org.jpmml.converter.clustering.ClusteringModelUtil Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of pmml-converter Show documentation
Show all versions of pmml-converter Show documentation
JPMML class model converters
The newest version!
/*
* Copyright (c) 2016 Villu Ruusmann
*
* This file is part of JPMML-Converter
*
* JPMML-Converter is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* JPMML-Converter is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with JPMML-Converter. If not, see .
*/
package org.jpmml.converter.clustering;
import java.util.ArrayList;
import java.util.List;
import java.util.stream.Collectors;
import org.dmg.pmml.DataType;
import org.dmg.pmml.OpType;
import org.dmg.pmml.Output;
import org.dmg.pmml.OutputField;
import org.dmg.pmml.clustering.Cluster;
import org.dmg.pmml.clustering.ClusteringField;
import org.jpmml.converter.ContinuousFeature;
import org.jpmml.converter.Feature;
import org.jpmml.converter.ModelUtil;
import org.jpmml.converter.ValueUtil;
public class ClusteringModelUtil {
private ClusteringModelUtil(){
}
static
public List createClusteringFields(List extends Feature> features){
return createClusteringFields(features, null);
}
static
public List createClusteringFields(List extends Feature> features, List extends Number> weights){
if((weights != null) && (features.size() != weights.size())){
throw new IllegalArgumentException();
}
List clusteringFields = new ArrayList<>();
for(int i = 0; i < features.size(); i++){
Feature feature = features.get(i);
Number weight = (weights != null ? weights.get(i) : null);
ContinuousFeature continuousFeature = feature.toContinuousFeature();
ClusteringField clusteringField = new ClusteringField(continuousFeature.getName());
if(weight != null && !ValueUtil.isOne(weight)){
clusteringField.setFieldWeight(weight);
}
clusteringFields.add(clusteringField);
}
return clusteringFields;
}
static
public Output createOutput(String name, DataType dataType, List clusters){
Output output = new Output();
List ids = clusters.stream()
.map(cluster -> cluster.getId())
.collect(Collectors.toList());
List outputFields = output.getOutputFields();
outputFields.add(ModelUtil.createPredictedField(name, OpType.CATEGORICAL, DataType.STRING, ids));
outputFields.addAll(ModelUtil.createAffinityFields(dataType, clusters));
return output;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy