
org.jpmml.sparkml.model.RegressionModelUtil Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of jpmml-sparkml Show documentation
Show all versions of jpmml-sparkml Show documentation
Java library and command-line application for converting Spark ML pipelines to PMML
/*
* Copyright (c) 2016 Villu Ruusmann
*
* This file is part of JPMML-SparkML
*
* JPMML-SparkML is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* JPMML-SparkML is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with JPMML-SparkML. If not, see .
*/
package org.jpmml.sparkml.model;
import java.util.List;
import org.apache.spark.mllib.linalg.Vector;
import org.dmg.pmml.CategoricalPredictor;
import org.dmg.pmml.NumericPredictor;
import org.dmg.pmml.RegressionTable;
import org.jpmml.converter.BinaryFeature;
import org.jpmml.converter.ContinuousFeature;
import org.jpmml.converter.Feature;
import org.jpmml.converter.Schema;
import org.jpmml.converter.ValueUtil;
public class RegressionModelUtil {
private RegressionModelUtil(){
}
static
public RegressionTable encodeRegressionTable(double intercept, Vector coefficients, Schema schema){
RegressionTable regressionTable = new RegressionTable(intercept);
List features = schema.getFeatures();
if(features.size() != coefficients.size()){
throw new IllegalArgumentException();
}
for(int i = 0; i < features.size(); i++){
Feature feature = features.get(i);
if(feature instanceof ContinuousFeature){
ContinuousFeature continuousFeature = (ContinuousFeature)feature;
NumericPredictor numericPredictor = new NumericPredictor()
.setName(continuousFeature.getName())
.setCoefficient(coefficients.apply(i));
regressionTable.addNumericPredictors(numericPredictor);
} else
if(feature instanceof BinaryFeature){
BinaryFeature binaryFeature = (BinaryFeature)feature;
String value = ValueUtil.formatValue(binaryFeature.getValue());
CategoricalPredictor categoricalPredictor = new CategoricalPredictor()
.setName(binaryFeature.getName())
.setCoefficient(coefficients.apply(i))
.setValue(value);
regressionTable.addCategoricalPredictors(categoricalPredictor);
} else
{
throw new IllegalArgumentException();
}
}
return regressionTable;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy