
org.jpmml.sparkml.model.LogisticRegressionModelConverter Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of jpmml-sparkml Show documentation
Show all versions of jpmml-sparkml Show documentation
Java library and command-line application for converting Spark ML pipelines to PMML
/*
* Copyright (c) 2016 Villu Ruusmann
*
* This file is part of JPMML-SparkML
*
* JPMML-SparkML is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* JPMML-SparkML is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with JPMML-SparkML. If not, see .
*/
package org.jpmml.sparkml.model;
import java.util.List;
import org.apache.spark.ml.classification.LogisticRegressionModel;
import org.dmg.pmml.MiningFunctionType;
import org.dmg.pmml.RegressionModel;
import org.dmg.pmml.RegressionNormalizationMethodType;
import org.dmg.pmml.RegressionTable;
import org.jpmml.converter.ModelUtil;
import org.jpmml.converter.Schema;
import org.jpmml.sparkml.ModelConverter;
public class LogisticRegressionModelConverter extends ModelConverter {
public LogisticRegressionModelConverter(LogisticRegressionModel model){
super(model);
}
@Override
public RegressionModel encodeModel(Schema schema){
LogisticRegressionModel model = getTransformer();
List targetCategories = schema.getTargetCategories();
if(targetCategories.size() != 2){
throw new IllegalArgumentException();
}
RegressionTable activeRegressionTable = RegressionModelUtil.encodeRegressionTable(model.intercept(), model.coefficients(), schema)
.setTargetCategory(targetCategories.get(1));
RegressionTable passiveRegressionTable = new RegressionTable(0d)
.setTargetCategory(targetCategories.get(0));
RegressionModel regressionModel = new RegressionModel(MiningFunctionType.CLASSIFICATION, ModelUtil.createMiningSchema(schema), null)
.setNormalizationMethod(RegressionNormalizationMethodType.SOFTMAX)
.addRegressionTables(activeRegressionTable, passiveRegressionTable)
.setOutput(ModelUtil.createProbabilityOutput(schema));
return regressionModel;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy