Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
org.dmg.pmml.naive_bayes.NaiveBayesModel Maven / Gradle / Ivy
package org.dmg.pmml.naive_bayes;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import javax.xml.bind.annotation.XmlAttribute;
import javax.xml.bind.annotation.XmlElement;
import javax.xml.bind.annotation.XmlRootElement;
import javax.xml.bind.annotation.XmlType;
import javax.xml.bind.annotation.adapters.XmlJavaTypeAdapter;
import com.fasterxml.jackson.annotation.JsonProperty;
import com.fasterxml.jackson.annotation.JsonPropertyOrder;
import com.fasterxml.jackson.annotation.JsonRootName;
import org.dmg.pmml.Extension;
import org.dmg.pmml.HasExtensions;
import org.dmg.pmml.LocalTransformations;
import org.dmg.pmml.MathContext;
import org.dmg.pmml.MiningFunction;
import org.dmg.pmml.MiningSchema;
import org.dmg.pmml.Model;
import org.dmg.pmml.ModelExplanation;
import org.dmg.pmml.ModelStats;
import org.dmg.pmml.ModelVerification;
import org.dmg.pmml.Output;
import org.dmg.pmml.PMMLObject;
import org.dmg.pmml.Targets;
import org.dmg.pmml.Visitor;
import org.dmg.pmml.VisitorAction;
import org.dmg.pmml.adapters.RealNumberAdapter;
import org.jpmml.model.annotations.ValueConstructor;
@XmlRootElement(name = "NaiveBayesModel", namespace = "http://www.dmg.org/PMML-4_4")
@XmlType(name = "", propOrder = {
"extensions",
"miningSchema",
"output",
"modelStats",
"modelExplanation",
"targets",
"localTransformations",
"bayesInputs",
"bayesOutput",
"modelVerification"
})
@JsonRootName("NaiveBayesModel")
@JsonPropertyOrder({
"modelName",
"threshold",
"miningFunction",
"algorithmName",
"scorable",
"mathContext",
"extensions",
"miningSchema",
"output",
"modelStats",
"modelExplanation",
"targets",
"localTransformations",
"bayesInputs",
"bayesOutput",
"modelVerification"
})
public class NaiveBayesModel
extends Model
implements HasExtensions
{
@XmlAttribute(name = "modelName")
@JsonProperty("modelName")
private String modelName;
@XmlAttribute(name = "threshold", required = true)
@XmlJavaTypeAdapter(RealNumberAdapter.class)
@JsonProperty("threshold")
private Number threshold;
@XmlAttribute(name = "functionName", required = true)
@JsonProperty("functionName")
private MiningFunction miningFunction;
@XmlAttribute(name = "algorithmName")
@JsonProperty("algorithmName")
private String algorithmName;
@XmlAttribute(name = "isScorable")
@org.jpmml.model.annotations.Added((org.dmg.pmml.Version.PMML_4_1))
@JsonProperty("isScorable")
private Boolean scorable;
@XmlAttribute(name = "x-mathContext")
@org.jpmml.model.annotations.Added((org.dmg.pmml.Version.XPMML))
@JsonProperty("x-mathContext")
private MathContext mathContext;
@XmlElement(name = "Extension", namespace = "http://www.dmg.org/PMML-4_4")
@JsonProperty("Extension")
private List extensions;
@XmlElement(name = "MiningSchema", namespace = "http://www.dmg.org/PMML-4_4", required = true)
@JsonProperty("MiningSchema")
private MiningSchema miningSchema;
@XmlElement(name = "Output", namespace = "http://www.dmg.org/PMML-4_4")
@JsonProperty("Output")
private Output output;
@XmlElement(name = "ModelStats", namespace = "http://www.dmg.org/PMML-4_4")
@JsonProperty("ModelStats")
private ModelStats modelStats;
@XmlElement(name = "ModelExplanation", namespace = "http://www.dmg.org/PMML-4_4")
@org.jpmml.model.annotations.Added((org.dmg.pmml.Version.PMML_4_0))
@JsonProperty("ModelExplanation")
private ModelExplanation modelExplanation;
@XmlElement(name = "Targets", namespace = "http://www.dmg.org/PMML-4_4")
@JsonProperty("Targets")
private Targets targets;
@XmlElement(name = "LocalTransformations", namespace = "http://www.dmg.org/PMML-4_4")
@JsonProperty("LocalTransformations")
private LocalTransformations localTransformations;
@XmlElement(name = "BayesInputs", namespace = "http://www.dmg.org/PMML-4_4", required = true)
@JsonProperty("BayesInputs")
private BayesInputs bayesInputs;
@XmlElement(name = "BayesOutput", namespace = "http://www.dmg.org/PMML-4_4", required = true)
@JsonProperty("BayesOutput")
private BayesOutput bayesOutput;
@XmlElement(name = "ModelVerification", namespace = "http://www.dmg.org/PMML-4_4")
@JsonProperty("ModelVerification")
private ModelVerification modelVerification;
private final static Boolean DEFAULT_SCORABLE = true;
private final static long serialVersionUID = 67371009L;
public NaiveBayesModel() {
}
@ValueConstructor
public NaiveBayesModel(
@org.jpmml.model.annotations.Property("threshold")
Number threshold,
@org.jpmml.model.annotations.Property("miningFunction")
MiningFunction miningFunction,
@org.jpmml.model.annotations.Property("miningSchema")
MiningSchema miningSchema,
@org.jpmml.model.annotations.Property("bayesInputs")
BayesInputs bayesInputs,
@org.jpmml.model.annotations.Property("bayesOutput")
BayesOutput bayesOutput) {
this.threshold = threshold;
this.miningFunction = miningFunction;
this.miningSchema = miningSchema;
this.bayesInputs = bayesInputs;
this.bayesOutput = bayesOutput;
}
public String getModelName() {
return modelName;
}
public NaiveBayesModel setModelName(
@org.jpmml.model.annotations.Property("modelName")
String modelName) {
this.modelName = modelName;
return this;
}
public Number getThreshold() {
return threshold;
}
public NaiveBayesModel setThreshold(
@org.jpmml.model.annotations.Property("threshold")
Number threshold) {
this.threshold = threshold;
return this;
}
public MiningFunction getMiningFunction() {
return miningFunction;
}
public NaiveBayesModel setMiningFunction(
@org.jpmml.model.annotations.Property("miningFunction")
MiningFunction miningFunction) {
this.miningFunction = miningFunction;
return this;
}
public String getAlgorithmName() {
return algorithmName;
}
public NaiveBayesModel setAlgorithmName(
@org.jpmml.model.annotations.Property("algorithmName")
String algorithmName) {
this.algorithmName = algorithmName;
return this;
}
public boolean isScorable() {
if (scorable == null) {
return DEFAULT_SCORABLE;
} else {
return scorable;
}
}
public NaiveBayesModel setScorable(
@org.jpmml.model.annotations.Property("scorable")
Boolean scorable) {
this.scorable = scorable;
return this;
}
public MathContext getMathContext() {
if (mathContext == null) {
return MathContext.DOUBLE;
} else {
return mathContext;
}
}
public NaiveBayesModel setMathContext(
@org.jpmml.model.annotations.Property("mathContext")
MathContext mathContext) {
this.mathContext = mathContext;
return this;
}
@Override
public boolean hasExtensions() {
return ((this.extensions!= null)&&(this.extensions.size()> 0));
}
@Override
public List getExtensions() {
if (extensions == null) {
extensions = new ArrayList();
}
return this.extensions;
}
@Override
public NaiveBayesModel addExtensions(Extension... extensions) {
getExtensions().addAll(Arrays.asList(extensions));
return this;
}
public MiningSchema getMiningSchema() {
return miningSchema;
}
public NaiveBayesModel setMiningSchema(
@org.jpmml.model.annotations.Property("miningSchema")
MiningSchema miningSchema) {
this.miningSchema = miningSchema;
return this;
}
public Output getOutput() {
return output;
}
public NaiveBayesModel setOutput(
@org.jpmml.model.annotations.Property("output")
Output output) {
this.output = output;
return this;
}
public ModelStats getModelStats() {
return modelStats;
}
public NaiveBayesModel setModelStats(
@org.jpmml.model.annotations.Property("modelStats")
ModelStats modelStats) {
this.modelStats = modelStats;
return this;
}
public ModelExplanation getModelExplanation() {
return modelExplanation;
}
public NaiveBayesModel setModelExplanation(
@org.jpmml.model.annotations.Property("modelExplanation")
ModelExplanation modelExplanation) {
this.modelExplanation = modelExplanation;
return this;
}
public Targets getTargets() {
return targets;
}
public NaiveBayesModel setTargets(
@org.jpmml.model.annotations.Property("targets")
Targets targets) {
this.targets = targets;
return this;
}
public LocalTransformations getLocalTransformations() {
return localTransformations;
}
public NaiveBayesModel setLocalTransformations(
@org.jpmml.model.annotations.Property("localTransformations")
LocalTransformations localTransformations) {
this.localTransformations = localTransformations;
return this;
}
public BayesInputs getBayesInputs() {
return bayesInputs;
}
public NaiveBayesModel setBayesInputs(
@org.jpmml.model.annotations.Property("bayesInputs")
BayesInputs bayesInputs) {
this.bayesInputs = bayesInputs;
return this;
}
public BayesOutput getBayesOutput() {
return bayesOutput;
}
public NaiveBayesModel setBayesOutput(
@org.jpmml.model.annotations.Property("bayesOutput")
BayesOutput bayesOutput) {
this.bayesOutput = bayesOutput;
return this;
}
public ModelVerification getModelVerification() {
return modelVerification;
}
public NaiveBayesModel setModelVerification(
@org.jpmml.model.annotations.Property("modelVerification")
ModelVerification modelVerification) {
this.modelVerification = modelVerification;
return this;
}
@Override
public VisitorAction accept(Visitor visitor) {
VisitorAction status = visitor.visit(this);
if (status == VisitorAction.CONTINUE) {
visitor.pushParent(this);
if ((status == VisitorAction.CONTINUE)&&hasExtensions()) {
status = PMMLObject.traverse(visitor, getExtensions());
}
if (status == VisitorAction.CONTINUE) {
status = PMMLObject.traverse(visitor, getMiningSchema(), getOutput(), getModelStats(), getModelExplanation(), getTargets(), getLocalTransformations(), getBayesInputs(), getBayesOutput(), getModelVerification());
}
visitor.popParent();
}
if (status == VisitorAction.TERMINATE) {
return VisitorAction.TERMINATE;
}
return VisitorAction.CONTINUE;
}
}