All Downloads are FREE. Search and download functionalities are using the official Maven repository.
Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
org.dmg.pmml.PredictiveModelQuality Maven / Gradle / Ivy
package org.dmg.pmml;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import javax.xml.bind.annotation.XmlAccessType;
import javax.xml.bind.annotation.XmlAccessorType;
import javax.xml.bind.annotation.XmlAttribute;
import javax.xml.bind.annotation.XmlElement;
import javax.xml.bind.annotation.XmlEnum;
import javax.xml.bind.annotation.XmlEnumValue;
import javax.xml.bind.annotation.XmlRootElement;
import javax.xml.bind.annotation.XmlType;
import javax.xml.bind.annotation.adapters.XmlJavaTypeAdapter;
import com.fasterxml.jackson.annotation.JsonAutoDetect;
import com.fasterxml.jackson.annotation.JsonInclude;
import com.fasterxml.jackson.annotation.JsonProperty;
import com.fasterxml.jackson.annotation.JsonPropertyOrder;
import org.dmg.pmml.adapters.FieldNameAdapter;
import org.dmg.pmml.adapters.NumberAdapter;
import org.jpmml.model.annotations.ValueConstructor;
@XmlAccessorType(XmlAccessType.FIELD)
@XmlType(name = "", propOrder = {
"extensions",
"confusionMatrix",
"liftDatas",
"roc"
})
@XmlRootElement(name = "PredictiveModelQuality", namespace = "http://www.dmg.org/PMML-4_3")
@org.jpmml.model.annotations.Added((org.dmg.pmml.Version.PMML_4_0))
@JsonAutoDetect(fieldVisibility = JsonAutoDetect.Visibility.ANY, getterVisibility = JsonAutoDetect.Visibility.NONE, isGetterVisibility = JsonAutoDetect.Visibility.NONE, setterVisibility = JsonAutoDetect.Visibility.NONE)
@JsonInclude(JsonInclude.Include.NON_EMPTY)
@JsonPropertyOrder({
"targetField",
"dataName",
"dataUsage",
"meanError",
"meanAbsoluteError",
"meanSquaredError",
"rootMeanSquaredError",
"rSquared",
"adjRSquared",
"sumSquaredError",
"sumSquaredRegression",
"numOfRecords",
"numOfRecordsWeighted",
"numOfPredictors",
"degreesOfFreedom",
"fStatistic",
"aic",
"bic",
"aiCc",
"extensions",
"confusionMatrix",
"liftDatas",
"roc"
})
public class PredictiveModelQuality
extends org.dmg.pmml.PMMLObject
implements HasExtensions
{
@XmlAttribute(name = "targetField", required = true)
@XmlJavaTypeAdapter(FieldNameAdapter.class)
@JsonProperty("targetField")
private FieldName targetField;
@XmlAttribute(name = "dataName")
@JsonProperty("dataName")
private String dataName;
@XmlAttribute(name = "dataUsage")
@JsonProperty("dataUsage")
private PredictiveModelQuality.DataUsage dataUsage;
@XmlAttribute(name = "meanError")
@XmlJavaTypeAdapter(NumberAdapter.class)
@JsonProperty("meanError")
private Number meanError;
@XmlAttribute(name = "meanAbsoluteError")
@XmlJavaTypeAdapter(NumberAdapter.class)
@JsonProperty("meanAbsoluteError")
private Number meanAbsoluteError;
@XmlAttribute(name = "meanSquaredError")
@XmlJavaTypeAdapter(NumberAdapter.class)
@JsonProperty("meanSquaredError")
private Number meanSquaredError;
@XmlAttribute(name = "rootMeanSquaredError")
@XmlJavaTypeAdapter(NumberAdapter.class)
@org.jpmml.model.annotations.Added((org.dmg.pmml.Version.PMML_4_1))
@JsonProperty("rootMeanSquaredError")
private Number rootMeanSquaredError;
@XmlAttribute(name = "r-squared")
@XmlJavaTypeAdapter(NumberAdapter.class)
@JsonProperty("r-squared")
private Number rSquared;
@XmlAttribute(name = "adj-r-squared")
@XmlJavaTypeAdapter(NumberAdapter.class)
@org.jpmml.model.annotations.Added((org.dmg.pmml.Version.PMML_4_1))
@JsonProperty("adj-r-squared")
private Number adjRSquared;
@XmlAttribute(name = "sumSquaredError")
@XmlJavaTypeAdapter(NumberAdapter.class)
@org.jpmml.model.annotations.Added((org.dmg.pmml.Version.PMML_4_1))
@JsonProperty("sumSquaredError")
private Number sumSquaredError;
@XmlAttribute(name = "sumSquaredRegression")
@XmlJavaTypeAdapter(NumberAdapter.class)
@org.jpmml.model.annotations.Added((org.dmg.pmml.Version.PMML_4_1))
@JsonProperty("sumSquaredRegression")
private Number sumSquaredRegression;
@XmlAttribute(name = "numOfRecords")
@XmlJavaTypeAdapter(NumberAdapter.class)
@org.jpmml.model.annotations.Added((org.dmg.pmml.Version.PMML_4_1))
@JsonProperty("numOfRecords")
private Number numOfRecords;
@XmlAttribute(name = "numOfRecordsWeighted")
@XmlJavaTypeAdapter(NumberAdapter.class)
@org.jpmml.model.annotations.Added((org.dmg.pmml.Version.PMML_4_1))
@JsonProperty("numOfRecordsWeighted")
private Number numOfRecordsWeighted;
@XmlAttribute(name = "numOfPredictors")
@XmlJavaTypeAdapter(NumberAdapter.class)
@org.jpmml.model.annotations.Added((org.dmg.pmml.Version.PMML_4_1))
@JsonProperty("numOfPredictors")
private Number numOfPredictors;
@XmlAttribute(name = "degreesOfFreedom")
@XmlJavaTypeAdapter(NumberAdapter.class)
@org.jpmml.model.annotations.Added((org.dmg.pmml.Version.PMML_4_1))
@JsonProperty("degreesOfFreedom")
private Number degreesOfFreedom;
@XmlAttribute(name = "fStatistic")
@XmlJavaTypeAdapter(NumberAdapter.class)
@org.jpmml.model.annotations.Added((org.dmg.pmml.Version.PMML_4_1))
@JsonProperty("fStatistic")
private Number fStatistic;
@XmlAttribute(name = "AIC")
@XmlJavaTypeAdapter(NumberAdapter.class)
@org.jpmml.model.annotations.Added((org.dmg.pmml.Version.PMML_4_1))
@JsonProperty("AIC")
private Number aic;
@XmlAttribute(name = "BIC")
@XmlJavaTypeAdapter(NumberAdapter.class)
@org.jpmml.model.annotations.Added((org.dmg.pmml.Version.PMML_4_1))
@JsonProperty("BIC")
private Number bic;
@XmlAttribute(name = "AICc")
@XmlJavaTypeAdapter(NumberAdapter.class)
@org.jpmml.model.annotations.Added((org.dmg.pmml.Version.PMML_4_1))
@JsonProperty("AICc")
private Number aiCc;
@XmlElement(name = "Extension", namespace = "http://www.dmg.org/PMML-4_3")
@JsonProperty("Extension")
private List extensions;
@XmlElement(name = "ConfusionMatrix", namespace = "http://www.dmg.org/PMML-4_3")
@JsonProperty("ConfusionMatrix")
private ConfusionMatrix confusionMatrix;
@XmlElement(name = "LiftData", namespace = "http://www.dmg.org/PMML-4_3")
@JsonProperty("LiftData")
private List liftDatas;
@XmlElement(name = "ROC", namespace = "http://www.dmg.org/PMML-4_3")
@JsonProperty("ROC")
private ROC roc;
private final static long serialVersionUID = 67305489L;
public PredictiveModelQuality() {
}
@ValueConstructor
public PredictiveModelQuality(
@org.jpmml.model.annotations.Property("targetField")
FieldName targetField) {
this.targetField = targetField;
}
public FieldName getTargetField() {
return targetField;
}
public PredictiveModelQuality setTargetField(
@org.jpmml.model.annotations.Property("targetField")
FieldName targetField) {
this.targetField = targetField;
return this;
}
public String getDataName() {
return dataName;
}
public PredictiveModelQuality setDataName(
@org.jpmml.model.annotations.Property("dataName")
String dataName) {
this.dataName = dataName;
return this;
}
public PredictiveModelQuality.DataUsage getDataUsage() {
if (dataUsage == null) {
return PredictiveModelQuality.DataUsage.TRAINING;
} else {
return dataUsage;
}
}
public PredictiveModelQuality setDataUsage(
@org.jpmml.model.annotations.Property("dataUsage")
PredictiveModelQuality.DataUsage dataUsage) {
this.dataUsage = dataUsage;
return this;
}
public Number getMeanError() {
return meanError;
}
public PredictiveModelQuality setMeanError(
@org.jpmml.model.annotations.Property("meanError")
Number meanError) {
this.meanError = meanError;
return this;
}
public Number getMeanAbsoluteError() {
return meanAbsoluteError;
}
public PredictiveModelQuality setMeanAbsoluteError(
@org.jpmml.model.annotations.Property("meanAbsoluteError")
Number meanAbsoluteError) {
this.meanAbsoluteError = meanAbsoluteError;
return this;
}
public Number getMeanSquaredError() {
return meanSquaredError;
}
public PredictiveModelQuality setMeanSquaredError(
@org.jpmml.model.annotations.Property("meanSquaredError")
Number meanSquaredError) {
this.meanSquaredError = meanSquaredError;
return this;
}
public Number getRootMeanSquaredError() {
return rootMeanSquaredError;
}
public PredictiveModelQuality setRootMeanSquaredError(
@org.jpmml.model.annotations.Property("rootMeanSquaredError")
Number rootMeanSquaredError) {
this.rootMeanSquaredError = rootMeanSquaredError;
return this;
}
public Number getRSquared() {
return rSquared;
}
public PredictiveModelQuality setRSquared(
@org.jpmml.model.annotations.Property("rSquared")
Number rSquared) {
this.rSquared = rSquared;
return this;
}
public Number getAdjRSquared() {
return adjRSquared;
}
public PredictiveModelQuality setAdjRSquared(
@org.jpmml.model.annotations.Property("adjRSquared")
Number adjRSquared) {
this.adjRSquared = adjRSquared;
return this;
}
public Number getSumSquaredError() {
return sumSquaredError;
}
public PredictiveModelQuality setSumSquaredError(
@org.jpmml.model.annotations.Property("sumSquaredError")
Number sumSquaredError) {
this.sumSquaredError = sumSquaredError;
return this;
}
public Number getSumSquaredRegression() {
return sumSquaredRegression;
}
public PredictiveModelQuality setSumSquaredRegression(
@org.jpmml.model.annotations.Property("sumSquaredRegression")
Number sumSquaredRegression) {
this.sumSquaredRegression = sumSquaredRegression;
return this;
}
public Number getNumOfRecords() {
return numOfRecords;
}
public PredictiveModelQuality setNumOfRecords(
@org.jpmml.model.annotations.Property("numOfRecords")
Number numOfRecords) {
this.numOfRecords = numOfRecords;
return this;
}
public Number getNumOfRecordsWeighted() {
return numOfRecordsWeighted;
}
public PredictiveModelQuality setNumOfRecordsWeighted(
@org.jpmml.model.annotations.Property("numOfRecordsWeighted")
Number numOfRecordsWeighted) {
this.numOfRecordsWeighted = numOfRecordsWeighted;
return this;
}
public Number getNumOfPredictors() {
return numOfPredictors;
}
public PredictiveModelQuality setNumOfPredictors(
@org.jpmml.model.annotations.Property("numOfPredictors")
Number numOfPredictors) {
this.numOfPredictors = numOfPredictors;
return this;
}
public Number getDegreesOfFreedom() {
return degreesOfFreedom;
}
public PredictiveModelQuality setDegreesOfFreedom(
@org.jpmml.model.annotations.Property("degreesOfFreedom")
Number degreesOfFreedom) {
this.degreesOfFreedom = degreesOfFreedom;
return this;
}
public Number getFStatistic() {
return fStatistic;
}
public PredictiveModelQuality setFStatistic(
@org.jpmml.model.annotations.Property("fStatistic")
Number fStatistic) {
this.fStatistic = fStatistic;
return this;
}
public Number getAIC() {
return aic;
}
public PredictiveModelQuality setAIC(
@org.jpmml.model.annotations.Property("aic")
Number aic) {
this.aic = aic;
return this;
}
public Number getBIC() {
return bic;
}
public PredictiveModelQuality setBIC(
@org.jpmml.model.annotations.Property("bic")
Number bic) {
this.bic = bic;
return this;
}
public Number getAICc() {
return aiCc;
}
public PredictiveModelQuality setAICc(
@org.jpmml.model.annotations.Property("aiCc")
Number aiCc) {
this.aiCc = aiCc;
return this;
}
@Override
public boolean hasExtensions() {
return ((this.extensions!= null)&&(this.extensions.size()> 0));
}
@Override
public List getExtensions() {
if (extensions == null) {
extensions = new ArrayList();
}
return this.extensions;
}
@Override
public PredictiveModelQuality addExtensions(Extension... extensions) {
getExtensions().addAll(Arrays.asList(extensions));
return this;
}
public ConfusionMatrix getConfusionMatrix() {
return confusionMatrix;
}
public PredictiveModelQuality setConfusionMatrix(
@org.jpmml.model.annotations.Property("confusionMatrix")
ConfusionMatrix confusionMatrix) {
this.confusionMatrix = confusionMatrix;
return this;
}
public boolean hasLiftDatas() {
return ((this.liftDatas!= null)&&(this.liftDatas.size()> 0));
}
public List getLiftDatas() {
if (liftDatas == null) {
liftDatas = new ArrayList();
}
return this.liftDatas;
}
public PredictiveModelQuality addLiftDatas(LiftData... liftDatas) {
getLiftDatas().addAll(Arrays.asList(liftDatas));
return this;
}
public ROC getROC() {
return roc;
}
public PredictiveModelQuality setROC(
@org.jpmml.model.annotations.Property("roc")
ROC roc) {
this.roc = roc;
return this;
}
@Override
public VisitorAction accept(Visitor visitor) {
VisitorAction status = visitor.visit(this);
if (status == VisitorAction.CONTINUE) {
visitor.pushParent(this);
if ((status == VisitorAction.CONTINUE)&&hasExtensions()) {
status = org.dmg.pmml.PMMLObject.traverse(visitor, getExtensions());
}
if (status == VisitorAction.CONTINUE) {
status = org.dmg.pmml.PMMLObject.traverse(visitor, getConfusionMatrix());
}
if ((status == VisitorAction.CONTINUE)&&hasLiftDatas()) {
status = org.dmg.pmml.PMMLObject.traverse(visitor, getLiftDatas());
}
if (status == VisitorAction.CONTINUE) {
status = org.dmg.pmml.PMMLObject.traverse(visitor, getROC());
}
visitor.popParent();
}
if (status == VisitorAction.TERMINATE) {
return VisitorAction.TERMINATE;
}
return VisitorAction.CONTINUE;
}
@XmlType(name = "")
@XmlEnum
public enum DataUsage
implements StringValue
{
@XmlEnumValue("training")
@JsonProperty("training")
TRAINING("training"),
@XmlEnumValue("test")
@JsonProperty("test")
TEST("test"),
@XmlEnumValue("validation")
@JsonProperty("validation")
VALIDATION("validation");
private final String value;
DataUsage(String v) {
value = v;
}
@Override
public String value() {
return value;
}
public static PredictiveModelQuality.DataUsage fromValue(String v) {
for (PredictiveModelQuality.DataUsage c: PredictiveModelQuality.DataUsage.values()) {
if (c.value.equals(v)) {
return c;
}
}
throw new IllegalArgumentException(v);
}
@Override
public String toString() {
return value();
}
}
}