org.jpmml.sparkml.feature.BucketizerConverter Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of pmml-sparkml Show documentation
Show all versions of pmml-sparkml Show documentation
JPMML Apache Spark ML to PMML converter
The newest version!
/*
* Copyright (c) 2016 Villu Ruusmann
*
* This file is part of JPMML-SparkML
*
* JPMML-SparkML is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* JPMML-SparkML is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with JPMML-SparkML. If not, see .
*/
package org.jpmml.sparkml.feature;
import java.util.ArrayList;
import java.util.List;
import org.apache.spark.ml.feature.Bucketizer;
import org.dmg.pmml.DataType;
import org.dmg.pmml.DerivedField;
import org.dmg.pmml.Discretize;
import org.dmg.pmml.DiscretizeBin;
import org.dmg.pmml.Interval;
import org.dmg.pmml.OpType;
import org.jpmml.converter.ContinuousFeature;
import org.jpmml.converter.Feature;
import org.jpmml.converter.IndexFeature;
import org.jpmml.sparkml.MultiFeatureConverter;
import org.jpmml.sparkml.SparkMLEncoder;
public class BucketizerConverter extends MultiFeatureConverter {
public BucketizerConverter(Bucketizer transformer){
super(transformer);
}
@Override
public List encodeFeatures(SparkMLEncoder encoder){
Bucketizer transformer = getTransformer();
InOutMode inputMode = getInputMode();
String[] inputCols;
double[][] splitsArray;
if(inputMode == InOutMode.SINGLE){
inputCols = inputMode.getInputCols(transformer);
splitsArray = new double[][]{transformer.getSplits()};
} else
if(inputMode == InOutMode.MULTIPLE){
inputCols = inputMode.getInputCols(transformer);
splitsArray = transformer.getSplitsArray();
} else
{
throw new IllegalArgumentException();
}
List result = new ArrayList<>();
for(int i = 0; i < inputCols.length; i++){
String inputCol = inputCols[i];
double[] splits = splitsArray[i];
Feature feature = encoder.getOnlyFeature(inputCol);
ContinuousFeature continuousFeature = feature.toContinuousFeature();
Discretize discretize = new Discretize(continuousFeature.getName())
.setDataType(DataType.INTEGER);
List categories = new ArrayList<>();
for(int j = 0; j < (splits.length - 1); j++){
Integer category = j;
categories.add(category);
Interval interval = new Interval((j < (splits.length - 2)) ? Interval.Closure.CLOSED_OPEN : Interval.Closure.CLOSED_CLOSED)
.setLeftMargin(formatMargin(splits[j]))
.setRightMargin(formatMargin(splits[j + 1]));
DiscretizeBin discretizeBin = new DiscretizeBin(category, interval);
discretize.addDiscretizeBins(discretizeBin);
}
DerivedField derivedField = encoder.createDerivedField(formatName(transformer, i), OpType.CATEGORICAL, DataType.INTEGER, discretize);
result.add(new IndexFeature(encoder, derivedField, categories));
}
return result;
}
static
private Double formatMargin(double value){
if(Double.isInfinite(value)){
return null;
}
return value;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy