org.jpmml.sparkml.feature.PCAModelConverter Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of pmml-sparkml Show documentation
Show all versions of pmml-sparkml Show documentation
JPMML Apache Spark ML to PMML converter
The newest version!
/*
* Copyright (c) 2016 Villu Ruusmann
*
* This file is part of JPMML-SparkML
*
* JPMML-SparkML is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* JPMML-SparkML is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with JPMML-SparkML. If not, see .
*/
package org.jpmml.sparkml.feature;
import java.util.ArrayList;
import java.util.List;
import org.apache.spark.ml.feature.PCAModel;
import org.apache.spark.ml.linalg.DenseMatrix;
import org.dmg.pmml.Apply;
import org.dmg.pmml.DataType;
import org.dmg.pmml.DerivedField;
import org.dmg.pmml.Expression;
import org.dmg.pmml.OpType;
import org.dmg.pmml.PMMLFunctions;
import org.jpmml.converter.ContinuousFeature;
import org.jpmml.converter.ExpressionUtil;
import org.jpmml.converter.Feature;
import org.jpmml.converter.ValueUtil;
import org.jpmml.sparkml.FeatureConverter;
import org.jpmml.sparkml.MatrixUtil;
import org.jpmml.sparkml.SparkMLEncoder;
public class PCAModelConverter extends FeatureConverter {
public PCAModelConverter(PCAModel transformer){
super(transformer);
}
@Override
public List encodeFeatures(SparkMLEncoder encoder){
PCAModel transformer = getTransformer();
DenseMatrix pc = transformer.pc();
List features = encoder.getFeatures(transformer.getInputCol());
MatrixUtil.checkRows(features.size(), pc);
List result = new ArrayList<>();
for(int i = 0, length = transformer.getK(); i < length; i++){
Apply apply = ExpressionUtil.createApply(PMMLFunctions.SUM);
for(int j = 0; j < features.size(); j++){
Feature feature = features.get(j);
ContinuousFeature continuousFeature = feature.toContinuousFeature();
Expression expression = continuousFeature.ref();
Double coefficient = pc.apply(j, i);
if(!ValueUtil.isOne(coefficient)){
expression = ExpressionUtil.createApply(PMMLFunctions.MULTIPLY, expression, ExpressionUtil.createConstant(coefficient));
}
apply.addExpressions(expression);
}
DerivedField derivedField = encoder.createDerivedField(formatName(transformer, i, length), OpType.CONTINUOUS, DataType.DOUBLE, apply);
result.add(new ContinuousFeature(encoder, derivedField));
}
return result;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy