoordsOnVector(gs.projectionVector, (int) (ppem * 64), (int) (ppem * 64)) / 64;
                    if (pvppem < 0) {
                        pvppem = -pvppem;
                    }
                    stack.push(pvppem);
                    break;
                }
                case MPS: {
                    stack.push((int) (ptSize * 64));
                    break;
                }
                case FLIPON:
                    gs.autoFlip = true;
                    break;

                case FLIPOFF:
                    gs.autoFlip = false;
                    break;

                case DEBUG:
                    //shouldn't be in a live font - pops a number
                    stack.pop();
                    break;

                case LT: {
                    final int right = stack.pop();
                    final int left = stack.pop();

                    if (left < right) {
                        stack.push(1);
                    } else {
                        stack.push(0);
                    }
                    break;
                }
                case LTEQ: {
                    final int right = stack.pop();
                    final int left = stack.pop();

                    if (left <= right) {
                        stack.push(1);
                    } else {
                        stack.push(0);
                    }
                    break;
                }
                case GT: {
                    final int right = stack.pop();
                    final int left = stack.pop();

                    if (left > right) {
                        stack.push(1);
                    } else {
                        stack.push(0);
                    }
                    break;
                }
                case GTEQ: {
                    final int right = stack.pop();
                    final int left = stack.pop();

                    if (left >= right) {
                        stack.push(1);
                    } else {
                        stack.push(0);
                    }
                    break;
                }
                case EQ: {
                    final int right = stack.pop();
                    final int left = stack.pop();
                    if (left == right) {
                        stack.push(1);
                    } else {
                        stack.push(0);
                    }
                    break;
                }
                case NEQ: {
                    final int right = stack.pop();
                    final int left = stack.pop();
                    if (left != right) {
                        stack.push(1);
                    } else {
                        stack.push(0);
                    }
                    break;
                }
                case ODD: {
                    int value = stack.pop();
                    value = storeDoubleAsF26Dot6(gs.round(getDoubleFromF26Dot6(value)));
                    value = (value >> 6) % 2;     //remove fractional part and test if odd
                    stack.push(value);
                    break;
                }
                case EVEN: {
                    int value = stack.pop();
                    value = storeDoubleAsF26Dot6(gs.round(getDoubleFromF26Dot6(value)));
                    value = ((value >> 6) + 1) % 2;   //remove fractional part , add 1 and test if odd
                    stack.push(value);
                    break;
                }
                case IF: {
                    //continue or move forward to else/endif
                    final boolean value = stack.pop() != 0;
                    if (!value) {
                        int curr = 0;
                        int nest = 0;
                        do {
                            //deal with nested IF's
                            if (curr == EIF && nest != 0) {
                                nest--;
                            }

                            currentPointer++;
                            curr = program[currentPointer];

                            //deal with nested IF's
                            if (curr == IF) {
                                nest++;
                            }

                            //skip over any data in stream
                            if (curr == NPUSHB) {
                                currentPointer++;
                                currentPointer += program[currentPointer];
                            } else if (curr == NPUSHW) {
                                currentPointer++;
                                currentPointer += program[currentPointer] * 2;
                            } else if (curr >= PUSHB && curr <= PUSHB+7) {
                                currentPointer += (curr + 1) - PUSHB;
                            } else if (curr >= PUSHW && curr <= PUSHW+7) {
                                currentPointer += ((curr + 1) - PUSHW) * 2;
                            }
                        } while ((curr != ELSE && curr != EIF) || nest != 0);
                    }
                    break;
                }
                case EIF:
                    //no implementation necessary
                    break;

                case AND: {
                    final boolean right = stack.pop() != 0;
                    final boolean left = stack.pop() != 0;
                    if (left && right) {
                        stack.push(1);
                    } else {
                        stack.push(0);
                    }
                    break;
                }
                case OR: {
                    final boolean right = stack.pop() != 0;
                    final boolean left = stack.pop() != 0;
                    if (left || right) {
                        stack.push(1);
                    } else {
                        stack.push(0);
                    }
                    break;
                }
                case NOT: {
                    final boolean value = stack.pop() != 0;
                    if (!value) {
                        stack.push(1);
                    } else {
                        stack.push(0);
                    }
                    break;
                }
                case DELTAP1: {
                    final int loop = stack.pop();
                    for (int i = 0; i < loop; i++) {
                        final int p = stack.pop();
                        final int arg = stack.pop();

                        //test ppm
                        final int ppem = gs.deltaBase + (arg >> 4);
                        if (ppem == this.ppem) {

                            //get move
                            int mag = (arg & 0xF) - 7;
                            if (mag <= 0) {
                                mag -= 1;
                            }
                            final int pMove = storeDoubleAsF26Dot6(mag * (1 / Math.pow(2, gs.deltaShift)));

                            //move point
                            final int[] shift = gs.getFVMoveforPVDistance(pMove);
                            x[gs.zp0][p] += shift[0];
                            y[gs.zp0][p] += shift[1];

                            final int[] fv = TTGraphicsState.getVectorComponents(gs.freedomVector);
                            if (fv[0] != 0) {
                                touched[gs.zp0][p][0] = true;
                            }
                            if (fv[1] != 0) {
                                touched[gs.zp0][p][1] = true;
                            }
                        }
                    }
                    break;
                }
                case SDB:
                    gs.deltaBase = stack.pop();
                    break;

                case SDS:
                    gs.deltaShift = stack.pop();
                    break;

                case ADD:
                    stack.push(stack.pop() + stack.pop());
                    break;

                case SUB: {
                    final int right = stack.pop();
                    final int left = stack.pop();
                    stack.push(left - right);
                    break;
                }
                case DIV: {
                    final int right = stack.pop();
                    final int left = stack.pop();
                    if (right != 0) {
                        stack.push((left * 64) / right);
                    } else {
                        stack.push(0);
                    }
                    break;
                }
                case MUL: {
                    final int a = stack.pop();
                    final int b = stack.pop();
                    stack.push(a * b / 64);
                    break;
                }
                case ABS: {
                    int value = stack.pop();
                    if (value < 0) {
                        value = -value;
                    }
                    stack.push(value);
                    break;
                }
                case NEG:
                    stack.push(-stack.pop());
                    break;

                case FLOOR:
                    stack.push((stack.pop() >> 6) << 6);
                    break;

                case CEILING: {
                    int value = stack.pop();
                    if ((value & 63) != 0) {
                        value = (((value >> 6) + 1) << 6);
                    }
                    stack.push(value);
                    break;
                }
                case ROUND00: {
                    int n = stack.pop();
                    n = engineCompensation(n, 0);
                    final double num = getDoubleFromF26Dot6(n);
                    stack.push(storeDoubleAsF26Dot6(gs.round(num)));
                    break;
                }
                case ROUND01: {
                    int n = stack.pop();
                    n = engineCompensation(n, 1);
                    final double num = getDoubleFromF26Dot6(n);
                    stack.push(storeDoubleAsF26Dot6(gs.round(num)));
                    break;
                }
                case ROUND10: {
                    int n = stack.pop();
                    n = engineCompensation(n, 2);
                    final double num = getDoubleFromF26Dot6(n);
                    stack.push(storeDoubleAsF26Dot6(gs.round(num)));
                    break;
                }
                case ROUND11: {
                    int n = stack.pop();
                    n = engineCompensation(n, 3);
                    final double num = getDoubleFromF26Dot6(n);
                    stack.push(storeDoubleAsF26Dot6(gs.round(num)));
                    break;
                }
                case NROUND00:
                    stack.push(engineCompensation(stack.pop(), 0));
                    break;

                case NROUND01:
                    stack.push(engineCompensation(stack.pop(), 1));
                    break;

                case NROUND10:
                    stack.push(engineCompensation(stack.pop(), 2));
                    break;

                case NROUND11:
                    stack.push(engineCompensation(stack.pop(), 3));
                    break;

                case WCVTF: {
                    final int value = stack.pop();
                    final int key = stack.pop();
                    cvt.putInFUnits(key, value);
                    break;
                }
                case DELTAP2: {
                    final int loop = stack.pop();
                    for (int i = 0; i < loop; i++) {
                        final int p = stack.pop();
                        final int arg = stack.pop();

                        //test ppm
                        final int ppem = gs.deltaBase + 16 + (arg >> 4);
                        if (ppem == this.ppem) {

                            //get move
                            int mag = (arg & 0xF) - 7;
                            if (mag <= 0) {
                                mag -= 1;
                            }
                            final int pMove = storeDoubleAsF26Dot6(mag * (1 / Math.pow(2, gs.deltaShift)));

                            //move point
                            final int[] shift = gs.getFVMoveforPVDistance(pMove);
                            x[gs.zp0][p] += shift[0];
                            y[gs.zp0][p] += shift[1];

                            final int[] fv = TTGraphicsState.getVectorComponents(gs.freedomVector);
                            if (fv[0] != 0) {
                                touched[gs.zp0][p][0] = true;
                            }
                            if (fv[1] != 0) {
                                touched[gs.zp0][p][1] = true;
                            }
                        }
                    }
                    break;
                }
                case DELTAP3: {
                    final int loop = stack.pop();
                    for (int i = 0; i < loop; i++) {
                        final int p = stack.pop();
                        final int arg = stack.pop();

                        //test ppm
                        final int ppem = gs.deltaBase + 32 + (arg >> 4);
                        if (ppem == this.ppem) {

                            //get move
                            int mag = (arg & 0xF) - 7;
                            if (mag <= 0) {
                                mag -= 1;
                            }
                            final int pMove = storeDoubleAsF26Dot6(mag * (1 / Math.pow(2, gs.deltaShift)));

                            //move point
                            final int[] shift = gs.getFVMoveforPVDistance(pMove);
                            x[gs.zp0][p] += shift[0];
                            y[gs.zp0][p] += shift[1];

                            final int[] fv = TTGraphicsState.getVectorComponents(gs.freedomVector);
                            if (fv[0] != 0) {
                                touched[gs.zp0][p][0] = true;
                            }
                            if (fv[1] != 0) {
                                touched[gs.zp0][p][1] = true;
                            }
                        }
                    }
                    break;
                }
                case DELTAC1: {
                    final int loop = stack.pop();
                    for (int i = 0; i < loop; i++) {
                        final int cvtEntry = stack.pop();
                        final int arg = stack.pop();

                        //test ppm
                        final int ppem = gs.deltaBase + (arg >> 4);
                        if (ppem == this.ppem) {

                            //get change
                            int mag = (arg & 0xF) - 7;
                            if (mag <= 0) {
                                mag -= 1;
                            }
                            final int change = storeDoubleAsF26Dot6(mag * (1 / Math.pow(2, gs.deltaShift)));

                            //change value
                            int value = cvt.get(cvtEntry);
                            value += change;
                            cvt.putInPixels(cvtEntry, value);
                        }
                    }
                    break;
                }
                case DELTAC2: {
                    final int loop = stack.pop();
                    for (int i = 0; i < loop; i++) {
                        final int cvtEntry = stack.pop();
                        final int arg = stack.pop();

                        //test ppm
                        final int ppem = gs.deltaBase + 16 + (arg >> 4);
                        if (ppem == this.ppem) {

                            //get change
                            int mag = (arg & 0xF) - 7;
                            if (mag <= 0) {
                                mag -= 1;
                            }
                            final int change = storeDoubleAsF26Dot6(mag * (1 / Math.pow(2, gs.deltaShift)));

                            //change value
                            int value = cvt.get(cvtEntry);
                            value += change;
                            cvt.putInPixels(cvtEntry, value);
                        }
                    }
                    break;
                }
                case DELTAC3: {
                    final int loop = stack.pop();
                    for (int i = 0; i < loop; i++) {
                        final int cvtEntry = stack.pop();
                        final int arg = stack.pop();

                        //test ppm
                        final int ppem = gs.deltaBase + 32 + (arg >> 4);
                        if (ppem == this.ppem) {

                            //get change
                            int mag = (arg & 0xF) - 7;
                            if (mag <= 0) {
                                mag -= 1;
                            }
                            final int change = storeDoubleAsF26Dot6(mag * (1 / Math.pow(2, gs.deltaShift)));

                            //change value
                            int value = cvt.get(cvtEntry);
                            value += change;
                            cvt.putInPixels(cvtEntry, value);
                        }
                    }
                    break;
                }
                case SROUND:
                    gs.roundState = stack.pop();
                    gs.gridPeriod = 1.0;
                    break;

                case S45ROUND:
                    gs.roundState = stack.pop();
                    gs.gridPeriod = 0.7071067811865476;  //Math.sqrt(2)/2
                    break;

                case JROT: {
                    final boolean jump = stack.pop() != 0;
                    final int amount = stack.pop();
                    if (jump) {
                        currentPointer = currentPointer + amount - 1;
                    }
                    break;
                }
                case JROF: {
                    final boolean jump = stack.pop() != 0;
                    final int amount = stack.pop();
                    if (!jump) {
                        currentPointer = currentPointer + amount - 1;
                    }
                    break;
                }
                case ROFF:
                    gs.roundState = TTGraphicsState.off;
                    break;

                case RUTG:
                    gs.roundState = TTGraphicsState.utg;
                    gs.gridPeriod = 1.0;
                    break;

                case RDTG:
                    gs.roundState = TTGraphicsState.dtg;
                    gs.gridPeriod = 1.0;
                    break;

                case SANGW:
                    //Deprecated method - now only pops a value from stack
                    stack.pop();
                    break;

                case AA:
                    //Deprecated method - now only pops a value from stack
                    stack.pop();
                    break;

                case FLIPPT: {
                    for (int i = 0; i < gs.loop; i++) {
                        final int point = stack.pop();
                        curve[gs.zp0][point] = !curve[gs.zp0][point];
                    }
                    gs.loop = 1;
                    break;
                }
                case FLIPRGON: {
                    final int high = stack.pop();
                    final int low = stack.pop();
                    for (int i = low; i <= high; i++) {
                        curve[gs.zp0][i] = true;
                    }
                    break;
                }
                case FLIPRGOFF: {
                    final int high = stack.pop();
                    final int low = stack.pop();
                    for (int i = low; i <= high; i++) {
                        curve[gs.zp0][i] = false;
                    }
                    break;
                }
                case SCANCTRL:
                    stack.pop();
                    break;

                case SDPVTL0: {
                    final int p2 = stack.pop();
                    final int p1 = stack.pop();
                    double xdiff = getDoubleFromF26Dot6(x[gs.zp2][p2] - x[gs.zp1][p1]);
                    double ydiff = getDoubleFromF26Dot6(y[gs.zp2][p2] - y[gs.zp1][p1]);
                    double dxdiff = getDoubleFromF26Dot6(x[ORIGINAL + gs.zp2][p2] - x[ORIGINAL + gs.zp1][p1]);
                    double dydiff = getDoubleFromF26Dot6(y[ORIGINAL + gs.zp2][p2] - y[ORIGINAL + gs.zp1][p1]);
                    final double factor = Math.sqrt((xdiff * xdiff) + (ydiff * ydiff));
                    final double dfactor = Math.sqrt((dxdiff * dxdiff) + (dydiff * dydiff));
                    xdiff /= factor;
                    ydiff /= factor;
                    dxdiff /= dfactor;
                    dydiff /= dfactor;
                    gs.projectionVector = TTGraphicsState.createVector(storeDoubleAsF2Dot14(xdiff), storeDoubleAsF2Dot14(ydiff));
                    gs.dualProjectionVector = TTGraphicsState.createVector(storeDoubleAsF2Dot14(dxdiff), storeDoubleAsF2Dot14(dydiff));
                    break;
                }
                case SDPVTL1: {
                    final int p2 = stack.pop();
                    final int p1 = stack.pop();
                    double xdiff = getDoubleFromF26Dot6(x[gs.zp2][p2] - x[gs.zp1][p1]);
                    double ydiff = getDoubleFromF26Dot6(y[gs.zp2][p2] - y[gs.zp1][p1]);
                    double dxdiff = getDoubleFromF26Dot6(x[ORIGINAL + gs.zp2][p2] - x[ORIGINAL + gs.zp1][p1]);
                    double dydiff = getDoubleFromF26Dot6(y[ORIGINAL + gs.zp2][p2] - y[ORIGINAL + gs.zp1][p1]);
                    final double factor = Math.sqrt((xdiff * xdiff) + (ydiff * ydiff));
                    final double dfactor = Math.sqrt((dxdiff * dxdiff) + (dydiff * dydiff));
                    xdiff /= factor;
                    ydiff /= factor;
                    dxdiff /= dfactor;
                    dydiff /= dfactor;
                    gs.projectionVector = TTGraphicsState.createVector(storeDoubleAsF2Dot14(ydiff), storeDoubleAsF2Dot14(-xdiff));
                    gs.dualProjectionVector = TTGraphicsState.createVector(storeDoubleAsF2Dot14(dydiff), storeDoubleAsF2Dot14(-dxdiff));
                    break;
                }
                case GETINFO: {
                    final int selector = stack.pop();
                    int result = 0;

                    if ((selector & 1) == 1) {
                        result += 3;
                    }

//                    //Currently not needed as we don't use isRotated or isStretched
//                    if ((selector & 2) == 2 && isRotated)
//                        result += 0x100;
//
//                    if ((selector & 4) == 4 && isStretched)
//                        result += 0x200;

                    stack.push(result);
                    break;
                }
                case IDEF: {
                    final int func = stack.pop();
                    final int start = currentPointer;

                    //work out length
                    int curr;
                    do {
                        currentPointer++;
                        curr = program[currentPointer];
                    } while (curr != ENDF);
                    final int len = (currentPointer - start) - 1;
                    currentPointer = start;

                    //create function
                    final int[] instruction = new int[len];
                    for (int i = 0; i < len; i++) {
                        currentPointer++;
                        instruction[i] = program[currentPointer];
                    }
                    instructions.put(func, instruction);

                    //skip past ENDF
                    currentPointer++;

                    break;
                }
                case ROLL: {
                    final int top = stack.pop();
                    final int middle = stack.pop();
                    final int bottom = stack.pop();
                    stack.push(middle);
                    stack.push(top);
                    stack.push(bottom);
                    break;
                }
                case MAX: {
                    final int value1 = stack.pop();
                    final int value2 = stack.pop();

                    if (value1 > value2) {
                        stack.push(value1);
                    } else {
                        stack.push(value2);
                    }
                    break;
                }
                case MIN: {
                    final int value1 = stack.pop();
                    final int value2 = stack.pop();

                    if (value1 < value2) {
                        stack.push(value1);
                    } else {
                        stack.push(value2);
                    }
                    break;
                }
                case SCANTYPE:
                    stack.pop();
                    break;

                case INSTCTRL: {
                    final int s = stack.pop();
                    final int value = stack.pop();
                    if (s == 1) {
                        gs.instructControl = value;
                    } else if (s == 2) {
                        useDefaultGS = value == 2;
                    }
                    break;
                }
                case PUSHB:
                    if (printOut) {
                        System.out.println("PUSHB1    - Push bytes from IS to stack");
                    }
                    currentPointer = readFromIS(bytesToRead, false, currentPointer, program);
                    break;

                case PUSHW:
                    if (printOut) {
                        System.out.println("PUSHW1    - Push words from IS to stack");
                    }
                    currentPointer = readFromIS(bytesToRead, true, currentPointer, program);
                    break;

                default:

                    if (code >= MDRP && code < MDRP + 0x20) {
                        final int args = code - MDRP;

                        if (printOut) {
                            System.out.println("MDRP      - Move direct relative point (" + Integer.toBinaryString(args) + ')');
                        }

                        //read args
                        boolean setRP0toP = false, useMinimumDistance = false, roundDistance = false;
                        if ((args & paramRESETRP0) == paramRESETRP0) {
                            setRP0toP = true;
                        }
                        if ((args & paramUSEMINDIST) == paramUSEMINDIST) {
                            useMinimumDistance = true;
                        }
                        if ((args & paramROUND) == paramROUND) {
                            roundDistance = true;
                        }
                        final int distanceType = args & 3;

                        final int p = stack.pop();

                        //get original distance
                        int originalDistance = TTGraphicsState.getCoordsOnVector(gs.dualProjectionVector, x[ORIGINAL + gs.zp1][p], y[ORIGINAL + gs.zp1][p]) -
                                TTGraphicsState.getCoordsOnVector(gs.dualProjectionVector, x[ORIGINAL + gs.zp0][gs.rp0], y[ORIGINAL + gs.zp0][gs.rp0]);

                        //check single width cut in
                        if (Math.abs(originalDistance) < gs.singleWidthCutIn) {
                            if (originalDistance > 0) {
                                originalDistance = gs.singleWidthValue;
                            } else {
                                originalDistance = -gs.singleWidthValue;
                            }
                        }

                        //compensate for engine characteristics
                        originalDistance = engineCompensation(originalDistance, distanceType);

                        //round
                        if (roundDistance) {
                            originalDistance = storeDoubleAsF26Dot6(gs.round(getDoubleFromF26Dot6(originalDistance)));
                        }

                        //use minimum distance
                        if (useMinimumDistance && Math.abs(originalDistance) < gs.minimumDistance) {
                            if (originalDistance < 0) {
                                originalDistance = -gs.minimumDistance;
                            } else {
                                originalDistance = gs.minimumDistance;
                            }
                        }

                        //Get move needed
                        final int target = TTGraphicsState.getCoordsOnVector(gs.projectionVector, x[gs.zp0][gs.rp0], y[gs.zp0][gs.rp0]) + originalDistance;
                        final int pVMove = target - TTGraphicsState.getCoordsOnVector(gs.projectionVector, x[gs.zp1][p], y[gs.zp1][p]);

                        //move point
                        final int[] shift = gs.getFVMoveforPVDistance(pVMove);
                        x[gs.zp1][p] += shift[0];
                        y[gs.zp1][p] += shift[1];

                        //mark as touched
                        final int[] fv = TTGraphicsState.getVectorComponents(gs.freedomVector);
                        if (fv[0] != 0) {
                            touched[gs.zp1][p][0] = true;
                        }
                        if (fv[1] != 0) {
                            touched[gs.zp1][p][1] = true;
                        }

                        //inexplicable reference point settings
                        gs.rp1 = gs.rp0;
                        gs.rp2 = p;
                        if (setRP0toP) {
                            gs.rp0 = p;
                        }

                    } else if (code >= MIRP && code <= MIRP + 0x1F) {
                        final int args = code - MIRP;
                        if (printOut) {
                            System.out.println("MIRP      - Move Indirect Relative Point(" + Integer.toBinaryString(args) + ')');
                        }

                        //read args
                        boolean setRP0toP = false, useMinimumDistance = false, roundDistanceAndCheckCutIn = false;
                        if ((args & paramRESETRP0) == paramRESETRP0) {
                            setRP0toP = true;
                        }
                        if ((args & paramUSEMINDIST) == paramUSEMINDIST) {
                            useMinimumDistance = true;
                        }
                        if ((args & paramROUND) == paramROUND) {
                            roundDistanceAndCheckCutIn = true;
                        }
                        final int distanceType = args & 3;

                        int cvtEntry = cvt.get(stack.pop());
                        final int p = stack.pop();

                        //Get original distance
                        int distance = TTGraphicsState.getCoordsOnVector(gs.dualProjectionVector, x[ORIGINAL + gs.zp1][p], y[ORIGINAL + gs.zp1][p]) -
                                TTGraphicsState.getCoordsOnVector(gs.dualProjectionVector, x[ORIGINAL + gs.zp0][gs.rp0], y[ORIGINAL + gs.zp0][gs.rp0]);

                        //Check single width cutin
                        if (Math.abs(distance - gs.singleWidthValue) < gs.singleWidthCutIn) {
                            distance = gs.singleWidthValue;
                        }

                        //Check CVT cut-in
                        if (roundDistanceAndCheckCutIn) {
                            //Check autoflip and match CVT sign to distance sign
                            if (gs.autoFlip && ((distance < 0 && cvtEntry > 0) || (distance > 0 && cvtEntry < 0))) {
                                cvtEntry = -cvtEntry;
                            }

                            if (Math.abs(distance - cvtEntry) < gs.controlValueTableCutIn) {
                                distance = cvtEntry;
                            }
                        }

                        //Compensate for engine characteristics
                        distance = engineCompensation(distance, distanceType);

                        //Round
                        if (roundDistanceAndCheckCutIn) {
                            distance = gs.round(distance);
                        }

                        //Check minimum distance
                        if (useMinimumDistance && Math.abs(distance) < gs.minimumDistance) {
                            if (distance > 0) {
                                distance = gs.minimumDistance;
                            } else {
                                distance = -gs.minimumDistance;
                            }
                        }

                        //Get move needed
                        final int target = TTGraphicsState.getCoordsOnVector(gs.projectionVector, x[gs.zp0][gs.rp0], y[gs.zp0][gs.rp0]) + distance;
                        final int pVMove = target - TTGraphicsState.getCoordsOnVector(gs.projectionVector, x[gs.zp1][p], y[gs.zp1][p]);
                        final int[] shift = gs.getFVMoveforPVDistance(pVMove);

                        //Perform shift
                        x[gs.zp1][p] += shift[0];
                        y[gs.zp1][p] += shift[1];

                        //mark as touched
                        final int[] fv = TTGraphicsState.getVectorComponents(gs.freedomVector);
                        if (fv[0] != 0) {
                            touched[gs.zp1][p][0] = true;
                        }
                        if (fv[1] != 0) {
                            touched[gs.zp1][p][1] = true;
                        }

                        //inexplicable reference point settings
                        gs.rp1 = gs.rp0;
                        gs.rp2 = p;
                        if (setRP0toP) {
                            gs.rp0 = p;
                        }

                    } else if (instructions.containsKey(Integer.valueOf(code))) {
                        if (printOut) {
                            System.out.println("I 0x" + Integer.toHexString(code) + "    - Custom Instruction");
                        }
                        execute(instructions.get(Integer.valueOf(code)), gs);
                        if (printOut) {
                            System.out.println("I 0x" + Integer.toHexString(code) + " finished");
                        }

                    } else {
                        //
                    }
            }
        } catch(final Exception e) {

            //tell user and log
            if(LogWriter.isOutput()) {
                LogWriter.writeLog("Exception: " + e.getMessage());
            }

            //

            BaseTTGlyph.useHinting = false;
            BaseTTGlyph.redecodePage = true;
        }

        //

        return currentPointer;
    }


    /**
     * Goes through the glyph contour by contour finding pairs of touched points and moving the points between them to
     * preserve the shape of the original outline.
     *
     * @param direction Whether to interpolate in the x or y axis (value is originating instruction)
     */
    private void interpolateUntouchedPoints(final int direction) {

        //Set values according to direction
        final int[] points;
        final int[] original;
        final boolean[] touched = new boolean[this.touched[GLYPH_ZONE].length];

        if (direction == IUPx) {
            points = x[GLYPH_ZONE];
            original = x[ORIGINAL+GLYPH_ZONE];
            for (int i =0; i 1) {

                //Loop through pairs interpolating the points between them
                for (int i=0; i= touchedCount) {
                        //Special case for between the last and first touched points
                        interpolateRange(touchedPointNumbers[i]+1,   contourStart+point-1,       touchedPointNumbers[i],     touchedPointNumbers[0],     points,original);
                        interpolateRange(contourStart,               touchedPointNumbers[0]-1,   touchedPointNumbers[i],     touchedPointNumbers[0],     points,original);
                    } else {
                        interpolateRange(touchedPointNumbers[i]+1,   touchedPointNumbers[i+1]-1, touchedPointNumbers[i],     touchedPointNumbers[i+1],   points,original);
                    }
                }
            }


            //Move to start of next contour
            contourStart += point;
        }
    }

    /**
     * Interpolates the values of a range of points using two reference points. If the points coordinates were
     * originally between those of the two reference points, the relationship is maintained. If not, it is shifted by
     * the same shift which has been applied to the nearest of the two reference points.
     *
     * @param start The first point to be interpolated
     * @param end The last point to be interpolated
     * @param ref1 The first reference point
     * @param ref2 The second reference point
     * @param points The current coordinates of all points
     * @param original The original coordinates of all points
     */
    private static void interpolateRange(final int start, final int end, final int ref1, final int ref2, final int[] points, final int[] original) {

        //Work out which reference point is higher/lower
        final int lowerRef;
        final int higherRef;
        if (original[ref2] < original[ref1]) {
            lowerRef = ref2;
            higherRef = ref1;
        } else {
            lowerRef = ref1;
            higherRef = ref2;
        }

        //Go through points
        for (int i=start; i<=end; i++) {

            //If below/left of both reference points shift by the bottom/left point
            if (original[i] < original[lowerRef]) {
                points[i] += (points[lowerRef] - original[lowerRef]);

                //If above/right of both reference points shift by the top/right point
            } else if (original[i] > original[higherRef]) {
                points[i] += (points[higherRef] - original[higherRef]);

                //If between the reference points interpolate the new value
            } else {
                final double pos = (double)(original[i] - original[lowerRef])/(original[higherRef] - original[lowerRef]);
                points[i] = points[lowerRef] + (int)(pos * (points[higherRef] - points[lowerRef]));
            }
        }
    }



    /**
     * Doesn't currently do anything - should compensate for large dot sizes on some printers
     * @param num Number to compensate
     * @param characteristics Type of compensation to use
     * @return Compensated number
     */
    @SuppressWarnings("UnusedParameters")
    private static int engineCompensation(final int num, final int characteristics) {
        return num;
    }

    /**
     * Reads data from the Input Stream and puts it on the stack
     * @param number How many items to read
     * @param readWord Whether you're reading a word or a byte
     * @param currentPointer The current location in the stream
     * @param program The current input stream
     * @return The final location in the stream
     */
    private int readFromIS(final int number, final boolean readWord, int currentPointer, final int[] program) {
        for (int i=0; i> 7 & 1)*-65536);   //account for negative option
    }

    /**
     * Takes a F26Dot6 number and returns the value as a double.
     * @param a F26Dot6 value
     * @return Double value
     */
    protected static double getDoubleFromF26Dot6(final int a) {
        return (double)a/64;
    }

    /**
     * Takes a F2Dot14 number and returns the value as a double.
     * @param a F2Dot14 value
     * @return Double value
     */
    protected static double getDoubleFromF2Dot14(final int a) {
        return (double)a/0x4000;
    }

    /**
     * Takes a double and returns the value as a F26Dot6 number.
     * @param a Double value
     * @return F26Dot6 value
     */
    protected static int storeDoubleAsF26Dot6(final double a) {
        return (int)((a*64)+0.5);
    }

    /**
     * Takes a double and returns the value as a F2Dot14 number.
     * @param a Double value
     * @return F2Dot14 value
     */
    protected static int storeDoubleAsF2Dot14(final double a) {
        return (int)((a*16384)+0.5);
    }


    /**
     * Reads a program from a table in the font file.
     * @param currentFontFile Font file to use
     * @param table Table ID
     * @return The program
     */
    private static int[] readProgramTable(final FontFile2 currentFontFile, final int table) {
        int[] program = {};

        //move to start and check exists
        final int startPointer=currentFontFile.selectTable(table);

        //read table
        if(startPointer==0){
            if(LogWriter.isOutput()) {
                LogWriter.writeLog("No program table found: " + table);
            }
        }else{
            final int len = currentFontFile.getOffset(table);
            program = new int[len];
            for (int i = 0; i < len; i++) {
                program[i] =currentFontFile.getNextUint8();
            }
        }

        return program;
    }


    /**
     * Stack used by programs
     */
    private static class Stack implements Serializable {
        private int pointer;
        private int[] stack;

        Stack() {
            stack = new int[10];
        }

        /**
         * Adds an item to the top of the stack, expanding the stack if needed
         * @param a New item for stack
         */
        public void push(final int a) {
            if (pointer >= stack.length) {
                final int[] newStack = new int[(int)(stack.length*1.5)];
                System.arraycopy(stack,0,newStack,0,stack.length);
                stack = newStack;

            }
            stack[pointer] = a;

            pointer++;
        }

        /**
         * Removes an item from the top of the stack
         * @return removed item
         */
        public int pop() {
            pointer--;
            if (pointer >= 0) {
                return stack[pointer];
            }

            throw new RuntimeException("Popped an empty stack!");
        }

        /**
         * @return The number of items on the stack
         */
        public int size() {
            return pointer;
        }

        /**
         * Accesses an element further down the stack
         * @param key The number (from the top down) of the item to access
         * @return  The item
         */
        public int elementAt(final int key) {
            return stack[pointer-key];
        }

        /**
         * Removes an item from the stack
         * @param key The number (from the top down) of the item to remove
         * @return The removed item
         */
        public int remove(final int key) {
            final int valPos = pointer-key;
            final int result = stack[valPos];
            final int[] newStack = new int[stack.length];
            System.arraycopy(stack, 0, newStack, 0, valPos);
            System.arraycopy(stack, valPos+1, newStack, valPos, (stack.length-valPos)-1);
            stack = newStack;
            pointer--;
            return result;
        }
        //
    }
    //
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy