Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
org.dmg.pmml.gaussian_process.GaussianProcessModel Maven / Gradle / Ivy
package org.dmg.pmml.gaussian_process;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import javax.xml.bind.annotation.XmlAccessType;
import javax.xml.bind.annotation.XmlAccessorType;
import javax.xml.bind.annotation.XmlAttribute;
import javax.xml.bind.annotation.XmlElement;
import javax.xml.bind.annotation.XmlRootElement;
import javax.xml.bind.annotation.XmlType;
import com.fasterxml.jackson.annotation.JsonAutoDetect;
import com.fasterxml.jackson.annotation.JsonInclude;
import com.fasterxml.jackson.annotation.JsonProperty;
import com.fasterxml.jackson.annotation.JsonPropertyOrder;
import org.dmg.pmml.HasExtensions;
import org.dmg.pmml.LocalTransformations;
import org.dmg.pmml.MathContext;
import org.dmg.pmml.MiningFunction;
import org.dmg.pmml.MiningSchema;
import org.dmg.pmml.Model;
import org.dmg.pmml.ModelExplanation;
import org.dmg.pmml.ModelStats;
import org.dmg.pmml.ModelVerification;
import org.dmg.pmml.Output;
import org.dmg.pmml.PMMLObject;
import org.dmg.pmml.Targets;
import org.dmg.pmml.Visitor;
import org.dmg.pmml.VisitorAction;
import org.dmg.pmml.nearest_neighbor.TrainingInstances;
import org.jpmml.model.annotations.Added;
import org.jpmml.model.annotations.ValueConstructor;
@XmlAccessorType(XmlAccessType.FIELD)
@XmlType(name = "", propOrder = {
"extensions",
"miningSchema",
"output",
"modelStats",
"modelExplanation",
"targets",
"localTransformations",
"radialBasisKernel",
"ardSquaredExponentialKernel",
"absoluteExponentialKernel",
"generalizedExponentialKernel",
"trainingInstances",
"modelVerification"
})
@XmlRootElement(name = "GaussianProcessModel", namespace = "http://www.dmg.org/PMML-4_3")
@Added((org.dmg.pmml.Version.PMML_4_3))
@JsonAutoDetect(fieldVisibility = JsonAutoDetect.Visibility.ANY, getterVisibility = JsonAutoDetect.Visibility.NONE, isGetterVisibility = JsonAutoDetect.Visibility.NONE, setterVisibility = JsonAutoDetect.Visibility.NONE)
@JsonInclude(JsonInclude.Include.NON_EMPTY)
@JsonPropertyOrder({
"modelName",
"miningFunction",
"algorithmName",
"optimizer",
"scorable",
"mathContext",
"extensions",
"miningSchema",
"output",
"modelStats",
"modelExplanation",
"targets",
"localTransformations",
"radialBasisKernel",
"ardSquaredExponentialKernel",
"absoluteExponentialKernel",
"generalizedExponentialKernel",
"trainingInstances",
"modelVerification"
})
public class GaussianProcessModel
extends Model
implements HasExtensions
{
@XmlAttribute(name = "modelName")
@JsonProperty("modelName")
private String modelName;
@XmlAttribute(name = "functionName", required = true)
@JsonProperty("functionName")
private MiningFunction miningFunction;
@XmlAttribute(name = "algorithmName")
@JsonProperty("algorithmName")
private String algorithmName;
@XmlAttribute(name = "optimizer")
@JsonProperty("optimizer")
private String optimizer;
@XmlAttribute(name = "isScorable")
@JsonProperty("isScorable")
private Boolean scorable;
@XmlAttribute(name = "x-mathContext")
@org.jpmml.model.annotations.Extension
@JsonProperty("x-mathContext")
private MathContext mathContext;
@XmlElement(name = "Extension", namespace = "http://www.dmg.org/PMML-4_3")
@JsonProperty("Extension")
private List extensions;
@XmlElement(name = "MiningSchema", namespace = "http://www.dmg.org/PMML-4_3", required = true)
@JsonProperty("MiningSchema")
private MiningSchema miningSchema;
@XmlElement(name = "Output", namespace = "http://www.dmg.org/PMML-4_3")
@JsonProperty("Output")
private Output output;
@XmlElement(name = "ModelStats", namespace = "http://www.dmg.org/PMML-4_3")
@JsonProperty("ModelStats")
private ModelStats modelStats;
@XmlElement(name = "ModelExplanation", namespace = "http://www.dmg.org/PMML-4_3")
@JsonProperty("ModelExplanation")
private ModelExplanation modelExplanation;
@XmlElement(name = "Targets", namespace = "http://www.dmg.org/PMML-4_3")
@JsonProperty("Targets")
private Targets targets;
@XmlElement(name = "LocalTransformations", namespace = "http://www.dmg.org/PMML-4_3")
@JsonProperty("LocalTransformations")
private LocalTransformations localTransformations;
@XmlElement(name = "RadialBasisKernel", namespace = "http://www.dmg.org/PMML-4_3")
@JsonProperty("RadialBasisKernel")
private RadialBasisKernel radialBasisKernel;
@XmlElement(name = "ARDSquaredExponentialKernel", namespace = "http://www.dmg.org/PMML-4_3")
@JsonProperty("ARDSquaredExponentialKernel")
private ARDSquaredExponentialKernel ardSquaredExponentialKernel;
@XmlElement(name = "AbsoluteExponentialKernel", namespace = "http://www.dmg.org/PMML-4_3")
@JsonProperty("AbsoluteExponentialKernel")
private AbsoluteExponentialKernel absoluteExponentialKernel;
@XmlElement(name = "GeneralizedExponentialKernel", namespace = "http://www.dmg.org/PMML-4_3")
@JsonProperty("GeneralizedExponentialKernel")
private GeneralizedExponentialKernel generalizedExponentialKernel;
@XmlElement(name = "TrainingInstances", namespace = "http://www.dmg.org/PMML-4_3", required = true)
@JsonProperty("TrainingInstances")
private TrainingInstances trainingInstances;
@XmlElement(name = "ModelVerification", namespace = "http://www.dmg.org/PMML-4_3")
@JsonProperty("ModelVerification")
private ModelVerification modelVerification;
private final static Boolean DEFAULT_SCORABLE = true;
private final static long serialVersionUID = 67305489L;
public GaussianProcessModel() {
}
@ValueConstructor
public GaussianProcessModel(
@org.jpmml.model.annotations.Property("miningFunction")
MiningFunction miningFunction,
@org.jpmml.model.annotations.Property("miningSchema")
MiningSchema miningSchema,
@org.jpmml.model.annotations.Property("radialBasisKernel")
RadialBasisKernel radialBasisKernel,
@org.jpmml.model.annotations.Property("ardSquaredExponentialKernel")
ARDSquaredExponentialKernel ardSquaredExponentialKernel,
@org.jpmml.model.annotations.Property("absoluteExponentialKernel")
AbsoluteExponentialKernel absoluteExponentialKernel,
@org.jpmml.model.annotations.Property("generalizedExponentialKernel")
GeneralizedExponentialKernel generalizedExponentialKernel,
@org.jpmml.model.annotations.Property("trainingInstances")
TrainingInstances trainingInstances) {
this.miningFunction = miningFunction;
this.miningSchema = miningSchema;
this.radialBasisKernel = radialBasisKernel;
this.ardSquaredExponentialKernel = ardSquaredExponentialKernel;
this.absoluteExponentialKernel = absoluteExponentialKernel;
this.generalizedExponentialKernel = generalizedExponentialKernel;
this.trainingInstances = trainingInstances;
}
public String getModelName() {
return modelName;
}
public GaussianProcessModel setModelName(
@org.jpmml.model.annotations.Property("modelName")
String modelName) {
this.modelName = modelName;
return this;
}
public MiningFunction getMiningFunction() {
return miningFunction;
}
public GaussianProcessModel setMiningFunction(
@org.jpmml.model.annotations.Property("miningFunction")
MiningFunction miningFunction) {
this.miningFunction = miningFunction;
return this;
}
public String getAlgorithmName() {
return algorithmName;
}
public GaussianProcessModel setAlgorithmName(
@org.jpmml.model.annotations.Property("algorithmName")
String algorithmName) {
this.algorithmName = algorithmName;
return this;
}
public String getOptimizer() {
return optimizer;
}
public GaussianProcessModel setOptimizer(
@org.jpmml.model.annotations.Property("optimizer")
String optimizer) {
this.optimizer = optimizer;
return this;
}
public boolean isScorable() {
if (scorable == null) {
return DEFAULT_SCORABLE;
} else {
return scorable;
}
}
public GaussianProcessModel setScorable(
@org.jpmml.model.annotations.Property("scorable")
Boolean scorable) {
this.scorable = scorable;
return this;
}
public MathContext getMathContext() {
if (mathContext == null) {
return MathContext.DOUBLE;
} else {
return mathContext;
}
}
public GaussianProcessModel setMathContext(
@org.jpmml.model.annotations.Property("mathContext")
MathContext mathContext) {
this.mathContext = mathContext;
return this;
}
@Override
public boolean hasExtensions() {
return ((this.extensions!= null)&&(this.extensions.size()> 0));
}
@Override
public List getExtensions() {
if (extensions == null) {
extensions = new ArrayList();
}
return this.extensions;
}
@Override
public GaussianProcessModel addExtensions(org.dmg.pmml.Extension... extensions) {
getExtensions().addAll(Arrays.asList(extensions));
return this;
}
public MiningSchema getMiningSchema() {
return miningSchema;
}
public GaussianProcessModel setMiningSchema(
@org.jpmml.model.annotations.Property("miningSchema")
MiningSchema miningSchema) {
this.miningSchema = miningSchema;
return this;
}
public Output getOutput() {
return output;
}
public GaussianProcessModel setOutput(
@org.jpmml.model.annotations.Property("output")
Output output) {
this.output = output;
return this;
}
public ModelStats getModelStats() {
return modelStats;
}
public GaussianProcessModel setModelStats(
@org.jpmml.model.annotations.Property("modelStats")
ModelStats modelStats) {
this.modelStats = modelStats;
return this;
}
public ModelExplanation getModelExplanation() {
return modelExplanation;
}
public GaussianProcessModel setModelExplanation(
@org.jpmml.model.annotations.Property("modelExplanation")
ModelExplanation modelExplanation) {
this.modelExplanation = modelExplanation;
return this;
}
public Targets getTargets() {
return targets;
}
public GaussianProcessModel setTargets(
@org.jpmml.model.annotations.Property("targets")
Targets targets) {
this.targets = targets;
return this;
}
public LocalTransformations getLocalTransformations() {
return localTransformations;
}
public GaussianProcessModel setLocalTransformations(
@org.jpmml.model.annotations.Property("localTransformations")
LocalTransformations localTransformations) {
this.localTransformations = localTransformations;
return this;
}
public RadialBasisKernel getRadialBasisKernel() {
return radialBasisKernel;
}
public GaussianProcessModel setRadialBasisKernel(
@org.jpmml.model.annotations.Property("radialBasisKernel")
RadialBasisKernel radialBasisKernel) {
this.radialBasisKernel = radialBasisKernel;
return this;
}
public ARDSquaredExponentialKernel getARDSquaredExponentialKernel() {
return ardSquaredExponentialKernel;
}
public GaussianProcessModel setARDSquaredExponentialKernel(
@org.jpmml.model.annotations.Property("ardSquaredExponentialKernel")
ARDSquaredExponentialKernel ardSquaredExponentialKernel) {
this.ardSquaredExponentialKernel = ardSquaredExponentialKernel;
return this;
}
public AbsoluteExponentialKernel getAbsoluteExponentialKernel() {
return absoluteExponentialKernel;
}
public GaussianProcessModel setAbsoluteExponentialKernel(
@org.jpmml.model.annotations.Property("absoluteExponentialKernel")
AbsoluteExponentialKernel absoluteExponentialKernel) {
this.absoluteExponentialKernel = absoluteExponentialKernel;
return this;
}
public GeneralizedExponentialKernel getGeneralizedExponentialKernel() {
return generalizedExponentialKernel;
}
public GaussianProcessModel setGeneralizedExponentialKernel(
@org.jpmml.model.annotations.Property("generalizedExponentialKernel")
GeneralizedExponentialKernel generalizedExponentialKernel) {
this.generalizedExponentialKernel = generalizedExponentialKernel;
return this;
}
public TrainingInstances getTrainingInstances() {
return trainingInstances;
}
public GaussianProcessModel setTrainingInstances(
@org.jpmml.model.annotations.Property("trainingInstances")
TrainingInstances trainingInstances) {
this.trainingInstances = trainingInstances;
return this;
}
public ModelVerification getModelVerification() {
return modelVerification;
}
public GaussianProcessModel setModelVerification(
@org.jpmml.model.annotations.Property("modelVerification")
ModelVerification modelVerification) {
this.modelVerification = modelVerification;
return this;
}
@Override
public VisitorAction accept(Visitor visitor) {
VisitorAction status = visitor.visit(this);
if (status == VisitorAction.CONTINUE) {
visitor.pushParent(this);
if ((status == VisitorAction.CONTINUE)&&hasExtensions()) {
status = PMMLObject.traverse(visitor, getExtensions());
}
if (status == VisitorAction.CONTINUE) {
status = PMMLObject.traverse(visitor, getMiningSchema(), getOutput(), getModelStats(), getModelExplanation(), getTargets(), getLocalTransformations(), getRadialBasisKernel(), getARDSquaredExponentialKernel(), getAbsoluteExponentialKernel(), getGeneralizedExponentialKernel(), getTrainingInstances(), getModelVerification());
}
visitor.popParent();
}
if (status == VisitorAction.TERMINATE) {
return VisitorAction.TERMINATE;
}
return VisitorAction.CONTINUE;
}
}