org.jpmml.sparkml.ProbabilisticClassificationModelConverter Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of pmml-sparkml Show documentation
Show all versions of pmml-sparkml Show documentation
JPMML Apache Spark ML to PMML converter
The newest version!
/*
* Copyright (c) 2023 Villu Ruusmann
*
* This file is part of JPMML-SparkML
*
* JPMML-SparkML is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* JPMML-SparkML is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with JPMML-SparkML. If not, see .
*/
package org.jpmml.sparkml;
import java.util.ArrayList;
import java.util.List;
import org.apache.spark.ml.classification./*Probabilistic*/ClassificationModel;
import org.apache.spark.ml.linalg.Vector;
import org.apache.spark.ml.param.shared.HasProbabilityCol;
import org.dmg.pmml.DataType;
import org.dmg.pmml.Model;
import org.dmg.pmml.OutputField;
import org.jpmml.converter.CategoricalLabel;
import org.jpmml.converter.ContinuousFeature;
import org.jpmml.converter.Feature;
import org.jpmml.converter.FieldNameUtil;
import org.jpmml.converter.Label;
import org.jpmml.converter.ModelUtil;
abstract
public class ProbabilisticClassificationModelConverter & HasProbabilityCol> extends ClassificationModelConverter {
public ProbabilisticClassificationModelConverter(T model){
super(model);
}
@Override
public List registerOutputFields(Label label, Model pmmlModel, SparkMLEncoder encoder){
T model = getModel();
List result = super.registerOutputFields(label, pmmlModel, encoder);
CategoricalLabel categoricalLabel = (CategoricalLabel)label;
String probabilityCol = model.getProbabilityCol();
result = new ArrayList<>(result);
List features = new ArrayList<>();
for(int i = 0; i < categoricalLabel.size(); i++){
Object value = categoricalLabel.getValue(i);
OutputField probabilityField = ModelUtil.createProbabilityField(FieldNameUtil.create(probabilityCol, value), DataType.DOUBLE, value);
result.add(probabilityField);
features.add(new ContinuousFeature(encoder, probabilityField));
}
// XXX
encoder.putFeatures(probabilityCol, features);
return result;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy