org.jpmml.sparkml.feature.SparseToDenseTransformer.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of pmml-sparkml Show documentation
Show all versions of pmml-sparkml Show documentation
JPMML Apache Spark ML to PMML converter
The newest version!
/*
* Copyright (c) 2020 Villu Ruusmann
*
* This file is part of JPMML-SparkML
*
* JPMML-SparkML is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* JPMML-SparkML is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with JPMML-SparkML. If not, see .
*/
package org.jpmml.sparkml.feature
import org.apache.spark.ml.Transformer
import org.apache.spark.ml.linalg.{DenseVector, SparseVector, Vector}
import org.apache.spark.ml.linalg.SQLDataTypes.VectorType
import org.apache.spark.ml.param.ParamMap
import org.apache.spark.ml.param.shared.{HasInputCol, HasOutputCol}
import org.apache.spark.ml.util.{DefaultParamsReadable, DefaultParamsWritable, Identifiable}
import org.apache.spark.sql.{Dataset, Row}
import org.apache.spark.sql.functions.udf
import org.apache.spark.sql.types.{StructField, StructType}
class SparseToDenseTransformer(override val uid: String) extends Transformer with HasInputCol with HasOutputCol with DefaultParamsWritable {
def this() = this(Identifiable.randomUID("sparse2dense"))
def setInputCol(value: String): this.type = set(inputCol, value)
def setOutputCol(value: String): this.type = set(outputCol, value)
override
def copy(extra: ParamMap): SparseToDenseTransformer = defaultCopy(extra)
override
def transformSchema(schema: StructType): StructType = {
val inputColName = $(inputCol)
val outputColName = $(outputCol)
val inputFields = schema.fields
require(!inputFields.exists(_.name == outputColName), s"Output column $outputColName already exists")
val inputField = schema(inputColName)
val outputField = new StructField(outputColName, inputField.dataType, inputField.nullable)
StructType(inputFields :+ outputField)
}
override
def transform(dataset: Dataset[_]): Dataset[Row] = {
val inputColName = $(inputCol)
val outputColName = $(outputCol)
transformSchema(dataset.schema, logging = true)
val converter = udf { vec: Vector => vec.toDense }
dataset.withColumn(outputColName, converter(dataset(inputColName)))
}
}
object SparseToDenseTransformer extends DefaultParamsReadable[SparseToDenseTransformer] {
override
def load(path: String): SparseToDenseTransformer = super.load(path)
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy