org.jpedal.jbig2.jai.JBIG2ImageReader Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of OpenViewerFX Show documentation
Show all versions of OpenViewerFX Show documentation
An Open Source JavaFX PDF Viewer
/**
* ===========================================
* Java Pdf Extraction Decoding Access Library
* ===========================================
*
* Project Info: http://www.idrsolutions.com
* Help section for developers at http://www.idrsolutions.com/java-pdf-library-support/
*
* (C) Copyright 1997-2008, IDRsolutions and Contributors.
* Main Developer: Simon Barnett
*
* This file is part of JPedal
*
* Copyright (c) 2008, IDRsolutions
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the IDRsolutions nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY IDRsolutions ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL IDRsolutions BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Other JBIG2 image decoding implementations include
* jbig2dec (http://jbig2dec.sourceforge.net/)
* xpdf (http://www.foolabs.com/xpdf/)
*
* The final draft JBIG2 specification can be found at http://www.jpeg.org/public/fcd14492.pdf
*
* All three of the above resources were used in the writing of this software, with methodologies,
* processes and inspiration taken from all three.
*
* ---------------
* JBIG2ImageReader.java
* ---------------
*/
package org.jpedal.jbig2.jai;
import java.awt.Point;
import java.awt.Rectangle;
import java.awt.image.BufferedImage;
import java.awt.image.DataBufferByte;
import java.awt.image.Raster;
import java.awt.image.WritableRaster;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import javax.imageio.ImageReadParam;
import javax.imageio.ImageReader;
import javax.imageio.ImageTypeSpecifier;
import javax.imageio.metadata.IIOMetadata;
import javax.imageio.spi.ImageReaderSpi;
import javax.imageio.stream.ImageInputStream;
import org.jpedal.jbig2.JBIG2Decoder;
import org.jpedal.jbig2.JBIG2Exception;
import org.jpedal.jbig2.image.JBIG2Bitmap;
public class JBIG2ImageReader extends ImageReader {
private JBIG2Decoder decoder;
private ImageInputStream stream;
private boolean readFile;
protected JBIG2ImageReader(ImageReaderSpi originatingProvider) {
// Save the identity of the ImageReaderSpi subclass that invoked this
// constructor.
super(originatingProvider);
}
public void setInput(Object input, boolean seekForwardOnly, boolean ignoreMetadata) {
super.setInput(input, seekForwardOnly, ignoreMetadata);
if (input == null) {
this.stream = null;
return;
}
// The input source must be an ImageInputStream because the originating
// provider -- the JBIG2ImageReaderSpi class -- passes
// STANDARD_INPUT_TYPE
// -- an array consisting only of ImageInputStream -- to its superclass
// in its constructor call.
if (input instanceof ImageInputStream)
this.stream = (ImageInputStream) input;
else
throw new IllegalArgumentException("ImageInputStream expected!");
}
public BufferedImage read(int imageIndex, ImageReadParam param) throws IOException {
BufferedImage dst = null;
try {
// Calculate and return a Rectangle that identifies the region of
// the
// source image that should be read:
//
// 1. If param is null, the upper-left corner of the region is (0,
// 0),
// and the width and height are specified by the width and height
// arguments. In other words, the entire image is read.
//
// 2. If param is not null
//
// 2.1 If param.getSourceRegion() returns a non-null Rectangle, the
// region is calculated as the intersection of param's Rectangle
// and the earlier (0, 0, width, height Rectangle).
//
// 2.2 param.getSubsamplingXOffset() is added to the region's x
// coordinate and subtracted from its width.
//
// 2.3 param.getSubsamplingYOffset() is added to the region's y
// coordinate and subtracted from its height.
int width = getWidth(imageIndex);
int height = getHeight(imageIndex);
Rectangle sourceRegion = getSourceRegion(param, width, height);
// Source subsampling is used to return a scaled-down source image.
// Default 1 values for X and Y subsampling indicate that a
// non-scaled
// source image will be returned.
int sourceXSubsampling = 1;
int sourceYSubsampling = 1;
// The destination offset determines the starting location in the
// destination where decoded pixels are placed. Default (0, 0)
// values indicate the upper-left corner.
Point destinationOffset = new Point(0, 0);
// If param is not null, override the source subsampling, and
// destination offset defaults.
if (param != null) {
sourceXSubsampling = param.getSourceXSubsampling();
sourceYSubsampling = param.getSourceYSubsampling();
destinationOffset = param.getDestinationOffset();
}
// Obtain a BufferedImage into which decoded pixels will be placed.
// This destination will be returned to the application.
//
// 1. If param is not null
//
// 1.1 If param.getDestination() returns a BufferedImage
//
// 1.1.1 Return this BufferedImage
//
// Else
//
// 1.1.2 Invoke param.getDestinationType ().
//
// 1.1.3 If the returned ImageTypeSpecifier equals
// getImageTypes (0) (see below), return its BufferedImage.
//
// 2. If param is null or a BufferedImage has not been obtained
//
// 2.1 Return getImageTypes (0)'s BufferedImage.
dst = getDestination(param, getImageTypes(0), width, height);
// Create a WritableRaster for the destination.
WritableRaster wrDst = dst.getRaster();
JBIG2Bitmap bitmap = decoder.getPageAsJBIG2Bitmap(imageIndex).getSlice(sourceRegion.x, sourceRegion.y, sourceRegion.width, sourceRegion.height);
BufferedImage image = bitmap.getBufferedImage();
int newWidth = (int) (image.getWidth() * (1 / (double) sourceXSubsampling));
int newHeight = (int) (image.getHeight() * (1 / (double) sourceYSubsampling));
BufferedImage scaledImage = scaleImage(image.getRaster(), newWidth, newHeight, 1, 1);
Raster raster = null;
if (scaledImage != null) {
raster = scaledImage.getRaster();
} else
raster = image.getRaster();
wrDst.setRect(destinationOffset.x, destinationOffset.y, raster);
} catch (RuntimeException e) {
e.printStackTrace();
}
return dst;
}
public IIOMetadata getImageMetadata(int imageIndex) throws IOException {
return null;
}
public IIOMetadata getStreamMetadata() throws IOException {
return null;
}
public Iterator getImageTypes(int imageIndex) throws IOException {
readFile();
checkIndex(imageIndex);
// Create a List of ImageTypeSpecifiers that identify the possible image
// types to which the single JBIG2 image can be decoded. An
// ImageTypeSpecifier is used with ImageReader's getDestination() method
// to return an appropriate BufferedImage that contains the decoded
// image, and is accessed by an application.
List l = new ArrayList();
// The JBIG2 reader only uses a single List entry. This entry describes
// a
// BufferedImage of TYPE_INT_RGB, which is a commonly used image type.
l.add(ImageTypeSpecifier.createFromBufferedImageType(BufferedImage.TYPE_BYTE_BINARY));
// Return an iterator that retrieves elements from the list.
return l.iterator();
}
public int getNumImages(boolean allowSearch) throws IOException {
readFile();
return decoder.getNumberOfPages();
}
public int getHeight(int imageIndex) throws IOException {
readFile();
checkIndex(imageIndex);
return decoder.getPageAsJBIG2Bitmap(imageIndex).getHeight();
}
public int getWidth(int imageIndex) throws IOException {
readFile();
checkIndex(imageIndex);
return decoder.getPageAsJBIG2Bitmap(imageIndex).getWidth();
}
private void checkIndex(int imageIndex) {
int noOfPages = decoder.getNumberOfPages();
if (imageIndex < 0 || imageIndex > noOfPages)
throw new IndexOutOfBoundsException("Bad index!");
}
private static BufferedImage scaleImage(Raster ras, int pX, int pY, int comp, int d) {
int w = ras.getWidth();
int h = ras.getHeight();
byte[] data = ((DataBufferByte) ras.getDataBuffer()).getData();
// see what we could reduce to and still be big enough for page
int newW = w, newH = h;
int sampling = 1;
int smallestH = pY << 2; // double so comparison works
int smallestW = pX << 2;
// cannot be smaller than page
while (newW > smallestW && newH > smallestH) {
sampling = sampling << 1;
newW = newW >> 1;
newH = newH >> 1;
}
int scaleX = w / pX;
if (scaleX < 1)
scaleX = 1;
int scaleY = h / pY;
if (scaleY < 1)
scaleY = 1;
// choose smaller value so at least size of page
sampling = scaleX;
if (sampling > scaleY)
sampling = scaleY;
// switch to 8 bit and reduce bw image size by averaging
if (sampling > 1) {
newW = w / sampling;
newH = h / sampling;
if (d == 1) {
int size = newW * newH;
byte[] newData = new byte[size];
final int[] flag = { 1, 2, 4, 8, 16, 32, 64, 128 };
int origLineLength = (w + 7) >> 3;
int bit;
byte currentByte;
// scan all pixels and down-sample
for (int y = 0; y < newH; y++) {
for (int x = 0; x < newW; x++) {
int bytes = 0, count = 0;
// allow for edges in number of pixels left
int wCount = sampling, hCount = sampling;
int wGapLeft = w - x;
int hGapLeft = h - y;
if (wCount > wGapLeft)
wCount = wGapLeft;
if (hCount > hGapLeft)
hCount = hGapLeft;
// count pixels in sample we will make into a pixel (ie
// 2x2 is 4 pixels , 4x4 is 16 pixels)
for (int yy = 0; yy < hCount; yy++) {
for (int xx = 0; xx < wCount; xx++) {
currentByte = data[((yy + (y * sampling)) * origLineLength) + (((x * sampling) + xx) >> 3)];
bit = currentByte & flag[7 - (((x * sampling) + xx) & 7)];
if (bit != 0)
bytes++;
count++;
}
}
// set value as white or average of pixels
int offset = x + (newW * y);
if (count > 0) {
newData[offset] = (byte) ((255 * bytes) / count);
} else {
newData[offset] = (byte) 255;
}
}
}
data = newData;
h = newH;
w = newW;
d = 8;
// imageMask=false;
} else if (d == 8) {
int x = 0, y = 0, xx = 0, yy = 0, jj = 0, origLineLength = 0;
try {
// black and white
if (w * h == data.length)
comp = 1;
byte[] newData = new byte[newW * newH * comp];
// System.err.println(w+" "+h+" "+data.length+"
// comp="+comp+" scaling="+sampling+" "+decodeColorData);
origLineLength = w * comp;
// System.err.println("size="+w*h*comp+" filter"+filter+"
// scaling="+sampling+" comp="+comp);
// System.err.println("w="+w+" h="+h+" data="+data.length+"
// origLineLength="+origLineLength+" sampling="+sampling);
// scan all pixels and down-sample
for (y = 0; y < newH; y++) {
for (x = 0; x < newW; x++) {
// allow for edges in number of pixels left
int wCount = sampling, hCount = sampling;
int wGapLeft = w - x;
int hGapLeft = h - y;
if (wCount > wGapLeft)
wCount = wGapLeft;
if (hCount > hGapLeft)
hCount = hGapLeft;
for (jj = 0; jj < comp; jj++) {
int byteTotal = 0, count = 0;
// count pixels in sample we will make into a
// pixel (ie 2x2 is 4 pixels , 4x4 is 16 pixels)
for (yy = 0; yy < hCount; yy++) {
for (xx = 0; xx < wCount; xx++) {
byteTotal = byteTotal + (data[((yy + (y * sampling)) * origLineLength) + (((x * sampling * comp) + (xx * comp) + jj))] & 255);
count++;
}
}
// set value as white or average of pixels
if (count > 0)
// if(index==null)
newData[jj + (x * comp) + (newW * y * comp)] = (byte) ((byteTotal) / count);
// else
// newData[x+(newW*y)]=(byte)(((index[1] &
// 255)*byteTotal)/count);
else {
// if(index==null)
// newData[jj+x+(newW*y*comp)]=(byte) 255;
// else
// newData[x+(newW*y)]=index[0];
}
}
}
}
data = newData;
h = newH;
w = newW;
} catch (Exception e) {
e.printStackTrace();
}
}
}
if (sampling > 1) {
final int[] bands = { 0 };
// System.out.println("w=" + w + " h=" + h + " size=" +
// data.length);
// WritableRaster raster =Raster.createPackedRaster(new
// DataBufferByte(newData, newData.length), newW, newH, 1, null);
Raster raster = Raster.createInterleavedRaster(new DataBufferByte(data, data.length), w, h, w, 1, bands, null);
BufferedImage image = new BufferedImage(w, h, BufferedImage.TYPE_BYTE_GRAY);
image.setData(raster);
return image;
} else {
return null;
}
}
private void readFile() {
// Do not allow this header to be read more than once.
if (readFile)
return;
// Make sure that the application has set the input source.
if (stream == null)
throw new IllegalStateException("No input stream!");
// Read the header.
decoder = new JBIG2Decoder();
try {
byte[] data;
int size = (int) stream.length();
if (size == -1) {
ByteArrayOutputStream bos = new ByteArrayOutputStream();
byte[] temp = new byte[8192];
for (int len = 0; (len = stream.read(temp)) > 0;) {
bos.write(temp, 0, len);
}
bos.close();
data = bos.toByteArray();
} else {
data = new byte[size];
stream.readFully(data);
}
decoder.decodeJBIG2(data);
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} catch (JBIG2Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
readFile = true;
}
}