org.jpmml.sparkml.model.LinearSVCModelConverter Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of pmml-sparkml Show documentation
Show all versions of pmml-sparkml Show documentation
JPMML Apache Spark ML to PMML converter
The newest version!
/*
* Copyright (c) 2019 Villu Ruusmann
*
* This file is part of JPMML-SparkML
*
* JPMML-SparkML is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* JPMML-SparkML is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with JPMML-SparkML. If not, see .
*/
package org.jpmml.sparkml.model;
import org.apache.spark.ml.classification.LinearSVCModel;
import org.dmg.pmml.DataType;
import org.dmg.pmml.Expression;
import org.dmg.pmml.FieldRef;
import org.dmg.pmml.Model;
import org.dmg.pmml.OpType;
import org.dmg.pmml.PMMLFunctions;
import org.dmg.pmml.mining.MiningModel;
import org.dmg.pmml.regression.RegressionModel;
import org.jpmml.converter.ExpressionUtil;
import org.jpmml.converter.FieldNameUtil;
import org.jpmml.converter.ModelUtil;
import org.jpmml.converter.Schema;
import org.jpmml.converter.Transformation;
import org.jpmml.converter.mining.MiningModelUtil;
import org.jpmml.converter.transformations.AbstractTransformation;
import org.jpmml.sparkml.ClassificationModelConverter;
public class LinearSVCModelConverter extends ClassificationModelConverter implements HasRegressionTableOptions {
public LinearSVCModelConverter(LinearSVCModel model){
super(model);
}
@Override
public MiningModel encodeModel(Schema schema){
LinearSVCModel model = getModel();
Transformation transformation = new AbstractTransformation(){
@Override
public String getName(String name){
return FieldNameUtil.create(PMMLFunctions.THRESHOLD, name);
}
@Override
public Expression createExpression(FieldRef fieldRef){
return ExpressionUtil.createApply(PMMLFunctions.THRESHOLD)
.addExpressions(fieldRef, ExpressionUtil.createConstant(model.getThreshold()));
}
};
Schema segmentSchema = schema.toAnonymousRegressorSchema(DataType.DOUBLE);
Model linearModel = LinearModelUtil.createRegression(this, model.coefficients(), model.intercept(), segmentSchema)
.setOutput(ModelUtil.createPredictedOutput("margin", OpType.CONTINUOUS, DataType.DOUBLE, transformation));
return MiningModelUtil.createBinaryLogisticClassification(linearModel, 1d, 0d, RegressionModel.NormalizationMethod.NONE, false, schema);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy