org.jpmml.sparkml.ClassificationModelConverter Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of pmml-sparkml Show documentation
Show all versions of pmml-sparkml Show documentation
JPMML Apache Spark ML to PMML converter
The newest version!
/*
* Copyright (c) 2016 Villu Ruusmann
*
* This file is part of JPMML-SparkML
*
* JPMML-SparkML is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* JPMML-SparkML is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with JPMML-SparkML. If not, see .
*/
package org.jpmml.sparkml;
import java.util.Collections;
import java.util.List;
import org.apache.spark.ml.classification.ClassificationModel;
import org.apache.spark.ml.linalg.Vector;
import org.dmg.pmml.DataType;
import org.dmg.pmml.MapValues;
import org.dmg.pmml.MiningFunction;
import org.dmg.pmml.Model;
import org.dmg.pmml.OpType;
import org.dmg.pmml.OutputField;
import org.dmg.pmml.ResultFeature;
import org.jpmml.converter.CategoricalLabel;
import org.jpmml.converter.DerivedOutputField;
import org.jpmml.converter.ExpressionUtil;
import org.jpmml.converter.FieldNameUtil;
import org.jpmml.converter.IndexFeature;
import org.jpmml.converter.Label;
import org.jpmml.converter.LabelUtil;
import org.jpmml.converter.ModelUtil;
import org.jpmml.converter.Schema;
import org.jpmml.converter.SchemaUtil;
import org.jpmml.sparkml.model.HasPredictionModelOptions;
abstract
public class ClassificationModelConverter> extends PredictionModelConverter {
public ClassificationModelConverter(T model){
super(model);
}
public int getNumberOfClasses(){
T model = getModel();
return model.numClasses();
}
@Override
public MiningFunction getMiningFunction(){
return MiningFunction.CLASSIFICATION;
}
@Override
public void checkSchema(Schema schema){
super.checkSchema(schema);
CategoricalLabel categoricalLabel = (CategoricalLabel)schema.getLabel();
SchemaUtil.checkSize(getNumberOfClasses(), categoricalLabel);
}
@Override
public List registerOutputFields(Label label, Model pmmlModel, SparkMLEncoder encoder){
T model = getModel();
CategoricalLabel categoricalLabel = (CategoricalLabel)label;
List categories = LabelUtil.createTargetCategories(categoricalLabel.size());
String predictionCol = model.getPredictionCol();
Boolean keepPredictionCol = (Boolean)getOption(HasPredictionModelOptions.OPTION_KEEP_PREDICTIONCOL, Boolean.TRUE);
OutputField pmmlPredictedOutputField = ModelUtil.createPredictedField(FieldNameUtil.create("pmml", predictionCol), OpType.CATEGORICAL, categoricalLabel.getDataType())
.setFinalResult(false);
DerivedOutputField pmmlPredictedField = encoder.createDerivedField(pmmlModel, pmmlPredictedOutputField, keepPredictionCol);
MapValues mapValues = ExpressionUtil.createMapValues(pmmlPredictedField.getName(), categoricalLabel.getValues(), categories)
.setDataType(DataType.DOUBLE);
OutputField predictedOutputField = new OutputField(predictionCol, OpType.CONTINUOUS, DataType.DOUBLE)
.setResultFeature(ResultFeature.TRANSFORMED_VALUE)
.setExpression(mapValues);
DerivedOutputField predictedField = encoder.createDerivedField(pmmlModel, predictedOutputField, keepPredictionCol);
encoder.putOnlyFeature(predictionCol, new IndexFeature(encoder, predictedField, categories));
return Collections.emptyList();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy