org.jpmml.evaluator.DistributionUtil Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of pmml-evaluator Show documentation
Show all versions of pmml-evaluator Show documentation
JPMML class model evaluator
/*
* Copyright (c) 2015 Villu Ruusmann
*
* This file is part of JPMML-Evaluator
*
* JPMML-Evaluator is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* JPMML-Evaluator is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with JPMML-Evaluator. If not, see .
*/
package org.jpmml.evaluator;
import org.apache.commons.math3.distribution.NormalDistribution;
import org.dmg.pmml.ContinuousDistribution;
import org.dmg.pmml.DataType;
import org.dmg.pmml.GaussianDistribution;
import org.dmg.pmml.PMMLAttributes;
import org.dmg.pmml.PoissonDistribution;
import org.jpmml.model.InvalidAttributeException;
import org.jpmml.model.UnsupportedElementException;
public class DistributionUtil {
private DistributionUtil(){
}
/**
*
* Calculates the value of the specified probability function at the specified point.
*
*/
static
public double probability(ContinuousDistribution distribution, Number x){
if(distribution instanceof GaussianDistribution){
return probability((GaussianDistribution)distribution, x);
} else
if(distribution instanceof PoissonDistribution){
return probability((PoissonDistribution)distribution, x);
}
throw new UnsupportedElementException(distribution);
}
static
public double probability(GaussianDistribution gaussianDistribution, Number x){
Number mean = gaussianDistribution.requireMean();
Number variance = gaussianDistribution.requireVariance();
if(variance.doubleValue() <= 0d){
throw new InvalidAttributeException(gaussianDistribution, PMMLAttributes.GAUSSIANDISTRIBUTION_VARIANCE, variance);
}
NormalDistribution distribution = new NormalDistribution(mean.doubleValue(), Math.sqrt(variance.doubleValue()));
return distribution.density(x.doubleValue());
}
static
public double probability(PoissonDistribution poissonDistribution, Number x){
Number mean = poissonDistribution.requireMean();
org.apache.commons.math3.distribution.PoissonDistribution distribution = new org.apache.commons.math3.distribution.PoissonDistribution(null, mean.doubleValue(), org.apache.commons.math3.distribution.PoissonDistribution.DEFAULT_EPSILON, org.apache.commons.math3.distribution.PoissonDistribution.DEFAULT_MAX_ITERATIONS);
x = (Number)TypeUtil.cast(DataType.INTEGER, x);
return distribution.probability(x.intValue());
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy