org.jpedal.utils.Matrix Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of OpenViewerFX Show documentation
Show all versions of OpenViewerFX Show documentation
An Open Source JavaFX PDF Viewer
/*
* ===========================================
* Java Pdf Extraction Decoding Access Library
* ===========================================
*
* Project Info: http://www.idrsolutions.com
* Help section for developers at http://www.idrsolutions.com/support/
*
* (C) Copyright 1997-2016 IDRsolutions and Contributors.
*
* This file is part of JPedal/JPDF2HTML5
*
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* ---------------
* Matrix.java
* ---------------
*/
package org.jpedal.utils;
import java.awt.geom.AffineTransform;
/**
provide matrix functionality used in PDF to calculate co-ords
*/
public class Matrix {
/**multiply two 3 * 3 matrices together & return result*/
public static final float[][] multiply(final float[][] matrix1, final float[][] matrix2) {
//output matrix for results
final float[][] output_matrix = new float[3][3];
//multiply
for (int col = 0; col < 3; col++) {
for (int row = 0; row < 3; row++) {
output_matrix[row][col] = (matrix1[row][0] * matrix2[0][col]) + (matrix1[row][1] * matrix2[1][col]) + (matrix1[row][2] * matrix2[2][col]);
//allow for rounding errors
/*
if((output_matrix[row][col]>0.99)&&(output_matrix[row][col]<1))
output_matrix[row][col]=1;
else if((output_matrix[row][col]<-0.99)&&(output_matrix[row][col]>-1))
output_matrix[row][col]=-1;
else if((output_matrix[row][col]>0.0)&&(output_matrix[row][col]<0.001))
output_matrix[row][col]=0;
else if((output_matrix[row][col]<0.0)&&(output_matrix[row][col]>-0.001))
output_matrix[row][col]=0;
*/
//if(Math.abs(output_matrix[row][col])<0.01)
//output_matrix[row][col] =0;
}
}
return output_matrix;
}
/**Calculates the inverse of a 3 * 3 matrix return result*/
public static final float[][] inverse(final float[][] input_matrix) {
final float d = (input_matrix[2][0] * input_matrix[0][1] * input_matrix[1][2] - input_matrix[2][0] * input_matrix[0][2] * input_matrix[1][1] - input_matrix[1][0] * input_matrix[0][1] * input_matrix[2][2] + input_matrix[1][0] * input_matrix[0][2] * input_matrix[2][1] + input_matrix[0][0] * input_matrix[1][1] * input_matrix[2][2] - input_matrix[0][0] * input_matrix[1][2] * input_matrix[2][1]);
final float t00 = (input_matrix[1][1] * input_matrix[2][2] - input_matrix[1][2] * input_matrix[2][1]) / d;
final float t01 = -(input_matrix[0][1] * input_matrix[2][2] - input_matrix[0][2] * input_matrix[2][1]) / d;
final float t02 = (input_matrix[0][1] * input_matrix[1][2] - input_matrix[0][2] * input_matrix[1][1]) / d;
final float t10 = -(-input_matrix[2][0] * input_matrix[1][2] + input_matrix[1][0] * input_matrix[2][2]) / d;
final float t11 = (-input_matrix[2][0] * input_matrix[0][2] + input_matrix[0][0] * input_matrix[2][2]) / d;
final float t12 = -(-input_matrix[1][0] * input_matrix[0][2] + input_matrix[0][0] * input_matrix[1][2]) / d;
final float t20 = (-input_matrix[2][0] * input_matrix[1][1] + input_matrix[1][0] * input_matrix[2][1]) / d;
final float t21 = -(-input_matrix[2][0] * input_matrix[0][1] + input_matrix[0][0] * input_matrix[2][1]) / d;
final float t22 = (-input_matrix[1][0] * input_matrix[0][1] + input_matrix[0][0] * input_matrix[1][1]) / d;
final float[][] output_matrix = new float[3][3];
output_matrix[0][0] = t00; output_matrix[0][1] = t01; output_matrix[0][2] = t02;
output_matrix[1][0] = t10; output_matrix[1][1] = t11; output_matrix[1][2] = t12;
output_matrix[2][0] = t20; output_matrix[2][1] = t21; output_matrix[2][2] = t22;
return output_matrix;
}
public static final float[][] concatenate(float[][] m1, float [][] m2){
return multiply(m2, m1);
}
/**
* please call this function only on device bound transformation not good
* for general use cases;
* @param xform
* @return
*/
public static float[][] toMatrix(AffineTransform xform){
return new float[][]{{(float)xform.getScaleX(),(float)xform.getShearX(),0},
{(float)xform.getShearY(),(float)xform.getScaleY(),0},
{(float)xform.getTranslateX(),(float)xform.getTranslateY(),1}};
}
/**
* transform a point i.e:(x,y) based on given matrix
* @param mm
* @param x
* @param y
* @return
*/
public static float[] transformPoint(float[][] mm, float x, float y) {
float x_ = mm[0][0] * x + mm[1][0] * y + mm[2][0];
float y_ = mm[0][1] * x + mm[1][1] * y + mm[2][1];
return new float[]{x_, y_};
}
//////////////////////////////////////////////////////////////////////////
/**show matrix (used to debug)*/
public static final void show(final float[][] matrix1) {
//show lines
for (int row = 0; row < 3; row++) {
LogWriter.writeLog(row + "((" + matrix1[row][0] + " , " + matrix1[row][1] + " , " + matrix1[row][2] + " ))");
// System.out.println( row + "(" + matrix1[row][0] + " , " + matrix1[row][1] + " , " + matrix1[row][2] + " )" );
}
}
/**show matrix (used to debug)*/
public static final void show(final int[][] matrix1) {
//show lines
for (int row = 0; row < 3; row++) {
LogWriter.writeLog(row + "((" + matrix1[row][0] + " , " + matrix1[row][1] + " , " + matrix1[row][2] + " ))");
//System.out.println( row + "(" + matrix1[row][0] + " , " + matrix1[row][1] + " , " + matrix1[row][2] + " )" );
}
}
public static float[][] multiplyAny(float[][] m1, float[][] m2) {
int c0 = m1[0].length;
int r1 = m2.length;
if(c0 != r1) {
return null;
}
int r0 = m1.length;
int c1 = m2[0].length;
float[][] mResult = new float[r0][c1];
for(int i = 0; i < r0; i++) {
for(int j = 0; j < c1; j++) {
for(int k = 0; k < c0; k++) {
mResult[i][j] += m1[i][k] * m2[k][j];
}
}
}
return mResult;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy