All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.dmg.pmml.bayesian_network.ContinuousConditionalProbability Maven / Gradle / Ivy

There is a newer version: 1.6.6
Show newest version

package org.dmg.pmml.bayesian_network;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import javax.xml.bind.annotation.XmlAttribute;
import javax.xml.bind.annotation.XmlElement;
import javax.xml.bind.annotation.XmlRootElement;
import javax.xml.bind.annotation.XmlType;
import javax.xml.bind.annotation.adapters.XmlJavaTypeAdapter;
import com.fasterxml.jackson.annotation.JsonProperty;
import com.fasterxml.jackson.annotation.JsonPropertyOrder;
import com.fasterxml.jackson.annotation.JsonRootName;
import org.dmg.pmml.Extension;
import org.dmg.pmml.HasExtensions;
import org.dmg.pmml.Visitor;
import org.dmg.pmml.VisitorAction;
import org.dmg.pmml.adapters.RealNumberAdapter;
import org.jpmml.model.annotations.Added;
import org.jpmml.model.annotations.ValueConstructor;

@XmlRootElement(name = "ContinuousConditionalProbability", namespace = "http://www.dmg.org/PMML-4_4")
@XmlType(name = "", propOrder = {
    "extensions",
    "parentValues",
    "continuousDistributions"
})
@Added((org.dmg.pmml.Version.PMML_4_3))
@JsonRootName("ContinuousConditionalProbability")
@JsonPropertyOrder({
    "count",
    "extensions",
    "parentValues",
    "continuousDistributions"
})
public class ContinuousConditionalProbability
    extends org.dmg.pmml.PMMLObject
    implements HasExtensions
{

    @XmlAttribute(name = "count")
    @XmlJavaTypeAdapter(RealNumberAdapter.class)
    @JsonProperty("count")
    private Number count;
    @XmlElement(name = "Extension", namespace = "http://www.dmg.org/PMML-4_4")
    @JsonProperty("Extension")
    private List extensions;
    @XmlElement(name = "ParentValue", namespace = "http://www.dmg.org/PMML-4_4")
    @JsonProperty("ParentValue")
    private List parentValues;
    @XmlElement(name = "ContinuousDistribution", namespace = "http://www.dmg.org/PMML-4_4", required = true)
    @JsonProperty("ContinuousDistribution")
    private List continuousDistributions;
    private final static long serialVersionUID = 67371267L;

    public ContinuousConditionalProbability() {
    }

    @ValueConstructor
    public ContinuousConditionalProbability(
        @org.jpmml.model.annotations.Property("continuousDistributions")
        List continuousDistributions) {
        this.continuousDistributions = continuousDistributions;
    }

    public Number getCount() {
        return count;
    }

    public ContinuousConditionalProbability setCount(
        @org.jpmml.model.annotations.Property("count")
        Number count) {
        this.count = count;
        return this;
    }

    @Override
    public boolean hasExtensions() {
        return ((this.extensions!= null)&&(this.extensions.size()> 0));
    }

    @Override
    public List getExtensions() {
        if (extensions == null) {
            extensions = new ArrayList();
        }
        return this.extensions;
    }

    @Override
    public ContinuousConditionalProbability addExtensions(Extension... extensions) {
        getExtensions().addAll(Arrays.asList(extensions));
        return this;
    }

    public boolean hasParentValues() {
        return ((this.parentValues!= null)&&(this.parentValues.size()> 0));
    }

    public List getParentValues() {
        if (parentValues == null) {
            parentValues = new ArrayList();
        }
        return this.parentValues;
    }

    public ContinuousConditionalProbability addParentValues(ParentValue... parentValues) {
        getParentValues().addAll(Arrays.asList(parentValues));
        return this;
    }

    public boolean hasContinuousDistributions() {
        return ((this.continuousDistributions!= null)&&(this.continuousDistributions.size()> 0));
    }

    public List getContinuousDistributions() {
        if (continuousDistributions == null) {
            continuousDistributions = new ArrayList();
        }
        return this.continuousDistributions;
    }

    public ContinuousConditionalProbability addContinuousDistributions(ContinuousDistribution... continuousDistributions) {
        getContinuousDistributions().addAll(Arrays.asList(continuousDistributions));
        return this;
    }

    @Override
    public VisitorAction accept(Visitor visitor) {
        VisitorAction status = visitor.visit(this);
        if (status == VisitorAction.CONTINUE) {
            visitor.pushParent(this);
            if ((status == VisitorAction.CONTINUE)&&hasExtensions()) {
                status = org.dmg.pmml.PMMLObject.traverse(visitor, getExtensions());
            }
            if ((status == VisitorAction.CONTINUE)&&hasParentValues()) {
                status = org.dmg.pmml.PMMLObject.traverse(visitor, getParentValues());
            }
            if ((status == VisitorAction.CONTINUE)&&hasContinuousDistributions()) {
                status = org.dmg.pmml.PMMLObject.traverse(visitor, getContinuousDistributions());
            }
            visitor.popParent();
        }
        if (status == VisitorAction.TERMINATE) {
            return VisitorAction.TERMINATE;
        }
        return VisitorAction.CONTINUE;
    }

}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy