org.jpmml.lightgbm.MultinomialLogisticRegression Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of jpmml-lightgbm Show documentation
Show all versions of jpmml-lightgbm Show documentation
Java library and command-line application for converting LightGBM models to PMML
/*
* Copyright (c) 2017 Villu Ruusmann
*
* This file is part of JPMML-LightGBM
*
* JPMML-LightGBM is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* JPMML-LightGBM is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with JPMML-LightGBM. If not, see .
*/
package org.jpmml.lightgbm;
import java.util.ArrayList;
import java.util.List;
import org.dmg.pmml.DataType;
import org.dmg.pmml.OpType;
import org.dmg.pmml.mining.MiningModel;
import org.dmg.pmml.regression.RegressionModel;
import org.jpmml.converter.CategoricalLabel;
import org.jpmml.converter.FieldNameUtil;
import org.jpmml.converter.FortranMatrixUtil;
import org.jpmml.converter.ModelUtil;
import org.jpmml.converter.Schema;
import org.jpmml.converter.mining.MiningModelUtil;
public class MultinomialLogisticRegression extends Classification {
public MultinomialLogisticRegression(boolean average_output, int num_class){
super(average_output, num_class);
if(num_class < 3){
throw new IllegalArgumentException("Multi-class classification requires three or more target categories");
}
}
@Override
public MiningModel encodeMiningModel(List trees, Integer numIteration, Schema schema){
Schema segmentSchema = schema.toAnonymousRegressorSchema(DataType.DOUBLE);
List miningModels = new ArrayList<>();
CategoricalLabel categoricalLabel = (CategoricalLabel)schema.getLabel();
for(int i = 0, rows = categoricalLabel.size(), columns = (trees.size() / rows); i < rows; i++){
MiningModel miningModel = createMiningModel(FortranMatrixUtil.getRow(trees, rows, columns, i), numIteration, segmentSchema)
.setOutput(ModelUtil.createPredictedOutput(FieldNameUtil.create("lgbmValue", categoricalLabel.getValue(i)), OpType.CONTINUOUS, DataType.DOUBLE));
miningModels.add(miningModel);
}
return MiningModelUtil.createClassification(miningModels, RegressionModel.NormalizationMethod.SOFTMAX, true, schema);
}
}