Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
org.dmg.pmml.time_series.TimeSeriesModel Maven / Gradle / Ivy
package org.dmg.pmml.time_series;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import javax.xml.bind.annotation.XmlAccessType;
import javax.xml.bind.annotation.XmlAccessorType;
import javax.xml.bind.annotation.XmlAttribute;
import javax.xml.bind.annotation.XmlElement;
import javax.xml.bind.annotation.XmlEnum;
import javax.xml.bind.annotation.XmlEnumValue;
import javax.xml.bind.annotation.XmlRootElement;
import javax.xml.bind.annotation.XmlType;
import com.fasterxml.jackson.annotation.JsonAutoDetect;
import com.fasterxml.jackson.annotation.JsonInclude;
import com.fasterxml.jackson.annotation.JsonProperty;
import com.fasterxml.jackson.annotation.JsonPropertyOrder;
import org.dmg.pmml.HasExtensions;
import org.dmg.pmml.LocalTransformations;
import org.dmg.pmml.MathContext;
import org.dmg.pmml.MiningFunction;
import org.dmg.pmml.MiningSchema;
import org.dmg.pmml.Model;
import org.dmg.pmml.ModelExplanation;
import org.dmg.pmml.ModelStats;
import org.dmg.pmml.ModelVerification;
import org.dmg.pmml.Output;
import org.dmg.pmml.PMMLObject;
import org.dmg.pmml.StringValue;
import org.dmg.pmml.Visitor;
import org.dmg.pmml.VisitorAction;
import org.jpmml.model.annotations.ValueConstructor;
@XmlAccessorType(XmlAccessType.FIELD)
@XmlType(name = "", propOrder = {
"extensions",
"miningSchema",
"output",
"modelStats",
"modelExplanation",
"localTransformations",
"timeSeries",
"spectralAnalysis",
"arima",
"exponentialSmoothing",
"seasonalTrendDecomposition",
"modelVerification"
})
@XmlRootElement(name = "TimeSeriesModel", namespace = "http://www.dmg.org/PMML-4_3")
@org.jpmml.model.annotations.Added((org.dmg.pmml.Version.PMML_4_0))
@JsonAutoDetect(fieldVisibility = JsonAutoDetect.Visibility.ANY, getterVisibility = JsonAutoDetect.Visibility.NONE, isGetterVisibility = JsonAutoDetect.Visibility.NONE, setterVisibility = JsonAutoDetect.Visibility.NONE)
@JsonInclude(JsonInclude.Include.NON_EMPTY)
@JsonPropertyOrder({
"modelName",
"miningFunction",
"algorithmName",
"bestFit",
"scorable",
"mathContext",
"extensions",
"miningSchema",
"output",
"modelStats",
"modelExplanation",
"localTransformations",
"timeSeries",
"spectralAnalysis",
"arima",
"exponentialSmoothing",
"seasonalTrendDecomposition",
"modelVerification"
})
public class TimeSeriesModel
extends Model
implements HasExtensions
{
@XmlAttribute(name = "modelName")
@JsonProperty("modelName")
private String modelName;
@XmlAttribute(name = "functionName", required = true)
@JsonProperty("functionName")
private MiningFunction miningFunction;
@XmlAttribute(name = "algorithmName")
@JsonProperty("algorithmName")
private String algorithmName;
@XmlAttribute(name = "bestFit", required = true)
@JsonProperty("bestFit")
private TimeSeriesModel.Algorithm bestFit;
@XmlAttribute(name = "isScorable")
@org.jpmml.model.annotations.Added((org.dmg.pmml.Version.PMML_4_1))
@JsonProperty("isScorable")
private Boolean scorable;
@XmlAttribute(name = "x-mathContext")
@org.jpmml.model.annotations.Extension
@JsonProperty("x-mathContext")
private MathContext mathContext;
@XmlElement(name = "Extension", namespace = "http://www.dmg.org/PMML-4_3")
@JsonProperty("Extension")
private List extensions;
@XmlElement(name = "MiningSchema", namespace = "http://www.dmg.org/PMML-4_3", required = true)
@JsonProperty("MiningSchema")
private MiningSchema miningSchema;
@XmlElement(name = "Output", namespace = "http://www.dmg.org/PMML-4_3")
@JsonProperty("Output")
private Output output;
@XmlElement(name = "ModelStats", namespace = "http://www.dmg.org/PMML-4_3")
@JsonProperty("ModelStats")
private ModelStats modelStats;
@XmlElement(name = "ModelExplanation", namespace = "http://www.dmg.org/PMML-4_3")
@org.jpmml.model.annotations.Added((org.dmg.pmml.Version.PMML_4_1))
@JsonProperty("ModelExplanation")
private ModelExplanation modelExplanation;
@XmlElement(name = "LocalTransformations", namespace = "http://www.dmg.org/PMML-4_3")
@JsonProperty("LocalTransformations")
private LocalTransformations localTransformations;
@XmlElement(name = "TimeSeries", namespace = "http://www.dmg.org/PMML-4_3")
@JsonProperty("TimeSeries")
private List timeSeries;
@XmlElement(name = "SpectralAnalysis", namespace = "http://www.dmg.org/PMML-4_3")
@JsonProperty("SpectralAnalysis")
private SpectralAnalysis spectralAnalysis;
@XmlElement(name = "ARIMA", namespace = "http://www.dmg.org/PMML-4_3")
@JsonProperty("ARIMA")
private org.dmg.pmml.time_series.ARIMA arima;
@XmlElement(name = "ExponentialSmoothing", namespace = "http://www.dmg.org/PMML-4_3")
@JsonProperty("ExponentialSmoothing")
private ExponentialSmoothing exponentialSmoothing;
@XmlElement(name = "SeasonalTrendDecomposition", namespace = "http://www.dmg.org/PMML-4_3")
@JsonProperty("SeasonalTrendDecomposition")
private SeasonalTrendDecomposition seasonalTrendDecomposition;
@XmlElement(name = "ModelVerification", namespace = "http://www.dmg.org/PMML-4_3")
@JsonProperty("ModelVerification")
private ModelVerification modelVerification;
private final static Boolean DEFAULT_SCORABLE = true;
private final static long serialVersionUID = 67305489L;
public TimeSeriesModel() {
}
@ValueConstructor
public TimeSeriesModel(
@org.jpmml.model.annotations.Property("miningFunction")
MiningFunction miningFunction,
@org.jpmml.model.annotations.Property("bestFit")
TimeSeriesModel.Algorithm bestFit,
@org.jpmml.model.annotations.Property("miningSchema")
MiningSchema miningSchema) {
this.miningFunction = miningFunction;
this.bestFit = bestFit;
this.miningSchema = miningSchema;
}
public String getModelName() {
return modelName;
}
public TimeSeriesModel setModelName(
@org.jpmml.model.annotations.Property("modelName")
String modelName) {
this.modelName = modelName;
return this;
}
public MiningFunction getMiningFunction() {
return miningFunction;
}
public TimeSeriesModel setMiningFunction(
@org.jpmml.model.annotations.Property("miningFunction")
MiningFunction miningFunction) {
this.miningFunction = miningFunction;
return this;
}
public String getAlgorithmName() {
return algorithmName;
}
public TimeSeriesModel setAlgorithmName(
@org.jpmml.model.annotations.Property("algorithmName")
String algorithmName) {
this.algorithmName = algorithmName;
return this;
}
public TimeSeriesModel.Algorithm getBestFit() {
return bestFit;
}
public TimeSeriesModel setBestFit(
@org.jpmml.model.annotations.Property("bestFit")
TimeSeriesModel.Algorithm bestFit) {
this.bestFit = bestFit;
return this;
}
public boolean isScorable() {
if (scorable == null) {
return DEFAULT_SCORABLE;
} else {
return scorable;
}
}
public TimeSeriesModel setScorable(
@org.jpmml.model.annotations.Property("scorable")
Boolean scorable) {
this.scorable = scorable;
return this;
}
public MathContext getMathContext() {
if (mathContext == null) {
return MathContext.DOUBLE;
} else {
return mathContext;
}
}
public TimeSeriesModel setMathContext(
@org.jpmml.model.annotations.Property("mathContext")
MathContext mathContext) {
this.mathContext = mathContext;
return this;
}
@Override
public boolean hasExtensions() {
return ((this.extensions!= null)&&(this.extensions.size()> 0));
}
@Override
public List getExtensions() {
if (extensions == null) {
extensions = new ArrayList();
}
return this.extensions;
}
@Override
public TimeSeriesModel addExtensions(org.dmg.pmml.Extension... extensions) {
getExtensions().addAll(Arrays.asList(extensions));
return this;
}
public MiningSchema getMiningSchema() {
return miningSchema;
}
public TimeSeriesModel setMiningSchema(
@org.jpmml.model.annotations.Property("miningSchema")
MiningSchema miningSchema) {
this.miningSchema = miningSchema;
return this;
}
public Output getOutput() {
return output;
}
public TimeSeriesModel setOutput(
@org.jpmml.model.annotations.Property("output")
Output output) {
this.output = output;
return this;
}
public ModelStats getModelStats() {
return modelStats;
}
public TimeSeriesModel setModelStats(
@org.jpmml.model.annotations.Property("modelStats")
ModelStats modelStats) {
this.modelStats = modelStats;
return this;
}
public ModelExplanation getModelExplanation() {
return modelExplanation;
}
public TimeSeriesModel setModelExplanation(
@org.jpmml.model.annotations.Property("modelExplanation")
ModelExplanation modelExplanation) {
this.modelExplanation = modelExplanation;
return this;
}
public LocalTransformations getLocalTransformations() {
return localTransformations;
}
public TimeSeriesModel setLocalTransformations(
@org.jpmml.model.annotations.Property("localTransformations")
LocalTransformations localTransformations) {
this.localTransformations = localTransformations;
return this;
}
public boolean hasTimeSeries() {
return ((this.timeSeries!= null)&&(this.timeSeries.size()> 0));
}
public List getTimeSeries() {
if (timeSeries == null) {
timeSeries = new ArrayList();
}
return this.timeSeries;
}
public TimeSeriesModel addTimeSeries(TimeSeries... timeSeries) {
getTimeSeries().addAll(Arrays.asList(timeSeries));
return this;
}
public SpectralAnalysis getSpectralAnalysis() {
return spectralAnalysis;
}
public TimeSeriesModel setSpectralAnalysis(
@org.jpmml.model.annotations.Property("spectralAnalysis")
SpectralAnalysis spectralAnalysis) {
this.spectralAnalysis = spectralAnalysis;
return this;
}
public org.dmg.pmml.time_series.ARIMA getARIMA() {
return arima;
}
public TimeSeriesModel setARIMA(
@org.jpmml.model.annotations.Property("arima")
org.dmg.pmml.time_series.ARIMA arima) {
this.arima = arima;
return this;
}
public ExponentialSmoothing getExponentialSmoothing() {
return exponentialSmoothing;
}
public TimeSeriesModel setExponentialSmoothing(
@org.jpmml.model.annotations.Property("exponentialSmoothing")
ExponentialSmoothing exponentialSmoothing) {
this.exponentialSmoothing = exponentialSmoothing;
return this;
}
public SeasonalTrendDecomposition getSeasonalTrendDecomposition() {
return seasonalTrendDecomposition;
}
public TimeSeriesModel setSeasonalTrendDecomposition(
@org.jpmml.model.annotations.Property("seasonalTrendDecomposition")
SeasonalTrendDecomposition seasonalTrendDecomposition) {
this.seasonalTrendDecomposition = seasonalTrendDecomposition;
return this;
}
public ModelVerification getModelVerification() {
return modelVerification;
}
public TimeSeriesModel setModelVerification(
@org.jpmml.model.annotations.Property("modelVerification")
ModelVerification modelVerification) {
this.modelVerification = modelVerification;
return this;
}
@Override
public VisitorAction accept(Visitor visitor) {
VisitorAction status = visitor.visit(this);
if (status == VisitorAction.CONTINUE) {
visitor.pushParent(this);
if ((status == VisitorAction.CONTINUE)&&hasExtensions()) {
status = PMMLObject.traverse(visitor, getExtensions());
}
if (status == VisitorAction.CONTINUE) {
status = PMMLObject.traverse(visitor, getMiningSchema(), getOutput(), getModelStats(), getModelExplanation(), getLocalTransformations());
}
if ((status == VisitorAction.CONTINUE)&&hasTimeSeries()) {
status = PMMLObject.traverse(visitor, getTimeSeries());
}
if (status == VisitorAction.CONTINUE) {
status = PMMLObject.traverse(visitor, getSpectralAnalysis(), getARIMA(), getExponentialSmoothing(), getSeasonalTrendDecomposition(), getModelVerification());
}
visitor.popParent();
}
if (status == VisitorAction.TERMINATE) {
return VisitorAction.TERMINATE;
}
return VisitorAction.CONTINUE;
}
@XmlType(name = "")
@XmlEnum
public enum Algorithm
implements StringValue
{
@JsonProperty("ARIMA")
ARIMA("ARIMA"),
@XmlEnumValue("ExponentialSmoothing")
@JsonProperty("ExponentialSmoothing")
EXPONENTIAL_SMOOTHING("ExponentialSmoothing"),
@XmlEnumValue("SeasonalTrendDecomposition")
@JsonProperty("SeasonalTrendDecomposition")
SEASONAL_TREND_DECOMPOSITION("SeasonalTrendDecomposition"),
@XmlEnumValue("SpectralAnalysis")
@JsonProperty("SpectralAnalysis")
SPECTRAL_ANALYSIS("SpectralAnalysis");
private final String value;
Algorithm(String v) {
value = v;
}
@Override
public String value() {
return value;
}
public static TimeSeriesModel.Algorithm fromValue(String v) {
for (TimeSeriesModel.Algorithm c: TimeSeriesModel.Algorithm.values()) {
if (c.value.equals(v)) {
return c;
}
}
throw new IllegalArgumentException(v);
}
@Override
public String toString() {
return value();
}
}
}