org.jpmml.sparkml.model.GeneralizedLinearRegressionModelConverter Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of pmml-sparkml Show documentation
Show all versions of pmml-sparkml Show documentation
JPMML Apache Spark ML to PMML converter
The newest version!
/*
* Copyright (c) 2016 Villu Ruusmann
*
* This file is part of JPMML-SparkML
*
* JPMML-SparkML is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* JPMML-SparkML is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with JPMML-SparkML. If not, see .
*/
package org.jpmml.sparkml.model;
import java.util.ArrayList;
import java.util.List;
import org.apache.spark.ml.regression.GeneralizedLinearRegressionModel;
import org.dmg.pmml.DataType;
import org.dmg.pmml.MiningFunction;
import org.dmg.pmml.Model;
import org.dmg.pmml.OutputField;
import org.dmg.pmml.general_regression.GeneralRegressionModel;
import org.jpmml.converter.CategoricalLabel;
import org.jpmml.converter.Feature;
import org.jpmml.converter.Label;
import org.jpmml.converter.ModelUtil;
import org.jpmml.converter.Schema;
import org.jpmml.converter.SchemaUtil;
import org.jpmml.converter.general_regression.GeneralRegressionModelUtil;
import org.jpmml.sparkml.RegressionModelConverter;
import org.jpmml.sparkml.SparkMLEncoder;
import org.jpmml.sparkml.VectorUtil;
public class GeneralizedLinearRegressionModelConverter extends RegressionModelConverter implements HasRegressionTableOptions {
public GeneralizedLinearRegressionModelConverter(GeneralizedLinearRegressionModel model){
super(model);
}
@Override
public MiningFunction getMiningFunction(){
GeneralizedLinearRegressionModel model = getModel();
String family = model.getFamily();
switch(family){
case "binomial":
return MiningFunction.CLASSIFICATION;
default:
return MiningFunction.REGRESSION;
}
}
@Override
public List registerOutputFields(Label label, Model pmmlModel, SparkMLEncoder encoder){
GeneralizedLinearRegressionModel model = getModel();
List result = super.registerOutputFields(label, pmmlModel, encoder);
MiningFunction miningFunction = getMiningFunction();
switch(miningFunction){
case CLASSIFICATION:
CategoricalLabel categoricalLabel = (CategoricalLabel)label;
result = new ArrayList<>(result);
result.addAll(ModelUtil.createProbabilityFields(DataType.DOUBLE, categoricalLabel.getValues()));
break;
default:
break;
}
return result;
}
@Override
public GeneralRegressionModel encodeModel(Schema schema){
GeneralizedLinearRegressionModel model = getModel();
Object targetCategory = null;
MiningFunction miningFunction = getMiningFunction();
switch(miningFunction){
case CLASSIFICATION:
CategoricalLabel categoricalLabel = (CategoricalLabel)schema.getLabel();
SchemaUtil.checkSize(2, categoricalLabel);
targetCategory = categoricalLabel.getValue(1);
break;
default:
break;
}
List features = new ArrayList<>(schema.getFeatures());
List featureCoefficients = new ArrayList<>(VectorUtil.toList(model.coefficients()));
RegressionTableUtil.simplify(this, targetCategory, features, featureCoefficients);
GeneralRegressionModel generalRegressionModel = new GeneralRegressionModel(GeneralRegressionModel.ModelType.GENERALIZED_LINEAR, miningFunction, ModelUtil.createMiningSchema(schema.getLabel()), null, null, null)
.setDistribution(parseFamily(model.getFamily()))
.setLinkFunction(parseLinkFunction(model.getLink()))
.setLinkParameter(parseLinkParameter(model.getLink()));
GeneralRegressionModelUtil.encodeRegressionTable(generalRegressionModel, features, featureCoefficients, model.intercept(), targetCategory);
return generalRegressionModel;
}
static
private GeneralRegressionModel.Distribution parseFamily(String family){
switch(family){
case "binomial":
return GeneralRegressionModel.Distribution.BINOMIAL;
case "gamma":
return GeneralRegressionModel.Distribution.GAMMA;
case "gaussian":
return GeneralRegressionModel.Distribution.NORMAL;
case "poisson":
return GeneralRegressionModel.Distribution.POISSON;
default:
throw new IllegalArgumentException("Distribution family " + family + " is not supported");
}
}
static
private GeneralRegressionModel.LinkFunction parseLinkFunction(String link){
switch(link){
case "cloglog":
return GeneralRegressionModel.LinkFunction.CLOGLOG;
case "identity":
return GeneralRegressionModel.LinkFunction.IDENTITY;
case "inverse":
return GeneralRegressionModel.LinkFunction.POWER;
case "log":
return GeneralRegressionModel.LinkFunction.LOG;
case "logit":
return GeneralRegressionModel.LinkFunction.LOGIT;
case "probit":
return GeneralRegressionModel.LinkFunction.PROBIT;
case "sqrt":
return GeneralRegressionModel.LinkFunction.POWER;
default:
throw new IllegalArgumentException("Link function " + link + " is not supported");
}
}
static
private Double parseLinkParameter(String link){
switch(link){
case "inverse":
return -1d;
case "sqrt":
return (1d / 2d);
default:
return null;
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy