org.jpmml.xgboost.MultinomialLogisticRegression Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of jpmml-xgboost Show documentation
Show all versions of jpmml-xgboost Show documentation
Java library and command-line application for converting XGBoost models to PMML
/*
* Copyright (c) 2016 Villu Ruusmann
*
* This file is part of JPMML-XGBoost
*
* JPMML-XGBoost is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* JPMML-XGBoost is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with JPMML-XGBoost. If not, see .
*/
package org.jpmml.xgboost;
import java.util.ArrayList;
import java.util.List;
import org.dmg.pmml.DataType;
import org.dmg.pmml.OpType;
import org.dmg.pmml.mining.MiningModel;
import org.dmg.pmml.regression.RegressionModel;
import org.jpmml.converter.CMatrixUtil;
import org.jpmml.converter.CategoricalLabel;
import org.jpmml.converter.FieldNameUtil;
import org.jpmml.converter.ModelUtil;
import org.jpmml.converter.Schema;
import org.jpmml.converter.mining.MiningModelUtil;
public class MultinomialLogisticRegression extends Classification {
public MultinomialLogisticRegression(int num_class){
super(num_class);
if(num_class < 2){
throw new IllegalArgumentException("Multi-class classification requires two or more target categories");
}
}
@Override
public MiningModel encodeMiningModel(List trees, List weights, float base_score, Integer ntreeLimit, Schema schema){
Schema segmentSchema = schema.toAnonymousRegressorSchema(DataType.FLOAT);
List miningModels = new ArrayList<>();
CategoricalLabel categoricalLabel = (CategoricalLabel)schema.getLabel();
for(int i = 0, columns = categoricalLabel.size(), rows = (trees.size() / columns); i < columns; i++){
MiningModel miningModel = createMiningModel(CMatrixUtil.getColumn(trees, rows, columns, i), (weights != null) ? CMatrixUtil.getColumn(weights, rows, columns, i) : null, base_score, ntreeLimit, segmentSchema)
.setOutput(ModelUtil.createPredictedOutput(FieldNameUtil.create("xgbValue", categoricalLabel.getValue(i)), OpType.CONTINUOUS, DataType.FLOAT));
miningModels.add(miningModel);
}
return MiningModelUtil.createClassification(miningModels, RegressionModel.NormalizationMethod.SOFTMAX, true, schema);
}
}