org.jpmml.sparkml.feature.CountVectorizerModelConverter Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of pmml-sparkml Show documentation
Show all versions of pmml-sparkml Show documentation
JPMML Apache Spark ML to PMML converter
The newest version!
/*
* Copyright (c) 2017 Villu Ruusmann
*
* This file is part of JPMML-SparkML
*
* JPMML-SparkML is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* JPMML-SparkML is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with JPMML-SparkML. If not, see .
*/
package org.jpmml.sparkml.feature;
import java.util.ArrayList;
import java.util.Collections;
import java.util.LinkedHashMap;
import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.concurrent.atomic.AtomicInteger;
import com.google.common.base.Joiner;
import org.apache.spark.ml.feature.CountVectorizerModel;
import org.dmg.pmml.DataType;
import org.dmg.pmml.DefineFunction;
import org.dmg.pmml.FieldRef;
import org.dmg.pmml.OpType;
import org.dmg.pmml.ParameterField;
import org.dmg.pmml.TextIndex;
import org.dmg.pmml.TextIndexNormalization;
import org.jpmml.converter.Feature;
import org.jpmml.converter.PMMLUtil;
import org.jpmml.sparkml.DocumentFeature;
import org.jpmml.sparkml.FeatureConverter;
import org.jpmml.sparkml.SparkMLEncoder;
import org.jpmml.sparkml.TermFeature;
import org.jpmml.sparkml.TermUtil;
public class CountVectorizerModelConverter extends FeatureConverter {
public CountVectorizerModelConverter(CountVectorizerModel transformer){
super(transformer);
}
@Override
public List encodeFeatures(SparkMLEncoder encoder){
CountVectorizerModel transformer = getTransformer();
DocumentFeature documentFeature = (DocumentFeature)encoder.getOnlyFeature(transformer.getInputCol());
ParameterField documentField = new ParameterField("document");
ParameterField termField = new ParameterField("term");
TextIndex textIndex = new TextIndex(documentField, new FieldRef(termField))
.setTokenize(Boolean.TRUE)
.setWordSeparatorCharacterRE(documentFeature.getWordSeparatorRE())
.setLocalTermWeights(transformer.getBinary() ? TextIndex.LocalTermWeights.BINARY : null);
Set stopWordSets = documentFeature.getStopWordSets();
for(DocumentFeature.StopWordSet stopWordSet : stopWordSets){
if(stopWordSet.isEmpty()){
continue;
}
String tokenRE;
String wordSeparatorRE = documentFeature.getWordSeparatorRE();
switch(wordSeparatorRE){
case "\\s+":
tokenRE = "(^|\\s+)\\p{Punct}*(" + JOINER.join(stopWordSet) + ")\\p{Punct}*(\\s+|$)";
break;
case "\\W+":
tokenRE = "(\\W+)(" + JOINER.join(stopWordSet) + ")(\\W+)";
break;
default:
throw new IllegalArgumentException("Expected \"\\s+\" or \"\\W+\" as splitter regex pattern, got \"" + wordSeparatorRE + "\"");
}
Map> data = new LinkedHashMap<>();
data.put("string", Collections.singletonList(tokenRE));
data.put("stem", Collections.singletonList(" "));
data.put("regex", Collections.singletonList("true"));
TextIndexNormalization textIndexNormalization = new TextIndexNormalization(PMMLUtil.createInlineTable(data))
.setCaseSensitive(stopWordSet.isCaseSensitive())
.setRecursive(Boolean.TRUE); // Handles consecutive matches. See http://stackoverflow.com/a/25085385
textIndex.addTextIndexNormalizations(textIndexNormalization);
}
DefineFunction defineFunction = new DefineFunction("tf" + "@" + String.valueOf(CountVectorizerModelConverter.SEQUENCE.getAndIncrement()), OpType.CONTINUOUS, DataType.INTEGER, null, textIndex)
.addParameterFields(documentField, termField);
encoder.addDefineFunction(defineFunction);
List result = new ArrayList<>();
String[] vocabulary = transformer.vocabulary();
for(int i = 0; i < vocabulary.length; i++){
String term = vocabulary[i];
if(TermUtil.hasPunctuation(term)){
throw new IllegalArgumentException("Punctuated vocabulary terms (" + term + ") are not supported");
}
result.add(new TermFeature(encoder, defineFunction, documentFeature, term));
}
return result;
}
private static final Joiner JOINER = Joiner.on("|");
private static final AtomicInteger SEQUENCE = new AtomicInteger(1);
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy