org.jpmml.evaluator.NormalizationUtil Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of pmml-evaluator Show documentation
Show all versions of pmml-evaluator Show documentation
JPMML class model evaluator
/*
* Copyright (c) 2019 Villu Ruusmann
*
* This file is part of JPMML-Evaluator
*
* JPMML-Evaluator is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* JPMML-Evaluator is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with JPMML-Evaluator. If not, see .
*/
package org.jpmml.evaluator;
import java.util.List;
import com.google.common.base.Function;
import org.dmg.pmml.LinearNorm;
import org.dmg.pmml.NormContinuous;
import org.dmg.pmml.OutlierTreatmentMethod;
import org.jpmml.model.InvalidElementListException;
import org.jpmml.model.UnsupportedAttributeException;
public class NormalizationUtil {
private NormalizationUtil(){
}
static
public FieldValue normalize(NormContinuous normContinuous, FieldValue value){
Number result = normalize(normContinuous, value.asNumber());
return FieldValueUtil.create(TypeInfos.CONTINUOUS_DOUBLE, result);
}
static
public Number normalize(NormContinuous normContinuous, Number value){
Value doubleValue = new DoubleValue(value);
doubleValue = normalize(normContinuous, doubleValue);
if(doubleValue == null){
return null;
}
return doubleValue.getValue();
}
static
public Value normalize(NormContinuous normContinuous, Value value){
List linearNorms = ensureLinearNorms(normContinuous);
LinearNorm start;
LinearNorm end;
int index = binarySearch(linearNorms, LinearNorm::requireOrig, value);
if(index < 0 || index == (linearNorms.size() - 1)){
OutlierTreatmentMethod outlierTreatmentMethod = normContinuous.getOutliers();
switch(outlierTreatmentMethod){
case AS_IS:
// "Extrapolate from the first interval"
if(index < 0){
start = linearNorms.get(0);
end = linearNorms.get(1);
} else
// "Extrapolate from the last interval"
{
start = linearNorms.get(linearNorms.size() - 2);
end = linearNorms.get(linearNorms.size() - 1);
}
break;
case AS_MISSING_VALUES:
// "Map to a missing value"
return null;
case AS_EXTREME_VALUES:
// "Map to the value of the first interval"
if(index < 0){
start = linearNorms.get(0);
return value.reset(start.requireNorm());
} else
// "Map to the value of the last interval"
{
end = linearNorms.get(linearNorms.size() - 1);
return value.reset(end.requireNorm());
}
default:
throw new UnsupportedAttributeException(normContinuous, outlierTreatmentMethod);
}
} else
{
start = linearNorms.get(index);
end = linearNorms.get(index + 1);
}
return value.normalize(start.requireOrig(), start.requireNorm(), end.requireOrig(), end.requireNorm());
}
static
public Number denormalize(NormContinuous normContinuous, Number value){
Value doubleValue = new DoubleValue(value);
doubleValue = denormalize(normContinuous, doubleValue);
return doubleValue.getValue();
}
static
public Value denormalize(NormContinuous normContinuous, Value value){
List linearNorms = ensureLinearNorms(normContinuous);
LinearNorm start;
LinearNorm end;
int index = binarySearch(linearNorms, LinearNorm::requireNorm, value);
if(index < 0 || index == (linearNorms.size() - 1)){
throw new NotImplementedException();
} else
{
start = linearNorms.get(index);
end = linearNorms.get(index + 1);
}
return value.denormalize(start.requireOrig(), start.requireNorm(), end.requireOrig(), end.requireNorm());
}
static
private int binarySearch(List linearNorms, Function thresholdFunction, Value value){
int low = 0;
int high = linearNorms.size() - 1;
while(low <= high){
int mid = low + (high - low) / 2;
LinearNorm linearNorm = linearNorms.get(mid);
Number threshold = thresholdFunction.apply(linearNorm);
if(value.compareTo(threshold) >= 0){
if(mid < (linearNorms.size() - 1)){
LinearNorm nextLinearNorm = linearNorms.get(mid + 1);
Number nextThreshold = thresholdFunction.apply(nextLinearNorm);
// Assume a closed-closed range, rather than a closed-open range.
// If the value matches some threshold value exactly,
// then it does not matter which bin (ie. this or the next) is used for interpolation.
if(value.compareTo(nextThreshold) <= 0){
return mid;
}
} else
// The last element
{
return mid;
}
low = (mid + 1);
} else
{
high = (mid - 1);
}
}
return -1;
}
static
private List ensureLinearNorms(NormContinuous normContinuous){
List linearNorms = normContinuous.requireLinearNorms();
if(linearNorms.size() < 2){
throw new InvalidElementListException(linearNorms);
}
return linearNorms;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy