org.jpmml.sparkml.model.GBTRegressionModelConverter Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of pmml-sparkml Show documentation
Show all versions of pmml-sparkml Show documentation
JPMML Apache Spark ML to PMML converter
The newest version!
/*
* Copyright (c) 2016 Villu Ruusmann
*
* This file is part of JPMML-SparkML
*
* JPMML-SparkML is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* JPMML-SparkML is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with JPMML-SparkML. If not, see .
*/
package org.jpmml.sparkml.model;
import java.util.List;
import com.google.common.primitives.Doubles;
import org.apache.spark.ml.linalg.Vector;
import org.apache.spark.ml.regression.GBTRegressionModel;
import org.dmg.pmml.MiningFunction;
import org.dmg.pmml.mining.MiningModel;
import org.dmg.pmml.mining.Segmentation;
import org.dmg.pmml.tree.TreeModel;
import org.jpmml.converter.ModelUtil;
import org.jpmml.converter.Schema;
import org.jpmml.converter.mining.MiningModelUtil;
import org.jpmml.sparkml.RegressionModelConverter;
public class GBTRegressionModelConverter extends RegressionModelConverter implements HasFeatureImportances, HasTreeOptions {
public GBTRegressionModelConverter(GBTRegressionModel model){
super(model);
}
@Override
public Vector getFeatureImportances(){
GBTRegressionModel model = getModel();
return model.featureImportances();
}
@Override
public MiningModel encodeModel(Schema schema){
GBTRegressionModel model = getModel();
List treeModels = TreeModelUtil.encodeDecisionTreeEnsemble(this, schema);
MiningModel miningModel = new MiningModel(MiningFunction.REGRESSION, ModelUtil.createMiningSchema(schema.getLabel()))
.setSegmentation(MiningModelUtil.createSegmentation(Segmentation.MultipleModelMethod.WEIGHTED_SUM, Segmentation.MissingPredictionTreatment.RETURN_MISSING, treeModels, Doubles.asList(model.treeWeights())));
return miningModel;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy