org.jpmml.xgboost.GBTree Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of jpmml-xgboost Show documentation
Show all versions of jpmml-xgboost Show documentation
Java library and command-line application for converting XGBoost models to PMML
/*
* Copyright (c) 2016 Villu Ruusmann
*
* This file is part of JPMML-XGBoost
*
* JPMML-XGBoost is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* JPMML-XGBoost is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with JPMML-XGBoost. If not, see .
*/
package org.jpmml.xgboost;
import java.io.IOException;
import java.util.Arrays;
import com.google.common.primitives.Floats;
import com.google.gson.JsonArray;
import com.google.gson.JsonObject;
import org.dmg.pmml.mining.MiningModel;
import org.jpmml.converter.Schema;
public class GBTree extends GradientBooster {
private int num_trees;
private int num_roots;
private int num_feature;
private int num_output_group;
private int size_leaf_vector;
private RegTree[] trees;
private int[] tree_info;
public GBTree(){
}
@Override
public String getAlgorithmName(){
return "GBTree";
}
@Override
public void loadBinary(XGBoostDataInput input) throws IOException {
this.num_trees = input.readInt();
this.num_roots = input.readInt();
this.num_feature = input.readInt();
input.readReserved(3);
this.num_output_group = input.readInt();
this.size_leaf_vector = input.readInt();
input.readReserved(32);
this.trees = input.readObjectArray(RegTree.class, this.num_trees);
this.tree_info = input.readIntArray(this.num_trees);
}
@Override
public void loadJSON(JsonObject gradientBooster){
JsonObject model = gradientBooster.getAsJsonObject("model");
JsonObject gbtreeModelParam = model.getAsJsonObject("gbtree_model_param");
this.num_trees = gbtreeModelParam.getAsJsonPrimitive("num_trees").getAsInt();
this.size_leaf_vector = gbtreeModelParam.getAsJsonPrimitive("size_leaf_vector").getAsInt();
JsonArray trees = model.getAsJsonArray("trees");
this.trees = new RegTree[this.num_trees];
for(int i = 0; i < this.num_trees; i++){
JsonObject tree = (trees.get(i)).getAsJsonObject();
this.trees[i] = new RegTree();
this.trees[i].loadJSON(tree);
}
this.tree_info = JSONUtil.toIntArray(model.getAsJsonArray("tree_info"));
}
public MiningModel encodeMiningModel(ObjFunction obj, float base_score, Integer ntreeLimit, boolean numeric, Schema schema){
RegTree[] trees = trees();
float[] weights = tree_weights();
return obj.encodeMiningModel(Arrays.asList(trees), weights != null ? Floats.asList(weights) : null, base_score, ntreeLimit, numeric, schema);
}
public int num_trees(){
return this.num_trees;
}
public RegTree[] trees(){
return this.trees;
}
public float[] tree_weights(){
return null;
}
}