org.jpmml.rexp.IForestConverter Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of pmml-rexp Show documentation
Show all versions of pmml-rexp Show documentation
JPMML R to PMML converter
The newest version!
/*
* Copyright (c) 2016 Villu Ruusmann
*
* This file is part of JPMML-R
*
* JPMML-R is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* JPMML-R is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with JPMML-R. If not, see .
*/
package org.jpmml.rexp;
import java.util.ArrayList;
import java.util.List;
import org.dmg.pmml.DataField;
import org.dmg.pmml.DataType;
import org.dmg.pmml.Expression;
import org.dmg.pmml.FieldRef;
import org.dmg.pmml.MiningFunction;
import org.dmg.pmml.Model;
import org.dmg.pmml.OpType;
import org.dmg.pmml.PMMLFunctions;
import org.dmg.pmml.Predicate;
import org.dmg.pmml.SimplePredicate;
import org.dmg.pmml.True;
import org.dmg.pmml.mining.MiningModel;
import org.dmg.pmml.mining.Segmentation;
import org.dmg.pmml.tree.BranchNode;
import org.dmg.pmml.tree.LeafNode;
import org.dmg.pmml.tree.Node;
import org.dmg.pmml.tree.TreeModel;
import org.jpmml.converter.ContinuousFeature;
import org.jpmml.converter.ExpressionUtil;
import org.jpmml.converter.FortranMatrixUtil;
import org.jpmml.converter.ModelUtil;
import org.jpmml.converter.Schema;
import org.jpmml.converter.Transformation;
import org.jpmml.converter.ValueUtil;
import org.jpmml.converter.mining.MiningModelUtil;
import org.jpmml.converter.transformations.AbstractTransformation;
public class IForestConverter extends TreeModelConverter {
public IForestConverter(RGenericVector iForest){
super(iForest);
}
@Override
public void encodeSchema(RExpEncoder encoder){
RGenericVector iForest = getObject();
RStringVector xcols = iForest.getStringElement("xcols");
RBooleanVector colisfactor = iForest.getBooleanElement("colisfactor");
RVectorUtil.checkSize(xcols, colisfactor);
boolean hasFactors = false;
for(int i = 0; i < colisfactor.size(); i++){
hasFactors |= colisfactor.getValue(i);
}
if(hasFactors){
throw new IllegalArgumentException();
}
{
DataField dataField = encoder.createDataField("pathLength", OpType.CONTINUOUS, DataType.DOUBLE);
encoder.setLabel(dataField);
}
for(int i = 0; i < xcols.size(); i++){
String xcol = xcols.getValue(i);
DataField dataField = encoder.createDataField(xcol, OpType.CONTINUOUS, DataType.DOUBLE);
encoder.addFeature(dataField);
}
}
@Override
public Model encodeModel(Schema schema){
RGenericVector iForest = getObject();
RGenericVector trees = iForest.getGenericElement("trees");
RDoubleVector ntree = iForest.getDoubleElement("ntree");
if(trees == null){
throw new IllegalArgumentException();
}
RIntegerVector xrow = trees.getIntegerElement("xrow");
Schema segmentSchema = schema.toAnonymousSchema();
List treeModels = new ArrayList<>();
for(int i = 0; i < ValueUtil.asInt(ntree.asScalar()); i++){
TreeModel treeModel = encodeTreeModel(i, trees, segmentSchema);
treeModels.add(treeModel);
}
// "rawPathLength / avgPathLength(xrow)"
Transformation normalizedPathLength = new AbstractTransformation(){
@Override
public String getName(String name){
return "normalizedPathLength";
}
@Override
public Expression createExpression(FieldRef fieldRef){
return ExpressionUtil.createApply(PMMLFunctions.DIVIDE, fieldRef, ExpressionUtil.createConstant(avgPathLength(xrow.asScalar())));
}
};
// "2 ^ (-1 * normalizedPathLength)"
Transformation anomalyScore = new AbstractTransformation(){
@Override
public String getName(String name){
return "anomalyScore";
}
@Override
public boolean isFinalResult(){
return true;
}
@Override
public Expression createExpression(FieldRef fieldRef){
return ExpressionUtil.createApply(PMMLFunctions.POW, ExpressionUtil.createConstant(2d), ExpressionUtil.toNegative(fieldRef));
}
};
MiningModel miningModel = new MiningModel(MiningFunction.REGRESSION, ModelUtil.createMiningSchema(schema.getLabel()))
.setSegmentation(MiningModelUtil.createSegmentation(Segmentation.MultipleModelMethod.AVERAGE, Segmentation.MissingPredictionTreatment.RETURN_MISSING, treeModels))
.setOutput(ModelUtil.createPredictedOutput("rawPathLength", OpType.CONTINUOUS, DataType.DOUBLE, normalizedPathLength, anomalyScore));
return miningModel;
}
private TreeModel encodeTreeModel(int index, RGenericVector trees, Schema schema){
RIntegerVector nrnodes = trees.getIntegerElement("nrnodes");
RIntegerVector ntree = trees.getIntegerElement("ntree");
RIntegerVector nodeStatus = trees.getIntegerElement("nodeStatus");
RIntegerVector leftDaughter = trees.getIntegerElement("lDaughter");
RIntegerVector rightDaughter = trees.getIntegerElement("rDaughter");
RIntegerVector splitAtt = trees.getIntegerElement("splitAtt");
RDoubleVector splitPoint = trees.getDoubleElement("splitPoint");
RIntegerVector nSam = trees.getIntegerElement("nSam");
int rows = nrnodes.asScalar();
int columns = ntree.asScalar();
Node root = encodeNode(
0,
True.INSTANCE,
0,
FortranMatrixUtil.getColumn(nodeStatus.getValues(), rows, columns, index),
FortranMatrixUtil.getColumn(nSam.getValues(), rows, columns, index),
FortranMatrixUtil.getColumn(leftDaughter.getValues(), rows, columns, index),
FortranMatrixUtil.getColumn(rightDaughter.getValues(), rows, columns, index),
FortranMatrixUtil.getColumn(splitAtt.getValues(), rows, columns, index),
FortranMatrixUtil.getColumn(splitPoint.getValues(), rows, columns, index),
schema
);
TreeModel treeModel = new TreeModel(MiningFunction.REGRESSION, ModelUtil.createMiningSchema(schema.getLabel()), root)
.setSplitCharacteristic(TreeModel.SplitCharacteristic.BINARY_SPLIT);
return treeModel;
}
private Node encodeNode(int index, Predicate predicate, int depth, List nodeStatus, List nodeSize, List leftDaughter, List rightDaughter, List splitAtt, List splitValue, Schema schema){
Integer id = Integer.valueOf(index + 1);
int status = nodeStatus.get(index);
int size = nodeSize.get(index);
// Interior node
if(status == -3){
int att = splitAtt.get(index);
ContinuousFeature feature = (ContinuousFeature)schema.getFeature(att - 1);
Double value = splitValue.get(index);
Predicate leftPredicate = createSimplePredicate(feature, SimplePredicate.Operator.LESS_THAN, value);
Predicate rightPredicate = createSimplePredicate(feature, SimplePredicate.Operator.GREATER_OR_EQUAL, value);
Node leftChild = encodeNode(leftDaughter.get(index) - 1, leftPredicate, depth + 1, nodeStatus, nodeSize, leftDaughter, rightDaughter, splitAtt, splitValue, schema);
Node rightChild = encodeNode(rightDaughter.get(index) - 1, rightPredicate, depth + 1, nodeStatus, nodeSize, leftDaughter, rightDaughter, splitAtt, splitValue, schema);
Node result = new BranchNode(null, predicate)
.setId(id)
.addNodes(leftChild, rightChild);
return result;
} else
// Terminal node
if(status == -1){
Node result = new LeafNode(depth + avgPathLength(size), predicate)
.setId(id);
return result;
} else
{
throw new IllegalArgumentException();
}
}
static
private double avgPathLength(double n){
double j = (n - 1d);
if(j <= 0d){
return 0d;
}
return (2d * (Math.log(j) + 0.5772156649d)) - (2d * (j / n));
}
}