All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.dmg.pmml.NeuralNetwork Maven / Gradle / Ivy

There is a newer version: 1.6.11
Show newest version

package org.dmg.pmml;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import javax.xml.bind.annotation.XmlAccessType;
import javax.xml.bind.annotation.XmlAccessorType;
import javax.xml.bind.annotation.XmlAttribute;
import javax.xml.bind.annotation.XmlElement;
import javax.xml.bind.annotation.XmlRootElement;
import javax.xml.bind.annotation.XmlType;
import org.jpmml.schema.Added;
import org.jpmml.schema.Version;


/**
 * 

Java class for anonymous complex type. * *

The following schema fragment specifies the expected content contained within this class. * *

 * <complexType>
 *   <complexContent>
 *     <restriction base="{http://www.w3.org/2001/XMLSchema}anyType">
 *       <sequence>
 *         <element ref="{http://www.dmg.org/PMML-4_2}Extension" maxOccurs="unbounded" minOccurs="0"/>
 *         <element ref="{http://www.dmg.org/PMML-4_2}MiningSchema"/>
 *         <element ref="{http://www.dmg.org/PMML-4_2}Output" minOccurs="0"/>
 *         <element ref="{http://www.dmg.org/PMML-4_2}ModelStats" minOccurs="0"/>
 *         <element ref="{http://www.dmg.org/PMML-4_2}ModelExplanation" minOccurs="0"/>
 *         <element ref="{http://www.dmg.org/PMML-4_2}Targets" minOccurs="0"/>
 *         <element ref="{http://www.dmg.org/PMML-4_2}LocalTransformations" minOccurs="0"/>
 *         <element ref="{http://www.dmg.org/PMML-4_2}NeuralInputs"/>
 *         <element ref="{http://www.dmg.org/PMML-4_2}NeuralLayer" maxOccurs="unbounded"/>
 *         <element ref="{http://www.dmg.org/PMML-4_2}NeuralOutputs" minOccurs="0"/>
 *         <element ref="{http://www.dmg.org/PMML-4_2}ModelVerification" minOccurs="0"/>
 *       </sequence>
 *       <attribute name="modelName" type="{http://www.w3.org/2001/XMLSchema}string" />
 *       <attribute name="functionName" use="required" type="{http://www.dmg.org/PMML-4_2}MINING-FUNCTION" />
 *       <attribute name="algorithmName" type="{http://www.w3.org/2001/XMLSchema}string" />
 *       <attribute name="activationFunction" use="required" type="{http://www.dmg.org/PMML-4_2}ACTIVATION-FUNCTION" />
 *       <attribute name="normalizationMethod" type="{http://www.dmg.org/PMML-4_2}NN-NORMALIZATION-METHOD" default="none" />
 *       <attribute name="threshold" type="{http://www.dmg.org/PMML-4_2}REAL-NUMBER" default="0" />
 *       <attribute name="width" type="{http://www.dmg.org/PMML-4_2}REAL-NUMBER" />
 *       <attribute name="altitude" type="{http://www.dmg.org/PMML-4_2}REAL-NUMBER" default="1.0" />
 *       <attribute name="numberOfLayers" type="{http://www.dmg.org/PMML-4_2}INT-NUMBER" />
 *       <attribute name="isScorable" type="{http://www.w3.org/2001/XMLSchema}boolean" default="true" />
 *     </restriction>
 *   </complexContent>
 * </complexType>
 * 
* * */ @XmlAccessorType(XmlAccessType.FIELD) @XmlType(name = "", propOrder = { "extensions", "miningSchema", "output", "modelStats", "modelExplanation", "targets", "localTransformations", "neuralInputs", "neuralLayers", "neuralOutputs", "modelVerification" }) @XmlRootElement(name = "NeuralNetwork", namespace = "http://www.dmg.org/PMML-4_2") public class NeuralNetwork extends Model implements HasExtensions { @XmlAttribute(name = "modelName") private String modelName; @XmlAttribute(name = "functionName", required = true) private MiningFunctionType functionName; @XmlAttribute(name = "algorithmName") private String algorithmName; @XmlAttribute(name = "activationFunction", required = true) private ActivationFunctionType activationFunction; @XmlAttribute(name = "normalizationMethod") private NnNormalizationMethodType normalizationMethod; @XmlAttribute(name = "threshold") private Double threshold; @XmlAttribute(name = "width") private Double width; @XmlAttribute(name = "altitude") private Double altitude; @XmlAttribute(name = "numberOfLayers") private Integer numberOfLayers; @XmlAttribute(name = "isScorable") @Added(Version.PMML_4_1) private Boolean scorable; @XmlElement(name = "Extension", namespace = "http://www.dmg.org/PMML-4_2") private List extensions; @XmlElement(name = "MiningSchema", namespace = "http://www.dmg.org/PMML-4_2", required = true) private MiningSchema miningSchema; @XmlElement(name = "Output", namespace = "http://www.dmg.org/PMML-4_2") private Output output; @XmlElement(name = "ModelStats", namespace = "http://www.dmg.org/PMML-4_2") private ModelStats modelStats; @XmlElement(name = "ModelExplanation", namespace = "http://www.dmg.org/PMML-4_2") @Added(Version.PMML_4_0) private ModelExplanation modelExplanation; @XmlElement(name = "Targets", namespace = "http://www.dmg.org/PMML-4_2") private Targets targets; @XmlElement(name = "LocalTransformations", namespace = "http://www.dmg.org/PMML-4_2") private LocalTransformations localTransformations; @XmlElement(name = "NeuralInputs", namespace = "http://www.dmg.org/PMML-4_2", required = true) private NeuralInputs neuralInputs; @XmlElement(name = "NeuralLayer", namespace = "http://www.dmg.org/PMML-4_2", required = true) private List neuralLayers; @XmlElement(name = "NeuralOutputs", namespace = "http://www.dmg.org/PMML-4_2") private NeuralOutputs neuralOutputs; @XmlElement(name = "ModelVerification", namespace = "http://www.dmg.org/PMML-4_2") private ModelVerification modelVerification; private final static Double DEFAULT_THRESHOLD = 0.0D; private final static Double DEFAULT_ALTITUDE = 1.0D; private final static Boolean DEFAULT_SCORABLE = true; public NeuralNetwork() { super(); } public NeuralNetwork(final MiningFunctionType functionName, final ActivationFunctionType activationFunction, final MiningSchema miningSchema, final NeuralInputs neuralInputs, final List neuralLayers) { super(); this.functionName = functionName; this.activationFunction = activationFunction; this.miningSchema = miningSchema; this.neuralInputs = neuralInputs; this.neuralLayers = neuralLayers; } /** * Gets the value of the modelName property. * * @return * possible object is * {@link String } * */ public String getModelName() { return modelName; } /** * Sets the value of the modelName property. * * @param modelName * allowed object is * {@link String } * */ public NeuralNetwork setModelName(String modelName) { this.modelName = modelName; return this; } /** * Gets the value of the functionName property. * * @return * possible object is * {@link MiningFunctionType } * */ public MiningFunctionType getFunctionName() { return functionName; } /** * Sets the value of the functionName property. * * @param functionName * allowed object is * {@link MiningFunctionType } * */ public NeuralNetwork setFunctionName(MiningFunctionType functionName) { this.functionName = functionName; return this; } /** * Gets the value of the algorithmName property. * * @return * possible object is * {@link String } * */ public String getAlgorithmName() { return algorithmName; } /** * Sets the value of the algorithmName property. * * @param algorithmName * allowed object is * {@link String } * */ public NeuralNetwork setAlgorithmName(String algorithmName) { this.algorithmName = algorithmName; return this; } /** * Gets the value of the activationFunction property. * * @return * possible object is * {@link ActivationFunctionType } * */ public ActivationFunctionType getActivationFunction() { return activationFunction; } /** * Sets the value of the activationFunction property. * * @param activationFunction * allowed object is * {@link ActivationFunctionType } * */ public NeuralNetwork setActivationFunction(ActivationFunctionType activationFunction) { this.activationFunction = activationFunction; return this; } /** * Gets the value of the normalizationMethod property. * * @return * possible object is * {@link NnNormalizationMethodType } * */ public NnNormalizationMethodType getNormalizationMethod() { if (normalizationMethod == null) { return NnNormalizationMethodType.NONE; } else { return normalizationMethod; } } /** * Sets the value of the normalizationMethod property. * * @param normalizationMethod * allowed object is * {@link NnNormalizationMethodType } * */ public NeuralNetwork setNormalizationMethod(NnNormalizationMethodType normalizationMethod) { this.normalizationMethod = normalizationMethod; return this; } /** * Gets the value of the threshold property. * * @return * possible object is * {@link Double } * */ public Double getThreshold() { if (threshold == null) { return DEFAULT_THRESHOLD; } else { return threshold; } } /** * Sets the value of the threshold property. * * @param threshold * allowed object is * {@link Double } * */ public NeuralNetwork setThreshold(Double threshold) { this.threshold = threshold; return this; } /** * Gets the value of the width property. * * @return * possible object is * {@link Double } * */ public Double getWidth() { return width; } /** * Sets the value of the width property. * * @param width * allowed object is * {@link Double } * */ public NeuralNetwork setWidth(Double width) { this.width = width; return this; } /** * Gets the value of the altitude property. * * @return * possible object is * {@link Double } * */ public Double getAltitude() { if (altitude == null) { return DEFAULT_ALTITUDE; } else { return altitude; } } /** * Sets the value of the altitude property. * * @param altitude * allowed object is * {@link Double } * */ public NeuralNetwork setAltitude(Double altitude) { this.altitude = altitude; return this; } /** * Gets the value of the numberOfLayers property. * * @return * possible object is * {@link Integer } * */ public Integer getNumberOfLayers() { return numberOfLayers; } /** * Sets the value of the numberOfLayers property. * * @param numberOfLayers * allowed object is * {@link Integer } * */ public NeuralNetwork setNumberOfLayers(Integer numberOfLayers) { this.numberOfLayers = numberOfLayers; return this; } /** * Gets the value of the scorable property. * * @return * possible object is * {@link Boolean } * */ public boolean isScorable() { if (scorable == null) { return DEFAULT_SCORABLE; } else { return scorable; } } /** * Sets the value of the scorable property. * * @param scorable * allowed object is * {@link Boolean } * */ public NeuralNetwork setScorable(Boolean scorable) { this.scorable = scorable; return this; } /** * Gets the value of the extensions property. * *

* This accessor method returns a reference to the live list, * not a snapshot. Therefore any modification you make to the * returned list will be present inside the JAXB object. * This is why there is not a set method for the extensions property. * *

* For example, to add a new item, do as follows: *

     *    getExtensions().add(newItem);
     * 
* * *

* Objects of the following type(s) are allowed in the list * {@link Extension } * * */ public List getExtensions() { if (extensions == null) { extensions = new ArrayList(); } return this.extensions; } /** * Gets the value of the miningSchema property. * * @return * possible object is * {@link MiningSchema } * */ public MiningSchema getMiningSchema() { return miningSchema; } /** * Sets the value of the miningSchema property. * * @param miningSchema * allowed object is * {@link MiningSchema } * */ public NeuralNetwork setMiningSchema(MiningSchema miningSchema) { this.miningSchema = miningSchema; return this; } /** * Gets the value of the output property. * * @return * possible object is * {@link Output } * */ public Output getOutput() { return output; } /** * Sets the value of the output property. * * @param output * allowed object is * {@link Output } * */ public NeuralNetwork setOutput(Output output) { this.output = output; return this; } /** * Gets the value of the modelStats property. * * @return * possible object is * {@link ModelStats } * */ public ModelStats getModelStats() { return modelStats; } /** * Sets the value of the modelStats property. * * @param modelStats * allowed object is * {@link ModelStats } * */ public NeuralNetwork setModelStats(ModelStats modelStats) { this.modelStats = modelStats; return this; } /** * Gets the value of the modelExplanation property. * * @return * possible object is * {@link ModelExplanation } * */ public ModelExplanation getModelExplanation() { return modelExplanation; } /** * Sets the value of the modelExplanation property. * * @param modelExplanation * allowed object is * {@link ModelExplanation } * */ public NeuralNetwork setModelExplanation(ModelExplanation modelExplanation) { this.modelExplanation = modelExplanation; return this; } /** * Gets the value of the targets property. * * @return * possible object is * {@link Targets } * */ public Targets getTargets() { return targets; } /** * Sets the value of the targets property. * * @param targets * allowed object is * {@link Targets } * */ public NeuralNetwork setTargets(Targets targets) { this.targets = targets; return this; } /** * Gets the value of the localTransformations property. * * @return * possible object is * {@link LocalTransformations } * */ public LocalTransformations getLocalTransformations() { return localTransformations; } /** * Sets the value of the localTransformations property. * * @param localTransformations * allowed object is * {@link LocalTransformations } * */ public NeuralNetwork setLocalTransformations(LocalTransformations localTransformations) { this.localTransformations = localTransformations; return this; } /** * Gets the value of the neuralInputs property. * * @return * possible object is * {@link NeuralInputs } * */ public NeuralInputs getNeuralInputs() { return neuralInputs; } /** * Sets the value of the neuralInputs property. * * @param neuralInputs * allowed object is * {@link NeuralInputs } * */ public NeuralNetwork setNeuralInputs(NeuralInputs neuralInputs) { this.neuralInputs = neuralInputs; return this; } /** * Gets the value of the neuralLayers property. * *

* This accessor method returns a reference to the live list, * not a snapshot. Therefore any modification you make to the * returned list will be present inside the JAXB object. * This is why there is not a set method for the neuralLayers property. * *

* For example, to add a new item, do as follows: *

     *    getNeuralLayers().add(newItem);
     * 
* * *

* Objects of the following type(s) are allowed in the list * {@link NeuralLayer } * * */ public List getNeuralLayers() { if (neuralLayers == null) { neuralLayers = new ArrayList(); } return this.neuralLayers; } /** * Gets the value of the neuralOutputs property. * * @return * possible object is * {@link NeuralOutputs } * */ public NeuralOutputs getNeuralOutputs() { return neuralOutputs; } /** * Sets the value of the neuralOutputs property. * * @param neuralOutputs * allowed object is * {@link NeuralOutputs } * */ public NeuralNetwork setNeuralOutputs(NeuralOutputs neuralOutputs) { this.neuralOutputs = neuralOutputs; return this; } /** * Gets the value of the modelVerification property. * * @return * possible object is * {@link ModelVerification } * */ public ModelVerification getModelVerification() { return modelVerification; } /** * Sets the value of the modelVerification property. * * @param modelVerification * allowed object is * {@link ModelVerification } * */ public NeuralNetwork setModelVerification(ModelVerification modelVerification) { this.modelVerification = modelVerification; return this; } public boolean hasExtensions() { return ((this.extensions!= null)&&(this.extensions.size()> 0)); } public NeuralNetwork addExtensions(Extension... extensions) { getExtensions().addAll(Arrays.asList(extensions)); return this; } public boolean hasNeuralLayers() { return ((this.neuralLayers!= null)&&(this.neuralLayers.size()> 0)); } public NeuralNetwork addNeuralLayers(NeuralLayer... neuralLayers) { getNeuralLayers().addAll(Arrays.asList(neuralLayers)); return this; } @Override public VisitorAction accept(Visitor visitor) { VisitorAction status = visitor.visit(this); if (status == VisitorAction.CONTINUE) { visitor.pushParent(this); if ((status == VisitorAction.CONTINUE)&&hasExtensions()) { status = PMMLObject.traverse(visitor, getExtensions()); } if (status == VisitorAction.CONTINUE) { status = PMMLObject.traverse(visitor, getMiningSchema(), getOutput(), getModelStats(), getModelExplanation(), getTargets(), getLocalTransformations(), getNeuralInputs()); } if ((status == VisitorAction.CONTINUE)&&hasNeuralLayers()) { status = PMMLObject.traverse(visitor, getNeuralLayers()); } if (status == VisitorAction.CONTINUE) { status = PMMLObject.traverse(visitor, getNeuralOutputs(), getModelVerification()); } visitor.popParent(); } if (status == VisitorAction.TERMINATE) { return VisitorAction.TERMINATE; } return VisitorAction.CONTINUE; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy