org.jpmml.sparkml.feature.StandardScalerModelConverter Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of pmml-sparkml Show documentation
Show all versions of pmml-sparkml Show documentation
JPMML Apache Spark ML to PMML converter
The newest version!
/*
* Copyright (c) 2016 Villu Ruusmann
*
* This file is part of JPMML-SparkML
*
* JPMML-SparkML is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* JPMML-SparkML is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with JPMML-SparkML. If not, see .
*/
package org.jpmml.sparkml.feature;
import java.util.ArrayList;
import java.util.List;
import java.util.function.Supplier;
import org.apache.spark.ml.feature.StandardScalerModel;
import org.apache.spark.ml.linalg.Vector;
import org.dmg.pmml.Apply;
import org.dmg.pmml.DataType;
import org.dmg.pmml.DerivedField;
import org.dmg.pmml.Expression;
import org.dmg.pmml.OpType;
import org.dmg.pmml.PMMLFunctions;
import org.jpmml.converter.ContinuousFeature;
import org.jpmml.converter.ExpressionUtil;
import org.jpmml.converter.Feature;
import org.jpmml.converter.ProductFeature;
import org.jpmml.converter.SchemaUtil;
import org.jpmml.converter.ValueUtil;
import org.jpmml.sparkml.FeatureConverter;
import org.jpmml.sparkml.SparkMLEncoder;
public class StandardScalerModelConverter extends FeatureConverter {
public StandardScalerModelConverter(StandardScalerModel transformer){
super(transformer);
}
@Override
public List encodeFeatures(SparkMLEncoder encoder){
StandardScalerModel transformer = getTransformer();
Vector mean = transformer.mean();
Vector std = transformer.std();
boolean withMean = transformer.getWithMean();
boolean withStd = transformer.getWithStd();
List features = encoder.getFeatures(transformer.getInputCol());
if(withMean){
SchemaUtil.checkSize(mean.size(), features);
} // End if
if(withStd){
SchemaUtil.checkSize(std.size(), features);
}
List result = new ArrayList<>();
for(int i = 0, length = features.size(); i < length; i++){
Feature feature = features.get(i);
String name = formatName(transformer, i, length);
Expression expression = null;
if(withMean){
double meanValue = mean.apply(i);
if(!ValueUtil.isZero(meanValue)){
ContinuousFeature continuousFeature = feature.toContinuousFeature();
expression = ExpressionUtil.createApply(PMMLFunctions.SUBTRACT, continuousFeature.ref(), ExpressionUtil.createConstant(meanValue));
}
} // End if
if(withStd){
double stdValue = std.apply(i);
if(!ValueUtil.isOne(stdValue)){
Double factor = (1d / stdValue);
if(expression != null){
expression = ExpressionUtil.createApply(PMMLFunctions.MULTIPLY, expression, ExpressionUtil.createConstant(factor));
} else
{
feature = new ProductFeature(encoder, feature, factor){
@Override
public ContinuousFeature toContinuousFeature(){
Supplier applySupplier = () -> {
Feature feature = getFeature();
Number factor = getFactor();
return ExpressionUtil.createApply(PMMLFunctions.MULTIPLY, (feature.toContinuousFeature()).ref(), ExpressionUtil.createConstant(factor));
};
return toContinuousFeature(name, DataType.DOUBLE, applySupplier);
}
};
}
}
} // End if
if(expression != null){
DerivedField derivedField = encoder.createDerivedField(name, OpType.CONTINUOUS, DataType.DOUBLE, expression);
result.add(new ContinuousFeature(encoder, derivedField));
} else
{
result.add(feature);
}
}
return result;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy