org.jpmml.evaluator.regression.RegressionModelUtil Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of pmml-evaluator Show documentation
Show all versions of pmml-evaluator Show documentation
JPMML class model evaluator
The newest version!
/*
* Copyright (c) 2017 Villu Ruusmann
*
* This file is part of JPMML-Evaluator
*
* JPMML-Evaluator is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* JPMML-Evaluator is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with JPMML-Evaluator. If not, see .
*/
package org.jpmml.evaluator.regression;
import java.util.Iterator;
import org.dmg.pmml.regression.RegressionModel;
import org.jpmml.evaluator.Numbers;
import org.jpmml.evaluator.Value;
import org.jpmml.evaluator.ValueMap;
import org.jpmml.evaluator.ValueUtil;
public class RegressionModelUtil {
private RegressionModelUtil(){
}
static
public ValueMap computeBinomialProbabilities(RegressionModel.NormalizationMethod normalizationMethod, ValueMap values){
if(values.size() != 2){
throw new IllegalArgumentException();
}
Iterator> valueIt = values.iterator();
Value firstValue = valueIt.next();
// The probability of the first category is calculated
normalizeBinaryLogisticClassificationResult(normalizationMethod, firstValue);
Value secondValue = valueIt.next();
// The probability of the second category is obtained by subtracting the probability of the first category from 1.0
secondValue.residual(firstValue);
return values;
}
static
public ValueMap computeMultinomialProbabilities(RegressionModel.NormalizationMethod normalizationMethod, ValueMap values){
if(values.size() < 2){
throw new IllegalArgumentException();
}
switch(normalizationMethod){
case NONE:
{
Value sum = null;
Iterator> valueIt = values.iterator();
for(int i = 0, max = values.size() - 1; i < max; i++){
Value value = valueIt.next();
if(sum == null){
sum = value.copy();
} else
{
sum.add(value);
}
}
Value lastValue = valueIt.next();
lastValue.residual(sum);
}
break;
// XXX: Non-standard behaviour
case LOGIT:
{
for(Value value : values){
value.inverseLogit();
}
}
// Falls through
case SIMPLEMAX:
{
ValueUtil.normalizeSimpleMax(values);
}
break;
case SOFTMAX:
{
ValueUtil.normalizeSoftMax(values);
}
break;
default:
throw new IllegalArgumentException();
}
return values;
}
static
public ValueMap computeOrdinalProbabilities(RegressionModel.NormalizationMethod normalizationMethod, ValueMap values){
if(values.size() < 2){
throw new IllegalArgumentException();
}
switch(normalizationMethod){
case NONE:
case LOGIT:
case PROBIT:
case CLOGLOG:
case LOGLOG:
case CAUCHIT:
{
Value sum = null;
Iterator> valueIt = values.iterator();
for(int i = 0, max = values.size() - 1; i < max; i++){
Value value = valueIt.next();
normalizeBinaryLogisticClassificationResult(normalizationMethod, value);
if(sum == null){
sum = value.copy();
} else
{
value.subtract(sum);
sum.add(value);
}
}
Value lastValue = valueIt.next();
lastValue.residual(sum);
}
break;
default:
throw new IllegalArgumentException();
}
return values;
}
static
public Value normalizeRegressionResult(RegressionModel.NormalizationMethod normalizationMethod, Value value){
switch(normalizationMethod){
case NONE:
return value;
case SOFTMAX:
case LOGIT:
return value.inverseLogit();
case EXP:
return value.exp();
case PROBIT:
return value.inverseProbit();
case CLOGLOG:
return value.inverseCloglog();
case LOGLOG:
return value.inverseLoglog();
case CAUCHIT:
return value.inverseCauchit();
default:
throw new IllegalArgumentException();
}
}
static
public Value normalizeBinaryLogisticClassificationResult(RegressionModel.NormalizationMethod normalizationMethod, Value value){
switch(normalizationMethod){
case NONE:
return value.restrict(Numbers.DOUBLE_ZERO, Numbers.DOUBLE_ONE);
case LOGIT:
return value.inverseLogit();
case PROBIT:
return value.inverseProbit();
case CLOGLOG:
return value.inverseCloglog();
case LOGLOG:
return value.inverseLoglog();
case CAUCHIT:
return value.inverseCauchit();
default:
throw new IllegalArgumentException();
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy