All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.jpmml.evaluator.DistributionUtil Maven / Gradle / Ivy

There is a newer version: 1.6.8
Show newest version
/*
 * Copyright (c) 2015 Villu Ruusmann
 *
 * This file is part of JPMML-Evaluator
 *
 * JPMML-Evaluator is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Affero General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * JPMML-Evaluator is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Affero General Public License for more details.
 *
 * You should have received a copy of the GNU Affero General Public License
 * along with JPMML-Evaluator.  If not, see .
 */
package org.jpmml.evaluator;

import org.apache.commons.math3.distribution.NormalDistribution;
import org.dmg.pmml.ContinuousDistribution;
import org.dmg.pmml.DataType;
import org.dmg.pmml.GaussianDistribution;
import org.dmg.pmml.PMMLAttributes;
import org.dmg.pmml.PoissonDistribution;
import org.jpmml.model.InvalidAttributeException;
import org.jpmml.model.UnsupportedElementException;

public class DistributionUtil {

	private DistributionUtil(){
	}

	/**
	 * 

* Calculates the value of the specified probability function at the specified point. *

*/ static public double probability(ContinuousDistribution distribution, Number x){ if(distribution instanceof GaussianDistribution){ return probability((GaussianDistribution)distribution, x); } else if(distribution instanceof PoissonDistribution){ return probability((PoissonDistribution)distribution, x); } throw new UnsupportedElementException(distribution); } static public double probability(GaussianDistribution gaussianDistribution, Number x){ Number mean = gaussianDistribution.requireMean(); Number variance = gaussianDistribution.requireVariance(); if(variance.doubleValue() <= 0d){ throw new InvalidAttributeException(gaussianDistribution, PMMLAttributes.GAUSSIANDISTRIBUTION_VARIANCE, variance); } NormalDistribution distribution = new NormalDistribution(mean.doubleValue(), Math.sqrt(variance.doubleValue())); return distribution.density(x.doubleValue()); } static public double probability(PoissonDistribution poissonDistribution, Number x){ Number mean = poissonDistribution.requireMean(); org.apache.commons.math3.distribution.PoissonDistribution distribution = new org.apache.commons.math3.distribution.PoissonDistribution(null, mean.doubleValue(), org.apache.commons.math3.distribution.PoissonDistribution.DEFAULT_EPSILON, org.apache.commons.math3.distribution.PoissonDistribution.DEFAULT_MAX_ITERATIONS); x = (Number)TypeUtil.cast(DataType.INTEGER, x); return distribution.probability(x.intValue()); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy